CN106862580A - 一种氮化硼包覆铁镍纳米合金的制备方法 - Google Patents

一种氮化硼包覆铁镍纳米合金的制备方法 Download PDF

Info

Publication number
CN106862580A
CN106862580A CN201710126970.XA CN201710126970A CN106862580A CN 106862580 A CN106862580 A CN 106862580A CN 201710126970 A CN201710126970 A CN 201710126970A CN 106862580 A CN106862580 A CN 106862580A
Authority
CN
China
Prior art keywords
alloy
boron nitride
nano
iron
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710126970.XA
Other languages
English (en)
Other versions
CN106862580B (zh
Inventor
孟凡斌
许滨滨
孙启磊
郝红月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201710126970.XA priority Critical patent/CN106862580B/zh
Publication of CN106862580A publication Critical patent/CN106862580A/zh
Application granted granted Critical
Publication of CN106862580B publication Critical patent/CN106862580B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明为一种氮化硼包覆铁镍纳米合金的制备方法。该方法包括以下步骤:将九水硝酸铁和六水硝酸镍溶解在乙醇中,再加入表面活性剂和硼氢化钠乙醇溶液,搅拌过滤后得到铁镍合金前驱体;再与硼酸进行机械研磨0.5~1.5小时,得到复合粉;然后在氨气气氛下高温烧结,温度为900~1000℃,保温1.5~2.5小时,最后制得氮化硼包覆铁镍纳米合金粉体。本发明所得到的氮化硼包覆铁镍纳米合金充分利用了氮化硼较好的性能,尤其是低温耐氧化性,并结合铁镍纳米合金优异的磁性能,制备出新型复合粉体材料,扩展其在改善聚合物耐高温性能的应用。

Description

一种氮化硼包覆铁镍纳米合金的制备方法
技术领域
本发明技术方案涉及一种氮化硼纳米材料,特别涉及一种氮化硼包覆铁镍纳米合金的制备方法。
背景技术
铁镍纳米合金具有较高的磁导率和表面磁性,在高密度磁记录材料、高效催化剂和生物载体等方面有着巨大的应用潜力。然而,当合金的尺寸减小到纳米级别时,氧化、磨损等缺陷会使合金的磁性能恶化,从而影响合金的进一步利用。
氮化硼是一种重要的非氧化物材料,其性能和晶型结构和C相似。其中,六方氮化硼(h-BN)粉末具有润滑、松散、质轻、耐高温、化学稳定性强等优点,广泛应用于气体吸收、防护涂料、污水护理和催化剂载体等领域。氮化硼包覆铁镍纳米合金既体现了合金的磁性能又提高了合金的抗氧化性能。
氮化硼包覆磁性纳米合金制备技术有相应的报道,例如:D.L.Fan等用氯化铵、氨水、硼氢化钾等通过高温煅烧法成功合成出氮化硼包覆钴、镍纳米合金(D.L.Fan,J.Feng,S.Y.Zhang,X.M.Lv,T.Y.Gao,Synthesis structure and magnetic properties of Niand Co nanoparticles encapsulated by few-layer h-BN,J.Alloy Compd.689(2016)153-160);T.Oku等人用硼酸、尿素和硝酸银等通过新型化学溶液法及混合电弧放电法成功合成出氮化硼包覆银纳米合金(T.Oku,T.Kusunose,T.Hirata,N.Sato,R.Hatakeyama,K.Niihara,K.Suganuma,Formation and structure of Ag,Ge and SiC nanoparticlesencapsulated in boron nitride and carbon nanocapsules,J.);I.Narita,等人用硼氢化钾和三氯化六氨合钴通过高温煅烧法成功的合成出氮化硼包覆钴纳米合金(I.Narita,T.Oku,H.Toroko,K.Suganuma,Synthesis of Co nanocapsules coated with BN layersby annealing of KBH4and[Co(NH3)6]Cl3,J.137(2006)44-48)。以上方法均为氮化硼包覆单相纳米合金,但较难控制氮化硼厚度和包覆状态。因此,本专利提供了简易制备氮化硼包覆铁镍纳米合金的方法,即把硼酸和铁镍合金前驱体进行机械研磨,在氨气气氛下高温煅烧,得到厚度均匀的氮化硼涂层,为增强合金的抗氧化性做出了贡献,且可以结合铁镍合金优异的磁性能,制备出新型的的复合材料,扩展其在改善聚合物耐高温性能的应用。
发明内容
本发明的目的为针对当前技术中存在的氮化硼厚度难以控制以及成本高的不足,提出一种工艺简单、性能优异的氮化硼包覆铁镍纳米合金的制备方法。在将铁镍合金前驱体与硼酸均匀混合后,该方法采用氨气气氛下的高温煅烧,氨气充当还原剂的同时又提供氮源,由于反应过程中始终保持氮化硼的形成和合金的形成是同步的,随着温度的升高,硼酸分解成氧化硼进而与氨气发生反应形成氮化硼包覆合金。本发明所得到的氮化硼包覆铁镍纳米合金充分利用了氮化硼较好的性能,尤其是低温耐氧化性,并结合铁镍纳米合金优异的磁性能,制备出新型复合粉体材料,扩展其在改善聚合物耐高温性能的应用。
本发明采用的技术方案是:
一种氮化硼包覆铁镍纳米合金的制备方法,包括以下步骤:
(1)将硼氢化钠溶于乙醇待用;其中,每15ml乙醇加0.5~0.6g硼氢化钠;
(2)将九水硝酸铁和六水硝酸镍溶解在乙醇中,再加入表面活性剂和步骤(1)中的溶液,搅拌1.0~1.5小时,过滤后洗涤固体至中性,真空干燥得到铁镍合金前驱体待用;
其中,九水硝酸铁和六水硝酸镍的摩尔比为1:1~1:4;每40~60ml乙醇加1.5~1.8g的表面活性剂、0.404~1.01g九水硝酸铁;
(3)取步骤(2)中得到的铁镍合金前驱体与硼酸进行机械研磨0.5~1.5小时,得到复合粉;其中,摩尔比为硼酸:铁镍合金前驱体中铁=1:2~1:4;
(4)将复合粉在氨气气氛下高温烧结,温度为900~1000℃,保温1.5~2.5小时,最后制得氮化硼包覆铁镍纳米合金粉体。
所述的表面活性剂具体为聚乙烯吡咯烷烷酮K30。
本发明的实质性特点为:
当前技术中,一般用硼酸和尿素作为硼源和氮源制备氮化硼,由于六方氮化硼内部结构紧凑且无缝隙,把制备好的氮化硼与铁镍合金前驱体进行研磨然后高温煅烧,将很难控制氮化硼的包覆状态以及本身的厚度。
本发明利用硼酸和铁镍合金前驱体先进行充分研磨,在高温下利用硼酸分解的氮化硼与氨气进行反应包覆合金,使氮化硼的形成和合金的形成是同步的,这样就保证了包覆状态。
本发明的有益效果是:
(1)本发明采用的气氛为氨气,氨气在整个实验过程中既充当还原剂又提供氮源,在高温下与硼酸分解出的氧化硼进行反应生成氮化硼涂层,工艺简单。
(2)本发明方法所用设备简单,成本低,产物的结构稳定且性能优异,有利于大规模的生产。
(3)本发明所得到的氮化硼包覆铁镍纳米合金充分利用了氮化硼较好的性能,尤其是耐氧化性,使合金由原来未包覆的240℃发生严重氧化到包覆后570℃均保持良好的抗氧化性能,并结合铁镍纳米合金优异的磁性能,制备出新型复合粉体材料,扩展其在改善聚合物耐高温性能的应用。
附图说明
