CN106835021A - 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法 - Google Patents

一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法 Download PDF

Info

Publication number
CN106835021A
CN106835021A CN201710006941.XA CN201710006941A CN106835021A CN 106835021 A CN106835021 A CN 106835021A CN 201710006941 A CN201710006941 A CN 201710006941A CN 106835021 A CN106835021 A CN 106835021A
Authority
CN
China
Prior art keywords
nano
zno
high temperature
wire
temperature process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710006941.XA
Other languages
English (en)
Other versions
CN106835021B (zh
Inventor
曹培江
杨志博
朱德亮
吕有明
刘新科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201710006941.XA priority Critical patent/CN106835021B/zh
Publication of CN106835021A publication Critical patent/CN106835021A/zh
Application granted granted Critical
Publication of CN106835021B publication Critical patent/CN106835021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及气敏材料领域,尤其涉及一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法。该方法主要包括以下步骤:用电阻式热蒸发的方法在SiO2/Si衬底上沉积一层Au膜;用化学气相沉积的方法在所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;用物理气相沉积的方法在所述ZnO纳米线的表面包覆一层Pd膜,得到包覆有Pd膜的ZnO纳米线阵列样品;将包覆有Pd膜的所述ZnO纳米线阵列样品放置在高温管式炉中进行高温退火,得到Pd纳米颗粒表面修饰ZnO纳米线气敏材料。与传统的化学方法相比,该方法制备得到的样品Pd纳米颗粒粒径均一、数量多且制备可控。

Description

一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法
技术领域
本发明涉及气敏材料领域,尤其涉及一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法。
背景技术
ZnO(氧化锌)纳米线结构的气敏传感器已经被陆续制备出来,而且所制备的气敏传感器展示出良好的气敏性能,可用于对可燃性气体、有毒有害的气体检测和监控。但是,传统的ZnO纳米线气敏传感器存在灵敏度低、工作温度高及响应较慢等问题,目前,可以通过贵金属纳米颗粒表面修饰的方法来提高ZnO纳米线气敏传感器的性能。其中,采用传统的化学方法进行贵金属Pd(钯)纳米颗粒修饰ZnO纳米线,其所制备的气敏传感器的灵敏度、气体选择性、稳定性以及响应度都有提高。但是,传统的化学方法得到的ZnO纳米线具有表面修饰不均匀、修饰效率低以及修饰不可控等缺点,导致ZnO纳米线气敏传感器的广泛应用受到限制。
因此,寻找一种高效、可控的贵金属Pd纳米颗粒修饰的方法,用来提升ZnO纳米线气敏传感器的性能,使其得到广泛应用显得尤为重要。
发明内容
本发明的目的在于提供一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,旨在解决传统的Pd纳米颗粒修饰ZnO纳米线方法修饰不均匀、修饰效率低以及修饰不可控的技术问题。
为实现上述目的,本发明的技术方案是:一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,包括以下步骤:
S1:用电阻式热蒸发的方法在SiO2/Si衬底上沉积一层Au膜;
S2:用化学气相沉积的方法在所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;
S3:用物理气相沉积的方法在所述ZnO纳米线的表面包覆一层Pd膜,得到包覆有Pd膜的ZnO纳米线阵列样品;
S4:将包覆有Pd膜的所述ZnO纳米线阵列样品放置在高温管式炉中进行高温退火,得到Pd纳米颗粒表面修饰ZnO纳米线气敏材料。
进一步地,在步骤S3中,所述物理气相沉积的方法为磁控溅射法、电阻式热蒸发法或者脉冲激光沉积法。
进一步地,所述磁控溅射法的具体步骤为:
S3.1:将纯金属Pd靶材固定在磁控溅射系统的靶位上;
S3.2:将所述ZnO纳米线阵列样品在样品托内固定后,放入磁控溅射系统的真空腔内;
S3.3:将所述真空腔抽真空至5×10-4Pa以下,然后向所述真空腔内通入Ar气,进行溅射生长;
S3.4:溅射生长结束后,取出样品。
进一步地,在所述步骤S3.3中,溅射生长时的溅射功率为50W~80W,腔体压强为0.5Pa~5Pa,通入Ar气的流量为30sccm~50sccm。
进一步地,在所述步骤S3.3中,溅射生长时的溅射沉积时间为3s~10s。
进一步地,所述步骤S4具体为:
S4.1:将包覆有Pd膜的所述ZnO纳米线阵列样品放置在高温管式炉石英管的中间位置处;
S4.2:向所述高温管式炉石英管内通入高纯Ar气;
S4.3:设置所述高温管式炉的温度与保温时间,进行高温退火处理;
S4.4:高温退火处理结束后,待所述高温管式炉冷却至室温,取出样品。
进一步地,在所述步骤S4.2中,向所述高温管式炉石英管内通入高纯Ar气的流量为20sccm~40sccm;在所述步骤S4.3中,高温退火处理时,设置所述高温管式炉的温度为700℃~900℃,保温时间为10min~40min。
进一步地,所述步骤S2具体为:
S2.1:将相同质量的高纯ZnO粉末和活性炭粉混合研磨均匀,放入刚玉舟内;将所述刚玉舟放置在高温管式炉石英管的中间位置;
S2.2:将沉积有Au膜的SiO2/Si衬底放置在所述高温管式炉石英管的上游位置;将所述高温管式炉石英管内的压强抽至266Pa以下,并通入高纯O2气和高纯Ar气;
S2.3:设置所述高温管式炉的温度与保温时间,使所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;
S2.4:待所述高温管式炉冷却至室温后,关闭设备,取出样品。
进一步地,在所述步骤S2.2中,所述高温管式炉石英管的上游位置为距离所述高温管式炉石英管中间位置4cm~7cm处。
进一步地,在所述步骤S2.2中,通入高纯O2气的流量为1sccm~3sccm,通入高纯Ar气的流量为20sccm~40sccm;在所述步骤S2.3中,设置所述高温管式炉的温度为900℃~960℃,保温时间为10min~40min。
本发明的有益效果:本发明采用物理气相沉积的方法在ZnO纳米线的表面包覆一层Pd膜,然后将包覆有Pd膜的ZnO纳米线阵列样品放置在高温管式炉中进行高温退火,以制备出Pd纳米颗粒表面修饰的ZnO纳米线。与传统的化学方法相比,该方法制备得到的样品Pd纳米颗粒粒径均一、数量多且制备可控。因此,本发明为制备Pd纳米颗粒表面修饰ZnO纳米线气敏材料提供了一种有效的手段。
附图说明
图1为本发明实施例提供的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法流程图。
图2为本发明实施例提供的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备工艺流程示意图。
图3为本发明实施例提供的用化学气相沉积的方法制备ZnO纳米线的示意图。
图4为本发明实施例提供的高温管式炉高温退火制备Pd纳米颗粒表面修饰ZnO纳米线气敏材料的示意图。
图5为ZnO纳米线的热场发射扫描电镜(FE-SEM)示意图:(a)Pd纳米颗粒表面修饰前的ZnO纳米线横截面;(b)Pd纳米颗粒表面修饰前的ZnO纳米线俯视图;(c)Pd纳米颗粒表面修饰前的ZnO纳米线局部图;(d)Pd纳米颗粒表面修饰后的ZnO纳米线局部图。
图6为Pd纳米颗粒表面修饰前后ZnO纳米线的X射线衍射(XRD)示意图。
图7为Pd纳米颗粒表面修饰前后ZnO纳米线的气敏测试示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1至图2所示,本发明实施例提供的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,包括以下步骤:S1:用电阻式热蒸发的方法在SiO2/Si衬底上沉积一层Au膜;S2:用化学气相沉积的方法在所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;S3:用物理气相沉积的方法在所述ZnO纳米线的表面包覆一层Pd膜,得到包覆有Pd膜的ZnO纳米线阵列样品;S4:将包覆有Pd膜的所述ZnO纳米线阵列样品放置在高温管式炉中进行高温退火,得到Pd纳米颗粒表面修饰ZnO纳米线气敏材料。
