CN106006548A - 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法 - Google Patents

一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法 Download PDF

Info

Publication number
CN106006548A
CN106006548A CN201610303659.3A CN201610303659A CN106006548A CN 106006548 A CN106006548 A CN 106006548A CN 201610303659 A CN201610303659 A CN 201610303659A CN 106006548 A CN106006548 A CN 106006548A
Authority
CN
China
Prior art keywords
zinc oxide
zno
noble metal
nanowire array
nano particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610303659.3A
Other languages
English (en)
Inventor
曹季
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Fornano Electronic Technology Co Ltd
Original Assignee
Suzhou Fornano Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Fornano Electronic Technology Co Ltd filed Critical Suzhou Fornano Electronic Technology Co Ltd
Priority to CN201610303659.3A priority Critical patent/CN106006548A/zh
Publication of CN106006548A publication Critical patent/CN106006548A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种用于光电元件的贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法,运用该方法制备的光电元件可应用于化学和气体传感器,具有反应灵敏度高和响应时间短的特点。

Description

一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法
技术领域
本发明属于材料领域,具体涉及一种用于光电元件的贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法。
背景技术
1962年Seiyama等人发现氧化锌的电导率可以随着空气中的一些气体发生改变,从此关于氧化物半导体气体传感器的报道大量涌现。气体传感器能够感受某种气体信号,并能通过电信号或其他信号显示出来。随着社会对健康环境的关注越来越多和工业生产的发展需求,对各种有害气体、可燃气体和氧气的检测变得越来越重要,同时气体传感器也是物联网的重要组成部分,传感技术的相对缓慢发展已经阻碍了物联网的发展,所以对气体传感器的研究受到各国科学家的重视。
气体传感器早已渗透到人们日常生活和工业生产的各个领域:用来检测装修涂料的甲醛传感器,警察对司机用的酒精检测仪,蔬菜大棚内的二氧化碳检测仪,汽车尾气检测的氧传感器等都是气体传感器。气体传感器依传感原理来分包括:半导体式、热导式、电化学式、催化燃烧式、红外线式等。因半导体金属氧化物有尺寸小、成本低、和集成电路兼容性高等优点,尤其是集成电路的快速发展,更使得半导体传感器成为主要研究对象。近年来纳米技术的快速发展,也推动了金属氧化物半导体材料的发展,金属氧化物纳米材料具有比表面积大、形貌可控、响应快、寿命长等优点,适合用在化学和气体传感器上。
在金属氧化物中氧化锌和氧化锡是研究最多的材料,氧化锌纳米结构制备简单、形貌多样、材料无毒、成本低,而且具有优良的压敏性、光电性和气敏特性,呈味目前研究的主要材料。贵金属修饰是比较实用的改善气敏的方法,因为贵金属修饰后能促进半导体表面和气体的反应,往往表现出很高的灵敏度和较好的选择性,或者加快响应降低工作温度。
发明内容
本发明公开了一种贵金属纳米颗粒表面修饰的氧化锌(ZnO)纳米线阵列的制备方法,该方法包括如下步骤:(1)在硅或柔性衬底上淀积一定厚度的金属铝膜;(2)对金属铝进行两次阳极氧化,得到阳极氧化铝(AA0)模板;(3)在模板的纳米孔隙中用原子层淀积(ALD)方法进行氧化锌(ZnO)的完全填充;(4)通过反应离子束刻蚀或离子束溅射的方法,去除孔洞上表面多余的ZnO;(5)将样品置于NaOH溶液中,选择性地去除AAO模板,得到ZnO的纳米线阵列结构;(6)在ZnO纳米线阵列表面ALD生长贵金属(如Pt、Ru、Pd)等纳米颗粒,得到贵金属纳米颗粒表面修饰的ZnO纳米线阵列。
附图说明
图1电镜下贵金属纳米颗粒表面修饰后的ZnO纳米线阵列结构
图2贵金属纳米颗粒表面修饰后的ZnO纳米线阵列与纯ZnO的气体传感对比
具体实施方式
实施例1
采用以下步骤制备了贵金属Au纳米颗粒表面修饰的ZnO纳米线阵列。
(1)在硅衬底上淀积一定厚度的金属铝膜;(2)对金属铝进行两次阳极氧化,得到阳极氧化铝(AA0)模板;(3)在模板的纳米孔隙中用原子层淀积(ALD)方法进行氧化锌(ZnO)的完全填充;(4)通过反应离子束刻蚀的方法,去除孔洞上表面多余的ZnO;(5)将样品置于NaOH溶液中,选择性地去除AAO模板,得到ZnO的纳米线阵列结构;(6)在ZnO纳米线阵列表面ALD生长贵金属Au纳米颗粒,得到贵金属纳米颗粒表面修饰的ZnO纳米线阵列。电镜下结构图见图1,氧化锌纳米棒侧面和顶面均修饰有金离子。
实施例2
以空气中氧气浓度21%为测量基线,根据电阻随温度的变化,工作温度选取了100-200℃,观察普通氧化锌纳米线阵列传感器的敏感性,和用贵金属Au纳米颗粒修饰后的比较。结果见图2,经过修饰后的传感器敏感度明显提高。
实施例3
在最佳工作温度180℃时,观察纯氧化锌响应时间,大约为150s,采用重金属Au修饰后,响应时间缩短为100s,可见由于比表面积的增大,传感灵敏度显著提高了。
实施例4
采用以下步骤制备了贵金属Au纳米颗粒表面修饰的ZnO纳米线阵列。
(1)在柔性衬底上淀积一定厚度的金属铝膜;(2)对金属铝进行两次阳极氧化,得到阳极氧化铝(AA0)模板;(3)在模板的纳米孔隙中用原子层淀积(ALD)方法进行氧化锌(ZnO)的完全填充;(4)通过反应离子束溅射的方法,去除孔洞上表面多余的ZnO;(5)将样品置于NaOH溶液中,选择性地去除AAO模板,得到ZnO的纳米线阵列结构;(6)在ZnO纳米线阵列表面ALD生长贵金属Ru纳米颗粒,得到贵金属Ru纳米颗粒表面修饰的ZnO纳米线阵列。
实施例5
采用以下步骤制备了贵金属Au纳米颗粒表面修饰的ZnO纳米线阵列。
(1)在硅或柔性衬底上淀积一定厚度的金属铝膜;(2)对金属铝进行两次阳极氧化,得到阳极氧化铝(AA0)模板;(3)在模板的纳米孔隙中用原子层淀积(ALD)方法进行氧化锌(ZnO)的完全填充;(4)通过反应离子束刻蚀的方法,去除孔洞上表面多余的ZnO;(5)将样品置于NaOH溶液中,选择性地去除AAO模板,得到ZnO的纳米线阵列结构;(6)在ZnO纳米线阵列表面ALD生长贵金属Pd纳米颗粒,得到贵金属Pd纳米颗粒表面修饰的ZnO纳米线阵列。
实施例6
采用以下步骤制备了贵金属Au纳米颗粒表面修饰的ZnO纳米线阵列。
(1)(1)在硅或柔性衬底上淀积一定厚度的金属铝膜;(2)对金属铝进行两次阳极氧化,得到阳极氧化铝(AA0)模板;(3)在模板的纳米孔隙中用原子层淀积(ALD)方法进行氧化锌(ZnO)的完全填充;(4)通过反应离子束刻蚀的方法,去除孔洞上表面多余的ZnO;(5)将样品置于NaOH溶液中,选择性地去除AAO模板,得到ZnO的纳米线阵列结构;(6)在ZnO纳米线阵列表面ALD生长贵金属Pt纳米颗粒,得到贵金属Pt纳米颗粒表面修饰的ZnO纳米线阵列。

Claims (8)

1.一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法,该方法包括如下步骤:(1)在衬底上淀积一定厚度的金属铝膜;(2)对金属铝进行阳极氧化,得到阳极氧化铝模板;(3)在模板的纳米孔隙中用氧化锌完全填充;(4)去除孔洞上表面多余的氧化锌;(5)将样品置于NaOH溶液中,选择性地去除阳极氧化铝板,得到ZnO的纳米线阵列结构;(6)在ZnO纳米线阵列表面ALD生长贵金属纳米颗粒,得到贵金属纳米颗粒表面修饰的ZnO纳米线阵列。
2.如权利要求1所述的方法,其特征在于,步骤(1)中所述衬底指的是硅或柔性衬底。
3.如权利要求1所述的方法,其特征在于,步骤(2)中对金属铝进行阳极氧化的次数为两次。
4.如权利要求1所述的方法,其特征在于,步骤(3)中用氧化锌填充纳米孔隙的方法为原子层淀积法。
5.如权利要求1所述的方法,其特征在于,步骤(4)中去除孔洞上表面多余氧化锌的方法为离子束刻蚀或离子束溅射法。
6.如权利要求1所述的方法,其特征在于,步骤(6)中生长贵金属纳米颗粒,可选用Pd、Pt、Au、Ag、Ru中的任一种。
7.如权利要求1所述的方法,其特征在于,该方法可用于化学和气体传感器元件的生产。
8.如权利要求1所述的方法,其特征在于,该方法可提高光电元件的反应比表面积,提高反应灵敏度,缩短响应时间。
CN201610303659.3A 2016-05-10 2016-05-10 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法 Pending CN106006548A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610303659.3A CN106006548A (zh) 2016-05-10 2016-05-10 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610303659.3A CN106006548A (zh) 2016-05-10 2016-05-10 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法

Publications (1)

Publication Number Publication Date
CN106006548A true CN106006548A (zh) 2016-10-12

Family

ID=57100075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610303659.3A Pending CN106006548A (zh) 2016-05-10 2016-05-10 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法

Country Status (1)

Country Link
CN (1) CN106006548A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835021A (zh) * 2017-01-05 2017-06-13 深圳大学 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法
CN107604341A (zh) * 2017-07-24 2018-01-19 哈尔滨师范大学 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法
CN107677704A (zh) * 2017-09-26 2018-02-09 哈尔滨工程大学 一种纳米管材料的气体传感器的制备方法及气体传感器
CN108956714A (zh) * 2018-06-29 2018-12-07 五邑大学 ZnO/Si纳米/微米柱阵列敏感材料及其制备方法和传感器
CN109187659A (zh) * 2018-08-01 2019-01-11 湖北大学 一种基于Pt修饰的MoO3纳米线传感器及其制作方法
CN110044974A (zh) * 2019-05-11 2019-07-23 盐城瑞力达科技有限公司 有机气体纳米感测元件的制备工艺及其应用
CN111525011A (zh) * 2020-01-19 2020-08-11 南京航空航天大学 Pt修饰ZnO微米线异质结发光二极管及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030095A (zh) * 2011-09-30 2013-04-10 中国科学院合肥物质科学研究院 修饰有银纳米颗粒的氧化锌纳米棒阵列及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030095A (zh) * 2011-09-30 2013-04-10 中国科学院合肥物质科学研究院 修饰有银纳米颗粒的氧化锌纳米棒阵列及其制备方法和用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHING-JUNG YANG, SHUN-MIN WANG, SHIH-WEI LIANG ET AL.: "Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition.", 《APPLIED PHYSICS LETTER》 *
NEIL P. DASGUPTA, CHONG LIU, SEAN ANDREWS, ET AL.: "Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction.", 《J AM CHEM SOC》 *
STELLA VALLEJOS, POLONA UMEK, TONI STOYCHEVA, ET AL.: "Single-Step Deposition of Au- and Pt-Nanoparticle-Functionized Tungsten Oxide Nanoneedles Synthesized Via Aerosol-Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays.", 《ADVACED FUNCTIONAL MATERIALS》 *
YIJUN ZHANG, MING LIU, WEI REN, ZUO-GUANG YE.: "Well-ordered ZnO nanotube arrays and networks grown by atomic layer depositon.", 《APPLIED SURFACE SCIENCE》 *
YUN JEONG HWANG, CHRIS HAHN, BIN LIU, ET AL.: "Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating.", 《ACS NANO》 *
YUNG-HUANG CHANG, SHUN-MIN WANG, CHIEN-MIN LIU, AND CHIH CHEN.: "Fabrication and Characteristics of Self-Aligned ZnO Nanotube and Nanorod Arrays on Si Substrateds by Atomic Layer Deposition.", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835021A (zh) * 2017-01-05 2017-06-13 深圳大学 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法
CN106835021B (zh) * 2017-01-05 2019-06-21 深圳大学 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法
CN107604341A (zh) * 2017-07-24 2018-01-19 哈尔滨师范大学 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法
CN107604341B (zh) * 2017-07-24 2019-10-01 哈尔滨师范大学 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法
CN107677704A (zh) * 2017-09-26 2018-02-09 哈尔滨工程大学 一种纳米管材料的气体传感器的制备方法及气体传感器
CN107677704B (zh) * 2017-09-26 2020-01-21 哈尔滨工程大学 一种纳米管材料的气体传感器的制备方法及气体传感器
CN108956714A (zh) * 2018-06-29 2018-12-07 五邑大学 ZnO/Si纳米/微米柱阵列敏感材料及其制备方法和传感器
CN108956714B (zh) * 2018-06-29 2021-01-12 五邑大学 ZnO/Si纳米/微米柱阵列敏感材料及其制备方法和传感器
CN109187659A (zh) * 2018-08-01 2019-01-11 湖北大学 一种基于Pt修饰的MoO3纳米线传感器及其制作方法
CN110044974A (zh) * 2019-05-11 2019-07-23 盐城瑞力达科技有限公司 有机气体纳米感测元件的制备工艺及其应用
CN111525011A (zh) * 2020-01-19 2020-08-11 南京航空航天大学 Pt修饰ZnO微米线异质结发光二极管及其制备方法

Similar Documents

Publication Publication Date Title
CN106006548A (zh) 一种贵金属纳米颗粒表面修饰的氧化锌纳米线阵列的制备方法
Tsai et al. High sensitivity of NO gas sensors based on novel Ag-doped ZnO nanoflowers enhanced with a UV light-emitting diode
Kim et al. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor
Chen et al. ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S
Annanouch et al. Aerosol-assisted CVD-grown PdO nanoparticle-decorated tungsten oxide nanoneedles extremely sensitive and selective to hydrogen
Li et al. Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors
JP2007276105A (ja) ナノワイヤー複合体、ナノワイヤー複合体の製造方法、共振器、及びセンサ
Wang et al. Electrodeposition of ZnO nanorods onto GaN towards enhanced H2S sensing
Santra et al. Mask-less deposition of Au–SnO2 nanocomposites on CMOS MEMS platform for ethanol detection
Yi et al. Morphological evolution induced through a heterojunction of W-decorated NiO nanoigloos: synergistic effect on high-performance gas sensors
Kaur et al. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique
Perumal et al. Characterization of gold-sputtered zinc oxide nanorods—A potential hybrid material
CN110589875B (zh) 基于单层有序氧化锡纳米碗支化氧化锌纳米线结构的气敏纳米材料、制备工艺及其应用
CN113252736B (zh) 增加多功能气敏传感器气体选择功能的方法和气敏传感器
CN104730062A (zh) 一种透明柔性表面增强拉曼光谱基底、制备方法及应用
Huang et al. Pt surface modification of SnO 2 nanorod arrays for CO and H 2 sensors
Alwan et al. Study of the influence of incorporation of gold nanoparticles on the modified porous silicon sensor for petroleum gas detection
Ozdemir et al. Nanostructure modified gas sensor detection matrix for NO transient conversion of NO to NO2
Huang et al. Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor
Dhall et al. A hydrogen gas sensor using a Pt-sputtered MWCNTs/ZnO nanostructure
Harraz et al. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon
Messina et al. Graphene grown on Ni foam: molecular sensing, graphene-enhanced Raman scattering, and galvanic exchange for surface-enhanced Raman scattering applications
US20090260984A1 (en) Ultra-Sensitive Simultaneous Electrochemical Determination of Arsenic, Mercury and Copper
Singh et al. Reduced graphene oxide-SnO2 nanocomposite thin film based CNG/PNG sensor
Zhang et al. Three-dimensional gallium nitride nanoflowers supports decorated by gold or silver nanoparticles to fabricate surface-enhanced Raman scattering substrates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161012