下面结合附图和实施例对本发明做进一步说明。
图1为本发明实施例1的氮化硼包覆铁镍纳米合金X射线衍射(XRD)图。
图2为本发明实施例1的氮化硼包覆铁镍纳米合金透射电镜(TEM)照片。
图3为本发明实施例3的氮化硼包覆铁镍纳米合金热重、差热分析(TGA-SDTA)照片,
其中,图3a为包覆前铁镍纳米合金热重和差热曲线,图3b为包覆后铁镍纳米合金热重和差热曲线。
具体实施方式
实施例1
(1)称取0.5g硼氢化钠溶于15ml乙醇中备用;
(2)按摩尔比为1:4,称取0.404g九水硝酸铁、1.16g六水硝酸镍依次倒入60ml乙醇中,使其完全溶解,随后加入1.8g聚乙烯吡吡烷酮k30,室温搅拌1.5h,然后加入硼氢化钠溶液,搅拌1h,过滤后用去离子水洗涤固体至中性,再真空干燥,得到铁镍合金前驱体;
(3)称取0.155g(0.0025摩尔)硼酸和0.56g(0.01摩尔,按铁的摩尔数计算)铁镍合金前驱体混合后进行机械研磨1小时,得到复合粉;
(4)将(3)得到的复合粉体放入瓷舟,在氨气气氛下,气流量为30ml/min,利用管式炉950℃高温煅烧,保温时间为2h,即可得到氮化硼包覆铁镍纳米合金粉体。
图1为铁镍纳米合金、氮化硼、氮化硼包覆铁镍纳米合金的XRD曲线,由铁镍纳米合金的XRD曲线得出,在2θ=44.30°、51.56°、75.90°有明显的特征峰,对应铁镍纳米合金(111)、(200)、(220)晶面,对于氮化硼,在2θ=25.86°、41.78°、76.32°有明显的特征峰,分别对应六方氮化硼(h-BN)(002)、(100)、(220)晶面,经过高温煅烧后的氮化硼包覆铁镍纳米合金,在2θ=26.46°、41.84°、44.40°、51.68°、76.12°有明显的特征峰。图2为氮化硼包覆铁镍纳米合金TEM图片,从图可以看出,涂层厚度约为8nm,晶面间距为0.338nm,对应h-BN(002)晶面;内核晶面间距为0.208nm,较好得对应铁镍合金(111)晶面,通过以上XRD、TEM分析得出,此方法成功制备出氮化硼包覆铁镍纳米合金粉体。
实施例2
(1)称取0.6g硼氢化钠溶于15ml乙醇中备用;
(2)按摩尔比为2:3,称取0.808g九水硝酸铁、0.87g六水硝酸镍依次倒入60ml乙醇中,使其完全溶解,随后加入1.6g聚乙烯吡吡烷酮k30,室温搅拌1h,然后加入硼氢化钠溶液,搅拌2h,过滤,真空干燥,得到铁镍合金前驱体;
(3)称取0.186g(0.003摩尔)硼酸和0.56g(0.01摩尔,按铁的摩尔数计算)铁镍合金前驱体进行机械研磨1小时;
(4)将(3)得到的复合粉体放入瓷舟,在氨气气氛下,气流量为30ml/min,利用管式炉950℃高温煅烧,保温时间为2h,即可得到氮化硼包覆铁镍纳米合金粉体。
实施例3
(1)称取0.6g硼氢化钠溶解在15ml乙醇中备用;
(2)按摩尔比为1:1,称取1.01g九水硝酸铁、0.725g六水硝酸镍依次倒入60ml乙醇中,使其完全溶解,随后加入1.5g聚乙烯吡吡烷酮k30,室温搅拌0.5h,然后加入硼氢化钠溶液,搅拌2h,过滤,真空干燥,得到铁镍合金前驱体;
(3)称称取0.186g(0.003摩尔)硼酸和0.56g(0.01摩尔,按铁的摩尔数计算)铁镍合金前驱体进行机械研磨1小时;
(4)将(3)得到的复合粉体放入瓷舟,在氨气气氛下,气流量为30ml/min,利用管式炉950℃高温煅烧,保温时间为2h,即可得到氮化硼包覆铁镍纳米合金复合粉体。
图3为铁镍纳米合金、氮化硼包覆铁镍纳米合金的TGA-SDTA曲线,由图可以看出铁镍合金在240℃左右发生氧化,而氮化硼包覆铁镍纳米合金在570℃以下均保持良好的稳定性,可以说明氮化硼涂层的存在大大提高了合金的抗氧化性能。
实施例4
(1)称取0.5g硼氢化钠溶于15ml乙醇中备用;
(2)按摩尔比为1:4,称取0.404g九水硝酸铁、1.16g六水硝酸镍依次倒入60ml乙醇中,使其完全溶解,随后加入1.8g聚乙烯吡吡烷酮k30,室温搅拌1.5h,然后加入硼氢化钠溶液,搅拌1h,过滤,真空干燥,即铁镍合金前驱体;
(3)称取0.217g(0.0035摩尔)硼酸和0.56g(0.01摩尔,按铁的摩尔数计算)铁镍合金前驱体进行机械研磨1小时;
(4)将(3)得到的复合粉体放入瓷舟,在氨气气氛下,气流量为30ml/min,利用管式炉950℃高温煅烧,保温时间为3h,即可得到氮化硼包覆铁镍纳米合金粉体。
实施例5
(1)称取0.5g硼氢化钠溶于15ml乙醇中备用;
(2)按摩尔比为1:4,称取0.404g九水硝酸铁、1.16g六水硝酸镍依次倒入60ml乙醇中,使其完全溶解,随后加入1.8g聚乙烯吡吡烷酮k30,室温搅拌1.5h,然后加入硼氢化钠溶液,搅拌1h,过滤,真空干燥,即铁镍合金前驱体;
(3)称取0.248g(0.004摩尔)硼酸和0.56g(0.01摩尔,按铁的摩尔数计算)铁镍合金前驱体进行机械研磨1小时;
(4)将(3)得到的复合粉体放入瓷舟,在氨气气氛下,利用管式炉1050℃高温煅烧,保温时间为4h,即可得到氮化硼包覆铁镍纳米合金粉体。
通过充分的机械研磨,使硼酸很好的包覆铁镍合金前驱体,这是控制氮化硼包覆状态的前提。在高温和还原气氛下,合金化与表面氮化硼层的生成同时进行,保证了氮化硼包覆紧密牢固。硼酸的相对用量能很好的控制氮化硼包覆厚度。
本发明未尽事宜为公知技术。

Claims (2)

1.一种氮化硼包覆铁镍纳米合金的制备方法,其特征为包括以下步骤:
(1)将硼氢化钠溶于乙醇待用;其中,每15ml乙醇加0.5~0.6g硼氢化钠;
(2)将九水硝酸铁和六水硝酸镍溶解在乙醇中,再加入表面活性剂和步骤(1)中的溶液,搅拌1.0~1.5小时,过滤后洗涤固体至中性,真空干燥得到铁镍合金前驱体待用;
其中,九水硝酸铁和六水硝酸镍的摩尔比为1:1~1:4;每40~60ml乙醇加1.5~1.8g的表面活性剂、0.404~1.01g九水硝酸铁;
(3)取步骤(2)中得到的铁镍合金前驱体与硼酸进行机械研磨0.5~1.5小时,得到复合粉;其中,摩尔比为硼酸:铁镍合金前驱体中铁=1:2~1:4;
(4)将复合粉在氨气气氛下高温烧结,温度为900~1000℃,保温1.5~2.5小时,最后制得氮化硼包覆铁镍纳米合金粉体。
2.如权利要求1所述的氮化硼包覆铁镍纳米合金的制备方法,其特征为所述的表面活性剂具体为聚乙烯吡咯烷烷酮K30。
CN201710126970.XA 2017-03-06 2017-03-06 一种氮化硼包覆铁镍纳米合金的制备方法 Expired - Fee Related CN106862580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710126970.XA CN106862580B (zh) 2017-03-06 2017-03-06 一种氮化硼包覆铁镍纳米合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710126970.XA CN106862580B (zh) 2017-03-06 2017-03-06 一种氮化硼包覆铁镍纳米合金的制备方法

Publications (2)

Publication Number Publication Date
CN106862580A true CN106862580A (zh) 2017-06-20
CN106862580B CN106862580B (zh) 2018-07-03

Family

ID=59170357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710126970.XA Expired - Fee Related CN106862580B (zh) 2017-03-06 2017-03-06 一种氮化硼包覆铁镍纳米合金的制备方法

Country Status (1)

Country Link
CN (1) CN106862580B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833847A (zh) * 2019-04-03 2019-06-04 河北工业大学 一种镍氧化物改性的多孔氮化硼吸附剂及其制备方法
CN117900467A (zh) * 2024-03-19 2024-04-19 天津大学 氮化硼纳米片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169137A (ja) * 1998-12-11 2000-06-20 Denki Kagaku Kogyo Kk ホウ酸塩粒子、その粒子を含む無機粉末の製法及び用途
CN101311322A (zh) * 2008-02-02 2008-11-26 长沙高新技术产业开发区英才科技有限公司 一种电镀铁镍合金表面处理工艺及其电镀液
CN103172050A (zh) * 2013-04-16 2013-06-26 中山大学 一种氮化硼包覆碳纳米管的制备方法
CN105921761A (zh) * 2016-07-04 2016-09-07 江苏大学 一种六方氮化硼包裹钴镍合金材料的制备方法
CN105921742A (zh) * 2016-06-02 2016-09-07 江苏大学 一种制备六方氮化硼包裹纳米镍颗粒的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169137A (ja) * 1998-12-11 2000-06-20 Denki Kagaku Kogyo Kk ホウ酸塩粒子、その粒子を含む無機粉末の製法及び用途
CN101311322A (zh) * 2008-02-02 2008-11-26 长沙高新技术产业开发区英才科技有限公司 一种电镀铁镍合金表面处理工艺及其电镀液
CN103172050A (zh) * 2013-04-16 2013-06-26 中山大学 一种氮化硼包覆碳纳米管的制备方法
CN105921742A (zh) * 2016-06-02 2016-09-07 江苏大学 一种制备六方氮化硼包裹纳米镍颗粒的方法
CN105921761A (zh) * 2016-07-04 2016-09-07 江苏大学 一种六方氮化硼包裹钴镍合金材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEOOKU;TAKAFUMIKUSUNOSE;TAKAMICHIHIRATA;NORYOSHISATO等: "Formation and structure of Ag, Ge and SiC nanoparticles encapsulated in boron nitride and carbon nanocapsules", 《DIAMOND AND RELATED MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833847A (zh) * 2019-04-03 2019-06-04 河北工业大学 一种镍氧化物改性的多孔氮化硼吸附剂及其制备方法
CN109833847B (zh) * 2019-04-03 2022-02-08 河北工业大学 一种镍氧化物改性的多孔氮化硼吸附剂及其制备方法
CN117900467A (zh) * 2024-03-19 2024-04-19 天津大学 氮化硼纳米片及其制备方法

Also Published As

Publication number Publication date
CN106862580B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
Sazelee et al. LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2
Chen et al. Synthesis and characterization of Co3O4 hollow spheres
CN105478755B (zh) 一种非金属元素掺杂碳包覆金属纳米粒子磁性复合材料的制备方法
Feng et al. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane
Zhang et al. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery
Yao et al. Remarkable synergistic effects of Mg2NiH4 and transition metal carbides (TiC, ZrC, WC) on enhancing the hydrogen storage properties of MgH2
Fan et al. Cobalt nickel nanoparticles encapsulated within hexagonal boron nitride as stable, catalytic dehydrogenation nanoreactor
CN102452650B (zh) 一种低温化学法制备石墨烯的方法
Wang et al. In situ formation of porous trimetallic PtRhFe nanospheres decorated on ultrathin MXene nanosheets as highly efficient catalysts for ethanol oxidation
CN102190299B (zh) 一种纳米碳化钨粉体的制备方法
CN109248703A (zh) 一种负载Ni3Fe的氮掺杂碳纳米复合材料的制备方法及其所得材料和应用
CN111841546B (zh) 一种钴镍合金/碳纳米纤维复合电催化剂及其制备方法和应用
Wen et al. Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis
Li et al. Pd-on-NiCu nanosheets with enhanced electro-catalytic performances for methanol oxidation
CN108671964A (zh) 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法
Lin et al. A novel method to prepare Ti1. 4V0. 6Ni alloy covered with carbon and nanostructured Co3O4, and its good electrochemical hydrogen storage properties as negative electrode material for Ni-MH battery
CN102676859A (zh) 原位合成的碳纳米管增强镁基复合材料的制备方法
CN106862580B (zh) 一种氮化硼包覆铁镍纳米合金的制备方法
JP2021529716A (ja) 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法
CN102259851A (zh) 一种低温化学还原法制备石墨烯的方法
Zhang et al. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2
CN102814503B (zh) 纳米氧化钇颗粒弥散强化铁素体合金钢粉末的制备方法
Ding et al. Interface and body engineering via aluminum hydride enabling Ti-V-Cr-Mn alloy with enhanced hydrogen storage performance
Tian et al. Large‐scale preparation of nano‐sized carbides and metal whiskers via mechanochemical decomposition of MAX phases
CN108579760A (zh) 一种碳包覆的镍铁合金纳米催化剂及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180703

CF01 Termination of patent right due to non-payment of annual fee