本发明实施例通过采用物理气相沉积的方法在ZnO纳米线的表面包覆一层Pd膜,然后将包覆有Pd膜的ZnO纳米线阵列样品放置在高温管式炉中进行高温退火,从而制备出Pd纳米颗粒表面修饰的ZnO纳米线。与传统的化学方法相比,该方法制备得到的样品Pd纳米颗粒粒径均一、数量多且制备可控,有利于提高产物质量,便于大规模推广。
优选地,在步骤S1中,采用SiO2/Si衬底为表面有300nm SiO2层的单晶Si衬底。本实施例中,Au是作为碳热还原反应制备ZnO纳米线的催化剂,采用电阻式热蒸发的方法在SiO2/Si衬底上预先沉积一层Au催化剂薄膜,是为步骤S2中ZnO纳米线的生长作准备。此外,Au催化剂薄膜的厚度对ZnO纳米线的直径、长度以及面密度等有着重要影响,Au催化剂薄膜的厚度可为1nm、3nm、5nm等,优选地,Au催化剂薄膜的厚度为1nm。
进一步地,所述步骤S2具体为:S2.1:将相同质量的高纯ZnO粉末和活性炭粉混合研磨均匀,放入刚玉舟内;将所述刚玉舟放置在高温管式炉石英管的中间位置;S2.2:将沉积有Au膜的SiO2/Si衬底放置在所述高温管式炉石英管的上游位置;将所述高温管式炉石英管内的压强抽至266Pa以下,并通入高纯O2气和高纯Ar气;S2.3:设置所述高温管式炉的温度与保温时间,使所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;S2.4:待所述高温管式炉冷却至室温后,关闭设备,取出样品。在所述步骤S2.2中,所述高温管式炉石英管的上游位置为距离所述高温管式炉石英管中间位置4cm~7cm处,通入高纯O2气的流量为1sccm~3sccm,通入高纯Ar气的流量为20sccm~40sccm;在所述步骤S2.3中,设置所述高温管式炉的温度为900℃~960℃,保温时间为10min~40min。具体地,在所述步骤S2.2中,所述高温管式炉石英管的上游位置到所述高温管式炉石英管中间位置的距离可以为4cm、5cm、6cm或7cm等,通入高纯O2气的流量可以为1sccm、1.5sccm、2sccm或3sccm等,通入高纯Ar气的流量可以为20sccm、25sccm、30sccm、35sccm或40sccm等;在所述步骤S2.3中,设置所述高温管式炉的温度可以为900℃、950℃或960℃等,保温时间可以为10min、15min、30min或40min等。
具体地,利用化学气相沉积的方法生长ZnO纳米线,得到ZnO纳米线阵列,主要的反应过程与相变过程如下:
还原反应:ZnO+C→Zn(g)+CO/CO2或者ZnO+CO→Zn(g)+CO2
氧化反应:Zn(l)+O2→ZnO(s)或着Zn(g)+O2→ZnO(g);
即在一定温度与气氛下,ZnO和C之间发生还原反应生成气态Zn蒸气。然后,由于工艺不同,气态Zn蒸气转变为一维ZnO纳米材料的过程分为三类:(1)气态Zn蒸气被载气中的氧气氧化生成气态ZnO,气态ZnO直接沉积成为固态ZnO;(2)气态Zn蒸气与催化剂结合形成液滴(液态Zn),液滴过饱和导致Zn原子析出经氧化反应生成固态ZnO;(3)气态Zn蒸气被载气中的氧气氧化生成气态ZnO,气态ZnO与催化剂形成液滴(液态ZnO),液滴过饱和析出形成固态ZnO。
进一步地,在步骤S3中,所述物理气相沉积的方法为磁控溅射法、电阻式热蒸发法或者脉冲激光沉积法中的任一种。优选地,所述物理气相沉积的方法为磁控溅射法,所述磁控溅射法的具体步骤为:S3.1:将纯金属Pd靶材固定在磁控溅射系统的靶位上;S3.2:将所述ZnO纳米线阵列样品在样品托内固定后,放入磁控溅射系统的真空腔内;S3.3:将所述真空腔抽真空至5×10-4Pa以下,然后向所述真空腔内通入Ar气,进行溅射生长;S3.4:溅射生长结束后,取出样品。在所述步骤S3.3中,溅射生长时的溅射功率为50W~80W,腔体压强为0.5Pa~5Pa,通入Ar气的流量为30sccm~50sccm,溅射生长时的溅射沉积时间为3s~10s。具体地,在所述步骤S3.3中,溅射生长时的溅射功率可以为50W、60W、70W或80W等,腔体压强可以为0.5Pa、1Pa、3Pa或5Pa等,通入Ar气的流量可以为30sccm、40sccm或50sccm等,溅射生长时的溅射沉积时间可以为3s、5s或10s等。
本实施例中,随着溅射生长时的溅射沉积时间的增加,最终制备的Pd纳米颗粒表面修饰ZnO纳米线表面附着的Pb纳米颗粒数量越多,Pb纳米颗粒的粒径越大。
进一步地,所述步骤S4具体为:S4.1:将包覆有Pd膜的所述ZnO纳米线阵列样品放置在高温管式炉石英管的中间位置处;S4.2:向所述高温管式炉石英管内通入高纯Ar气;S4.3:设置所述高温管式炉的温度与保温时间,进行高温退火处理;S4.4:高温退火处理结束后,待所述高温管式炉冷却至室温,取出样品。在所述步骤S4.2中,向所述高温管式炉石英管内通入高纯Ar气的流量为20sccm~40sccm;在所述步骤S4.3中,高温退火处理时,设置所述高温管式炉的温度为700℃~900℃,保温时间为10min~40min。具体地,在所述步骤S4.2中,向所述高温管式炉石英管内通入高纯Ar气的流量可以为20sccm、30sccm或40sccm等;在所述步骤S4.3中,高温退火处理时,设置所述高温管式炉的温度可以为700℃、800℃、850℃或900℃等,保温时间可以为10min、20min、30min或40min等。
为了更清楚地理解本发明,下面对Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法进行进一步详细说明。
首先,采用电阻式热蒸发设备,在表面有300nm SiO2层的单晶Si衬底上,沉积一层平整的1nm Au膜。
然后,如图3所示,用化学气相沉积(Chemical Vapor Deposition,CVD)的方法,在高温管式炉中生长ZnO纳米线阵列,具体工艺如下:
(1)将反应源材料即高纯ZnO粉末(99.99%)和活性炭粉(99.99%)各1g混合研磨均匀,放入刚玉舟内,刚玉舟放至高温管式炉石英管正中间位置;
(2)将沉积1nm Au膜的SiO2/Si衬底放在高温管式炉石英管上游端位置,距离高温管式炉石英管中间位置5cm处;将高温管式炉石英管内压强抽至266Pa,并通入高纯O2气1.5sccm和高纯Ar气30sccm;
(3)设置高温管式炉的温度为950℃,保温时间为10min,使所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;
(4)待所述高温管式炉冷却至室温后,关闭设备,取出样品。
随后,使用多功能磁控溅射系统在ZnO纳米线表面均匀包覆一层贵金属Pd膜,具体工艺如下:
(1)将纯金属Pd靶材固定在磁控溅射系统的靶位上;
(2)将所述ZnO纳米线阵列样品在样品托内固定后,放入磁控溅射系统的真空腔内;
(3)将所述真空腔抽真空至5×10-4Pa,然后向所述真空腔内通入Ar气40sccm,调整溅射生长时的溅射功率为80W,腔体压强为0.5Pa,溅射沉积时间为10s,进行溅射生长;
(4)溅射包覆结束后,将样品取出,结束实验。
最后,如图4所示,采用高温管式炉设备进行高温退火,得到Pd纳米颗粒表面修饰的ZnO纳米线阵列,具体工艺如下:
(1)将包覆贵金属Pd的ZnO纳米线阵列样品放置高温管式炉石英管的中间位置处;
(2)将高温管式炉石英管内通入高纯Ar气30sccm;
(3)设置高温管式炉的温度为800℃,保温时间为30min,进行退火处理;
(4)待高温管式炉冷却至室温,取出样品,关闭设备结束实验。
经过以上步骤,即可制备得到Pd纳米颗粒表面修饰的ZnO纳米线气敏材料。然后,采用热场发射扫描电镜(FE-SEM)、X射线衍射仪(XRD)以及气敏分析系统来表征制备得到的Pd纳米颗粒表面修饰的ZnO纳米线气敏材料。
图5为ZnO纳米线的热场发射扫描电镜(FE-SEM)示意图。如图5所示,通过观察Pd纳米颗粒修饰前ZnO纳米线的微观形貌和修饰后ZnO纳米线的的微观形貌,可以得到:Pd纳米颗粒表面修饰之前,ZnO纳米线的长度约15μm,直径约100nm,ZnO纳米线表面光滑;而Pd纳米颗粒表面修饰10s后,ZnO纳米线的表面附着有20nm~50nm的Pd纳米颗粒。
图6为Pd纳米颗粒表面修饰前后ZnO纳米线的X射线衍射(XRD)示意图。如图6所示,Pd纳米颗粒表面修饰10s后,得到的Pd纳米颗粒表面修饰ZnO纳米线的XRD衍射图谱中,不仅包含ZnO的特征峰,还具有Pd的(111)、(200)特征峰,且Pd的(111)、(200)特征峰强度较强。
图7为Pd纳米颗粒表面修饰前后ZnO纳米线的气敏测试示意图。如图7所示,Pd纳米颗粒修饰后ZnO纳米线材料在乙醇气氛环境中的气敏特性相比修饰前提高了2~3倍,最高响应值由1.5提高至3.5,因此,Pd纳米颗粒的表面修饰作用对ZnO纳米线的气敏性能提高有促进作用。
综上所述可知本发明乃具有以上所述的优良特性,得以令其在使用上,增进以往技术中所未有的效能而具有实用性,成为一极具实用价值的产品。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的思想和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,包括以下步骤:
S1:用电阻式热蒸发的方法在SiO2/Si衬底上沉积一层Au膜;
S2:用化学气相沉积的方法在所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;
S3:用物理气相沉积的方法在所述ZnO纳米线的表面包覆一层Pd膜,得到包覆有Pd膜的ZnO纳米线阵列样品;
S4:将包覆有Pd膜的所述ZnO纳米线阵列样品放置在高温管式炉中进行高温退火,得到Pd纳米颗粒表面修饰ZnO纳米线气敏材料。
2.根据权利要求1所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,在步骤S3中,所述物理气相沉积的方法为磁控溅射法、电阻式热蒸发法或者脉冲激光沉积法。
3.根据权利要求2所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,所述磁控溅射法的具体步骤为:
S3.1:将纯金属Pd靶材固定在磁控溅射系统的靶位上;
S3.2:将所述ZnO纳米线阵列样品在样品托内固定后,放入磁控溅射系统的真空腔内;
S3.3:将所述真空腔抽真空至5×10-4Pa以下,然后向所述真空腔内通入Ar气,进行溅射生长;
S3.4:溅射生长结束后,取出样品。
4.根据权利要求3所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,在所述步骤S3.3中,溅射生长时的溅射功率为50W~80W,腔体压强为0.5Pa~5Pa,通入Ar气的流量为30sccm~50sccm。
5.根据权利要求3所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,在所述步骤S3.3中,溅射生长时的溅射沉积时间为3s~10s。
6.根据权利要求1~5任一项所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,所述步骤S4具体为:
S4.1:将包覆有Pd膜的所述ZnO纳米线阵列样品放置在高温管式炉石英管的中间位置处;
S4.2:向所述高温管式炉石英管内通入高纯Ar气;
S4.3:设置所述高温管式炉的温度与保温时间,进行高温退火处理;
S4.4:高温退火处理结束后,待所述高温管式炉冷却至室温,取出样品。
7.根据权利要求6所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,在所述步骤S4.2中,向所述高温管式炉石英管内通入高纯Ar气的流量为20sccm~40sccm;在所述步骤S4.3中,高温退火处理时,设置所述高温管式炉的温度为700℃~900℃,保温时间为10min~40min。
8.根据权利要求1~5任一项所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,所述步骤S2具体为:
S2.1:将相同质量的高纯ZnO粉末和活性炭粉混合研磨均匀,放入刚玉舟内;将所述刚玉舟放置在高温管式炉石英管的中间位置;
S2.2:将沉积有Au膜的SiO2/Si衬底放置在所述高温管式炉石英管的上游位置;将所述高温管式炉石英管内的压强抽至266Pa以下,并通入高纯O2气和高纯Ar气;
S2.3:设置所述高温管式炉的温度与保温时间,使所述Au膜上生长ZnO纳米线,得到ZnO纳米线阵列;
S2.4:待所述高温管式炉冷却至室温后,关闭设备,取出样品。
9.根据权利要求8所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,在所述步骤S2.2中,所述高温管式炉石英管的上游位置为距离所述高温管式炉石英管中间位置4cm~7cm处。
10.根据权利要求8所述的Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法,其特征在于,在所述步骤S2.2中,通入高纯O2气的流量为1sccm~3sccm,通入高纯Ar气的流量为20sccm~40sccm;在所述步骤S2.3中,设置所述高温管式炉的温度为900℃~960℃,保温时间为10min~40min。
CN201710006941.XA 2017-01-05 2017-01-05 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法 Active CN106835021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710006941.XA CN106835021B (zh) 2017-01-05 2017-01-05 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710006941.XA CN106835021B (zh) 2017-01-05 2017-01-05 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法

Publications (2)

Publication Number Publication Date
CN106835021A true CN106835021A (zh) 2017-06-13
CN106835021B CN106835021B (zh) 2019-06-21

Family

ID=59117096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710006941.XA Active CN106835021B (zh) 2017-01-05 2017-01-05 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法

Country Status (1)

Country Link
CN (1) CN106835021B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604341A (zh) * 2017-07-24 2018-01-19 哈尔滨师范大学 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法
CN109581564A (zh) * 2018-11-14 2019-04-05 中国科学院宁波材料技术与工程研究所 一种具有结构色彩的多层金属陶瓷薄膜及其制备方法
CN113252736A (zh) * 2021-05-07 2021-08-13 深圳技术大学 增加多功能气敏传感器气体选择功能的方法和气敏传感器
CN115893473A (zh) * 2022-11-09 2023-04-04 福州大学 基于ZnO和活性炭复合的酒精气敏材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768728A (zh) * 2010-01-15 2010-07-07 深圳大学 一种磁控溅射掺杂ZnO基薄膜的制备方法
CN102531031A (zh) * 2010-12-08 2012-07-04 吉林师范大学 一种垂直衬底的ZnO纳米线阵列尺寸、位置可控生长工艺
KR20140134174A (ko) * 2013-05-13 2014-11-21 현대중공업 주식회사 산화아연 기반 수소 센서 및 그의 제조방법
KR20150000737A (ko) * 2013-06-25 2015-01-05 울산대학교 산학협력단 플렉시블 수소 센서 및 그 제조방법
CN106006548A (zh) * 2016-05-10 2016-10-12 苏州复纳电子科技有限公司 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768728A (zh) * 2010-01-15 2010-07-07 深圳大学 一种磁控溅射掺杂ZnO基薄膜的制备方法
CN102531031A (zh) * 2010-12-08 2012-07-04 吉林师范大学 一种垂直衬底的ZnO纳米线阵列尺寸、位置可控生长工艺
KR20140134174A (ko) * 2013-05-13 2014-11-21 현대중공업 주식회사 산화아연 기반 수소 센서 및 그의 제조방법
KR20150000737A (ko) * 2013-06-25 2015-01-05 울산대학교 산학협력단 플렉시블 수소 센서 및 그 제조방법
CN106006548A (zh) * 2016-05-10 2016-10-12 苏州复纳电子科技有限公司 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TONNY-ROKSANA RASHID ET AL.: "《A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape》", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
YUAN-CHANG LIANG ET AL.: "《Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures》", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
孙小松等: "《催化剂辅助化学气相沉积法制备准单晶ZnO纳米线》", 《半导体光电》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604341A (zh) * 2017-07-24 2018-01-19 哈尔滨师范大学 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法
CN107604341B (zh) * 2017-07-24 2019-10-01 哈尔滨师范大学 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法
CN109581564A (zh) * 2018-11-14 2019-04-05 中国科学院宁波材料技术与工程研究所 一种具有结构色彩的多层金属陶瓷薄膜及其制备方法
CN109581564B (zh) * 2018-11-14 2021-04-06 中国科学院宁波材料技术与工程研究所 一种具有结构色彩的多层金属陶瓷薄膜及其制备方法
CN113252736A (zh) * 2021-05-07 2021-08-13 深圳技术大学 增加多功能气敏传感器气体选择功能的方法和气敏传感器
CN115893473A (zh) * 2022-11-09 2023-04-04 福州大学 基于ZnO和活性炭复合的酒精气敏材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106835021B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN106835021A (zh) 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法
Shinde et al. Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor
O'Brien et al. Zinc oxide thin films: Characterization and potential applications
Cheng et al. ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property
Shaalan et al. Repeatability of indium oxide gas sensors for detecting methane at low temperature
Horprathum et al. NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering
Geng et al. Photon assisted room-temperature hydrogen sensors using PdO loaded WO3 nanohybrids
CN102806354A (zh) 一种通过金膜退火制备金纳米颗粒的方法
CN105651756B (zh) 用于放大拉曼信号的拉曼增强基底及其制备方法和应用
CN101429644A (zh) 金属或金属氧化物纳米颗粒的制备方法
Zhang et al. Facile design and hydrothermal synthesis of In2O3 nanocube polycrystals with superior triethylamine sensing properties
Guo et al. Direct synthesis of high-performance thermal sensitive VO2 (B) thin film by chemical vapor deposition for using in uncooled infrared detectors
CN103924184A (zh) 一种多孔微纳结构wo3气敏涂层及其制备方法
CN109612976B (zh) 一种三维多层结构表面增强拉曼基底及其制备方法
Yu et al. Solution precursor plasma spray process as an alternative rapid one-step route for the development of hierarchical ZnO films for improved photocatalytic degradation
Chen et al. Growth mechanism of ZnO nanostructures in wet-oxidation process
CN102994976A (zh) 多元衬底、基于多元衬底的层数连续可调的石墨烯、及其制备方法
Biederman et al. Nanocomposite and nanostructured films with plasma polymer matrix
Zhang et al. Microstructure and gas sensing properties of solution precursor plasma-sprayed zinc oxide coatings
CN100447305C (zh) 用溶胶-凝胶技术制备氧化镁防蚀保护薄膜的方法
Geng et al. Flexible NO2 gas sensors based on sheet-like hierarchical ZnO1− x coatings deposited on polypropylene papers by suspension flame spraying
CN105088157B (zh) 一种制备纳米钴薄膜包覆铜颗粒复合颗粒膜的方法
JP2015212213A (ja) グラフェンシートとの一体化ZnOナノロッド、およびグラフェンシート上へのZnOナノロッドの製造方法
Najafi-Ashtiani The effect of different surface morphologies on WO3 and WO3-Au gas-sensors performance
Qurashi et al. A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant