CN106833634A - 一种水基制备钙钛矿纳米材料的方法及其产品 - Google Patents

一种水基制备钙钛矿纳米材料的方法及其产品 Download PDF

Info

Publication number
CN106833634A
CN106833634A CN201611258547.7A CN201611258547A CN106833634A CN 106833634 A CN106833634 A CN 106833634A CN 201611258547 A CN201611258547 A CN 201611258547A CN 106833634 A CN106833634 A CN 106833634A
Authority
CN
China
Prior art keywords
nano material
perovskite nano
perovskite
preparation
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611258547.7A
Other languages
English (en)
Other versions
CN106833634B (zh
Inventor
宋海胜
董东冬
邓辉
胡超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201611258547.7A priority Critical patent/CN106833634B/zh
Publication of CN106833634A publication Critical patent/CN106833634A/zh
Application granted granted Critical
Publication of CN106833634B publication Critical patent/CN106833634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种水基制备钙钛矿纳米材料的方法及其产品。所述钙钛矿纳米材料的分子式为AxB(1-x)PbY3,0≤x≤1,A、B为一价阳离子,Y为卤素离子。本发明用水替代N,N‑二甲基甲酰胺二乙缩醛等传统的有机极性溶剂作为卤化铅的溶剂来制备钙钛矿纳米材料,生成的钙钛矿纳米材料中AY和BY的比例可在0:1~1:0之间连续变化,能够有效调节生成卤素钙钛矿纳米材料的荧光峰位,带隙大小,从而获得响应波段在300nm~764nm范围的可见光响应材料;同时,采用无毒的水作为合成溶液,降低了生产人员的健康风险,缓解了环境污染,并且降低了钙钛矿纳米材料的生产成本。

Description

一种水基制备钙钛矿纳米材料的方法及其产品
技术领域
本发明属于光伏、光探和发光二极管材料领域,更具体地,涉及一种水基制备钙钛矿纳米材料的方法及其产品。
背景技术
近年来,有机无机杂化钙钛矿已经在光电子领域得到了广泛的应用,例如用其制备太阳能电池,LED灯,场效应管,光电探测器,激光器等器件。一般而言对于以上所述的光电子器件,钙钛矿材料的吸收带边和荧光峰位决定着光电子器件的功用范围。
现有技术通过蒸发溶剂来实现钙钛矿纳米材料的合自组装,具体的方法包括:旋涂,滴涂,刮涂,激光刻蚀,卷对卷等。上述通过蒸发溶剂来获得钙钛矿纳米材料的方法;所用到的溶剂为N,N-二甲基甲酰胺二乙缩醛、DMF、DMSO、r-丁内脂。然而上述方法存在以下缺陷:1、溶剂具有毒性,对环境不友好,例如N,N-二甲基甲酰胺二乙缩醛就对人体皮肤有害;2、合成的钙钛矿纳米材料均为多根纳米材料(如Gao Li,etc,Nano Lett.November 1,2016),从而具有噪声大、响应度低、耗能高等缺点;3、生成的钙钛矿纳米材料无法调节带隙,从而无法改变材料吸收的波段。
现有技术虽然可获得带隙可调节的钙钛矿薄膜(如Nano Energy(2014)7,80–85),但由于其为薄膜形态,从而电子传输效率低、不适用于微纳器件。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种水基制备钙钛矿纳米材料的方法及其产品,其目的在于以水作为制备钙钛矿纳米材料的溶剂,从而减少生产过程带来的污染并减少生产成本。
按照本发明的一方面,提供了一种钙钛矿纳米材料的制备方法,包括以下步骤:
S1.将固态反应物添加至过饱和的卤化铅水溶液中,直至充分生成AxB(1-x)PbY3絮状物;其中,所述固态反应物包括摩尔比为x:(1-x)的AY与BY,x为0~1,A和B为一价阳离子,Y为卤素离子;
S2.将所述絮状物滴涂到衬底上,并充分干燥,获得分子式为AxB(1-x)PbY3的钙钛矿纳米材料。
优选地,在所述步骤S1中,还包括振荡5s~20s。
优选地,所述步骤S2中干燥的方法为75℃~150℃加热2min~20min。
优选地,所述过饱和的卤化铅水溶液的浓度为0.004mol/L~0.12mol/L。
作为进一步优选地,所述过饱和的卤化铅水溶液的制备方法包括:首先在60℃~120℃的温度下获得饱和的卤化铅水溶液,然后将所述卤化铅水溶液的温度降至10℃~30℃,获得过饱和的卤化铅水溶液。
按照本发明的另一方面,还提供了以上述方法制备的钙钛矿纳米材料,所述钙钛矿纳米材料的分子式为AxB(1-x)PbY3,x为0~1,A和B为一价阳离子,Y为卤素离子。
优选地,0<x<1。
优选地,所述卤素离子为碘离子、溴离子或氯离子。
优选地,所述钙钛矿纳米材料为纳米多晶或单根纳米线。
作为进一步优选地,所述钙钛矿纳米材料为单根纳米线,所述单根纳米线的直径为100nm~300nm。
优选地,所述一价阳离子为Cs+、RNH3 +或C2H7O+;其中,R为C1~C4的烷基。
按照本发明的一方面,还提供了一种可见光探测器或光伏器件,所述可见光探测器或光伏器件的吸收层采用上述钙钛矿纳米材料。
优选地,所述可见光探测器还包括与钙钛矿纳米材料的两端连接的金属电极。
作为进一步优选地,所述金属电极的材料为金、铂或铬。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
1、本发明用水替代N,N-二甲基甲酰胺二乙缩醛作为卤化铅的溶剂来制备钙钛矿纳米材料,不仅能够降低生产人员的健康风险、缓解环境污染,并且降低了钙钛矿纳米材料的生产成本;
2、生成的钙钛矿纳米材料结晶纯度高、少杂质;其中AY和BY原料的比例可在0:1~1:0之间变化,能够有效调节生成的钙钛矿纳米材料的荧光峰位和带隙大小,从而获得接收波段在300nm~764nm范围的可见光探测器;
3、本发明的钙钛矿纳米材料为纳米线或纳米多晶,从而具有噪声小、响应度高、耗能低的优点;
4、该钙钛矿纳米材料的质量高,具有良好的稳定性以及光电性能。
附图说明
图1为本发明实施例1的制备流程图;
图2为本发明实施例1的扫描电镜图;
图3为本发明实施例1-5的荧光图;
图4为本发明实施例1-5的吸收图;
图5为本发明实施例3的禁带宽度图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施实例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种钙钛矿纳米材料,所述钙钛矿纳米线为纳米多晶或单根纳米线,当其为单根纳米线时,直径为100nm~300nm;所述钙钛矿纳米线的分子式为AxB(1-x)PbY3,x为0~1,Y为卤素离子,如碘、溴或氯离子,当Y为碘离子时,钙钛矿纳米线的性能最为优异;A和B为Cs+、RNH3 +、C2H7O+等一价阳离子。
上述钙钛矿纳米材料的制备方法,包括以下步骤:
S1.将固态反应物添加至过饱和的卤化铅水溶液中,同时还可以振荡2s~10s,直至充分生成AxB(1-x)PbY3絮状物;其中,所述固态反应物包括摩尔比为x:(1-x)的AY与BY;
通常AY与BY都采用粉末状反应原料,以便混合为成分均匀的固态反应物,以保证添加至过饱和的卤化铅水溶液时,生成的产物也具有均匀的化学组成;AY与BY与卤化铅中的卤素离子既可相同,也可不同;
S2.将所述絮状物滴涂到衬底上,并在75℃~120℃加热2min~15min,使其充分干燥,获得分子式为AxB(1-x)PbY3的钙钛矿纳米材料。
在所述步骤S1中,过饱和的卤化铅水溶液的制备方法包括以下步骤
S1-1.在水中添加过量的卤化铅,并在60℃~100℃的温度下水浴加热15min~45min,获得饱和的卤化铅溶液;
S1-2.取饱和的卤化铅溶液中的上清液,并降至10℃~30℃,获得过饱和的卤化铅水溶液,所述过饱和的卤化铅水溶液的浓度为0.004mol/L~0.12mol/L;在此过程中使得所述饱和的卤化铅溶液中的卤化铅析出,形成卤化铅纳米片,使得随后生成的钙钛矿纳米线的形态更加均一,同时避免温度过高导致卤化甲基铵分解。
上述钙钛矿纳米材料的两端连接金、铂或铬等金属电极,即可制成可见光探测器;由于调节钙钛矿组分可以有效地调节吸收带边大小和荧光峰位置,同时提高钙钛矿的稳定性,因此获得的可见光探测器的接收波段可在300nm~764nm之间变化,从而拓宽了应用范围。
实施例1
实施例1的制备方法如图1所示,包括以下步骤:
S1.将1g卤化铅粉末盛放于25mL的玻璃瓶中,加入20mL去离子水,卤化铅粉末不完全溶解;本实施例中的卤化铅为碘化铅;
S2.拧紧第一步骤种玻璃瓶的瓶盖,把拧紧的玻璃瓶放置于水浴锅中加热,当水浴温度达到100℃时,开始计时,使100℃的水浴温度保持10min,10min后,使水浴温度自然降温;并待S2中的水浴温度降至75℃时,开始计时,使75℃的水浴温度保持30min,30min后,拧开瓶盖,汲取上清液15毫升即饱和碘化铅溶液转移到新的25毫升的玻璃瓶中,该饱和碘化铅溶液的浓度为0.06mol/L;
S3.使S2中得到的15毫升饱和碘化铅溶液自然冷却,待降至25℃的室温,获得浓度为0.06mol/L的室温的过饱和的碘化铅水溶液;
S4.将碘化铯与碘化甲基铵作为反应物,按1:0的摩尔比称量,机械混合均匀,添加到冷却至室温的饱和碘化铅溶液中,振荡5秒,溶液中有絮状物生成;
S5.把上述S4中的絮状物滴涂到硅衬底上,把滴涂过后的硅衬底放置在热台上,90℃加热5min;即可获得分子式为Csx(CH3NH3)1-xPbY3的钙钛矿纳米线产物,本实施例中x=1,Y=I,即产物的分子式为CsPbI3,该钙钛矿纳米线产物的长度约为40μm,直径约为160nm,以该钙钛矿纳米线制备获得的可见光探测器的接收的中心波段为689nm。
为了简化描述,故将实施例2-10的反应参数及产物列入表1,表中未列的参数均与实施例1相同。
表1 实施例2-10的反应参数及产物分子式
实施例16
以所述的相同步骤重复实施例1,区别在于,在所述步骤S2中,把拧紧的玻璃瓶放置于水浴锅中加热,当水浴温度达到100℃时,开始计时,使100℃的水浴温度保持15min,然后拧开瓶盖,汲取上清液15毫升即饱和碘化铅溶液转移到新的25毫升的玻璃瓶中;
在所述步骤S3中,将使饱和碘化铅溶液降温至30℃,获得浓度为0.03mol/L的过饱和的碘化铅溶液;
在所述步骤S4中,振荡2s;
在所述步骤S5中,75℃加热15min。
实施例17
以所述的相同步骤重复实施例16,区别在于,在所述步骤S2中,把拧紧的玻璃瓶放置于水浴锅中加热,当水浴温度达到60℃时,开始计时,使60℃的水浴温度保持45min,然后拧开瓶盖,汲取上清液15毫升即饱和碘化铅溶液转移到新的25毫升的玻璃瓶中;
在所述步骤S3中,将使饱和碘化铅溶液降温至0℃,获得浓度为0.009mol/L的过饱和的碘化铅溶液;
在所述步骤S4中,不振荡而静置使其自然溶解;
在所述步骤S5中,120℃加热2min。
实施例18
以所述的相同步骤重复实施例1,区别在于,在所述步骤S4中,振荡4s。
实施例19
以所述的相同步骤重复实施例1,区别在于,以CH3CH2NH3I取代碘化铯,产物的分子式为CH3CH2NH3PbI3,该钙钛矿纳米材料的形态为纳米线,以该钙钛矿纳米材料制备获得的可见光探测器的接收的中心波段为400nm。
实施例20
以所述的相同步骤重复实施例3,区别在于,以CH3CH2NH3I取代碘化铯,以C2H7OI取代碘化甲基铵作为反应物,产物的分子式为(CH3CH2NH3)0.5(C2H7O)0.5PbI3,该钙钛矿纳米材料的形态为纳米线,以该钙钛矿纳米材料制备获得的可见光探测器的接收的中心波段为300nm。
实施例21
以所述的相同步骤重复实施例1,区别在于,以CH3CH2NH3I取代碘化铯,以CH3CH2CH2NH3I取代碘化甲基铵作为反应物,产物的分子式为(CH3CH2NH3)0.5(CH3CH2CH2NH3I)0.5PbI3,其形态为纳米多晶。
对比例1
《Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability》(Wei Deng,etc,Adv.Mater.2016,Volume 28,Issue 11,Pages 2201–2208)中公开的CH3NH3PbI3微米线及其器件参数。
对比例2
《Monolayer and Few-Layer All-Inorganic Perovskites as a New Family ofTwo-Dimensional Semiconductors》(Jizhong Song,etc,Adv.Mater.2016,Volume 28,Issue 24,Pages 4861–4869)中公开的CsPbBr3纳米片及其器件参数。
对比例3
通过《Passivated Single-Crystalline CH3NH3PbI3Nanowire Photodetectorwith High Detectivity and Polarization Sensitivity.》(Gao Li,etc,NanoLett.November 1,2016)中公开的CH3NH3PbI3纳米线及其器件参数。
对比例4
通过《Large-area perovskite nanowire arrays fabricated by large-scaleroll-to-roll micro-gravure printing and doctor blading》(Qiao Hu,etc,Nanoscale,2016,8,5350-5357)中公开的CH3NH3PbI3纳米线及其器件参数。
对比例5
通过《A self-powered photodetector based on a CH3NH3PbI3 singlecrystal with asymmetric electrodes》(Jie Ding,etc,CrystEngComm,2016,18,4405-4411)中公开的CH3NH3PbI3单晶体及其器件参数。
对比例6
通过《Flexible and Semitransparent Organolead Triiodide PerovskiteNetwork Photodetector Arrays with High Stability》(Hui Deng,etc,Nano Lett.,2015,15(12),pp 7963–7969)中公开的CH3NH3PbI3纳米网格及其器件参数。
对比例7
通过《Growth,patterning and alignment of organolead iodide perovskitenanowires for optoelectronic devices》(Hui Deng,etc,Nanoscale,2015,7,4163-4170)中公开的CH3NH3PbI3纳米线及其器件参数。
实验结果分析
对实施例1-15观察,发现制得的纳米线为单根纳米线,且直径为100nm~300nm;如图2为本发明实施例1的扫描电镜图,可以看出本实施例生成的纳米线为单根纳米线,且其直径为300nm。图3为本发明实施例1-5的荧光图,可以看出荧光峰平滑,峰宽窄,这说明了本发明方法制备的纳米线的缺陷少,结晶质量好,同时随着组分的变化(也就是x值的变化),荧光峰位也随之变化;图4为本发明实施例1-5的吸收图,可以看出不同的组分(即不同的x值)的吸收不同,说明带隙能够被x值调节。
将实施例3的钙钛矿纳米线的两端连接上金电极,制备获得可见光探测器,并进行光电性能测试,获得光电导图如图5所示;可以看出由以上方法生产的钙钛矿纳米线的响应度为23A/W,外量子效率为4.8×103%。将实施例3与现有技术文献获得的CH3NH3PbY3纳米结构的性能参数对比列入表2;其中,Stu1表示阴极,Stru2表示CH3NH3PbY3纳米结构的分子式及其形貌,Stru3表示阳极;可以看出,本发明实施例3的响应度与外量子效率均优于现有技术。
表2 对比例1-7与实施例3制备获得的可见光探测器的性能对比
对实施例16-21进行测试,也可获得与实施例1-15类似的结果。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种钙钛矿纳米材料的制备方法,其特征在于,包括以下步骤:
S1.将固态反应物添加至过饱和的卤化铅水溶液中,直至充分生成AxB(1-x)PbY3絮状物;其中,所述固态反应物包括摩尔比为x:(1-x)的AY与BY,x为0~1,A和B为一价阳离子,Y为卤素离子;
S2.将所述絮状物滴涂到衬底上,并充分干燥,获得分子式为AxB(1-x)PbY3的钙钛矿纳米材料。
2.如权利要求1所述的制备方法,其特征在于,在所述步骤S1中,还包括振荡5s~20s。
3.如权利要求1所述的制备方法,其特征在于,所述步骤S2中干燥的方法为75℃~150℃加热2min~20min。
4.如权利要求1所述的制备方法,其特征在于,所述过饱和的卤化铅水溶液的浓度为0.004mol/L~0.12mol/L。
5.如权利要求3所述的制备方法,其特征在于,所述过饱和的卤化铅水溶液的制备方法包括:首先在60℃~120℃的温度下获得饱和的卤化铅水溶液,然后将所述卤化铅水溶液的温度降至10℃~30℃,获得过饱和的卤化铅水溶液。
6.一种以权利要求1-5中任意一项所述制备方法获得的钙钛矿纳米材料,其特征在于,所述钙钛矿纳米材料的分子式为AxB(1-x)PbY3,x为0~1,A和B为一价阳离子,Y为卤素离子。
7.如权利要求1所述的钙钛矿纳米材料,其特征在于,0<x<1。
8.如权利要求1所述的钙钛矿纳米材料,其特征在于,所述钙钛矿纳米材料为纳米多晶或单根纳米线。
9.如权利要求1所述的钙钛矿纳米材料,其特征在于,所述一价阳离子为Cs+、RNH3 +或C2H7O+;其中,R为C1~C4的烷基。
10.一种包括权利要求6-9中任意一项所述的钙钛矿纳米材料的可见光探测器或光伏器件。
CN201611258547.7A 2016-12-30 2016-12-30 一种水基制备钙钛矿纳米材料的方法及其产品 Active CN106833634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611258547.7A CN106833634B (zh) 2016-12-30 2016-12-30 一种水基制备钙钛矿纳米材料的方法及其产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611258547.7A CN106833634B (zh) 2016-12-30 2016-12-30 一种水基制备钙钛矿纳米材料的方法及其产品

Publications (2)

Publication Number Publication Date
CN106833634A true CN106833634A (zh) 2017-06-13
CN106833634B CN106833634B (zh) 2019-11-12

Family

ID=59114906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611258547.7A Active CN106833634B (zh) 2016-12-30 2016-12-30 一种水基制备钙钛矿纳米材料的方法及其产品

Country Status (1)

Country Link
CN (1) CN106833634B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053457A (zh) * 2018-07-13 2018-12-21 南京理工大学 水相制备二维卤素钙钛矿的方法
CN110699077A (zh) * 2019-09-11 2020-01-17 杭州电子科技大学 一种含铯、铅、碘的发光材料的制备方法
CN110902713A (zh) * 2019-11-26 2020-03-24 杭州电子科技大学 一种制备CsPbX3钙钛矿的方法
CN111710782A (zh) * 2020-06-30 2020-09-25 西南石油大学 一种高质量钙钛矿薄膜和钙钛矿太阳电池的制备方法
CN113278327A (zh) * 2021-06-10 2021-08-20 华东理工大学 一种双重加密防伪钙钛矿墨水及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916783A (zh) * 2015-06-11 2015-09-16 华中科技大学 钙钛矿纳米线、光电探测器和太阳能电池的制备及应用
CN105655443A (zh) * 2016-02-29 2016-06-08 苏州大学 一种基于光致场诱导效应增强太阳能电池效率的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916783A (zh) * 2015-06-11 2015-09-16 华中科技大学 钙钛矿纳米线、光电探测器和太阳能电池的制备及应用
CN105655443A (zh) * 2016-02-29 2016-06-08 苏州大学 一种基于光致场诱导效应增强太阳能电池效率的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONGDONG DONG等: "Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices", 《NANOSCALE》 *
RAHUL等: "Perovskite sensitized solar cell using solid polymer electrolyte", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053457A (zh) * 2018-07-13 2018-12-21 南京理工大学 水相制备二维卤素钙钛矿的方法
CN109053457B (zh) * 2018-07-13 2021-03-05 南京理工大学 水相制备二维卤素钙钛矿的方法
CN110699077A (zh) * 2019-09-11 2020-01-17 杭州电子科技大学 一种含铯、铅、碘的发光材料的制备方法
CN110699077B (zh) * 2019-09-11 2022-04-12 杭州电子科技大学 一种含铯、铅、碘的发光材料的制备方法
CN110902713A (zh) * 2019-11-26 2020-03-24 杭州电子科技大学 一种制备CsPbX3钙钛矿的方法
CN111710782A (zh) * 2020-06-30 2020-09-25 西南石油大学 一种高质量钙钛矿薄膜和钙钛矿太阳电池的制备方法
CN113278327A (zh) * 2021-06-10 2021-08-20 华东理工大学 一种双重加密防伪钙钛矿墨水及其制备方法

Also Published As

Publication number Publication date
CN106833634B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN106833634B (zh) 一种水基制备钙钛矿纳米材料的方法及其产品
Qiu et al. Electrochemical deposition of branched hierarchical ZnO nanowire arrays and its photoelectrochemical properties
CN105024012B (zh) 一种制备高质量钙钛矿薄膜的方法
Xie et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays
Zi et al. ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell properties
Haque et al. Processing‐Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals
Yao et al. Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide
CN104916783A (zh) 钙钛矿纳米线、光电探测器和太阳能电池的制备及应用
CN105369232B (zh) 基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbBr3薄膜材料的化学方法
Holi et al. Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance
Zhang et al. Major impediment to highly efficient, stable and low-cost perovskite solar cells
Umar et al. Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods
CN107093641A (zh) 一种基于无机平板异质结的薄膜太阳电池及其制备方法
Wu et al. Cost-effective sustainable-engineering of CH3NH3PbI3 perovskite solar cells through slicing and restacking of 2D layers
CN105280820A (zh) 一种大面积钙钛矿微纳米线阵列的制备方法及其应用
Chen et al. Facile synthesis of thick ordered mesoporous TiO2 film for dye-sensitized solar cell use
CN106383149B (zh) 基于钙钛矿纳米片阵列的湿度传感器件及其制备方法
De Marco et al. Perovskite single‐crystal solar cells: advances and challenges
CN106588671A (zh) 一种空气环境下甲胺铅碘纳米线的制备及光电探测器的应用
Wang et al. A general method for growth of perovskite single-crystal arrays for high performance photodetectors
CN107620052A (zh) 一种甲脒铯铅碘钙钛矿薄膜的化学气相沉积制备方法及基于其的光伏器件
CN106058060A (zh) 一种制备高质量钙钛矿晶体薄膜的方法
Umar et al. Growth, properties and dye-sensitized solar cells (DSSCs) applications of ZnO Nanocones and small nanorods
Shan et al. Improved responsivity of highly reproducible performance ZnO thin film flexible UV photodetectors by piezo-phototronic effect
CN107768478A (zh) 一种有机/钙钛矿体相异质结纳米线光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant