CN106824214A - FeSe/BiVO4复合光催化剂及制备方法 - Google Patents

FeSe/BiVO4复合光催化剂及制备方法 Download PDF

Info

Publication number
CN106824214A
CN106824214A CN201710174965.6A CN201710174965A CN106824214A CN 106824214 A CN106824214 A CN 106824214A CN 201710174965 A CN201710174965 A CN 201710174965A CN 106824214 A CN106824214 A CN 106824214A
Authority
CN
China
Prior art keywords
fese
bivo
catalyst
composite photo
nanometer rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710174965.6A
Other languages
English (en)
Other versions
CN106824214B (zh
Inventor
钟文武
詹白勺
刘彦平
倪君辉
徐爱娇
郭仁清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhong Wenwu
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201710174965.6A priority Critical patent/CN106824214B/zh
Publication of CN106824214A publication Critical patent/CN106824214A/zh
Application granted granted Critical
Publication of CN106824214B publication Critical patent/CN106824214B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化技术,尤其涉及FeSe/BiVO4复合光催化剂及制备方法,该催化剂将FeSe纳米棒沉积在BiVO4颗粒表面,该制备方法为:化学沉淀法制备BiVO4颗粒;固相烧结法制备FeSe块状物;超声剥离法制备FeSe纳米棒;BiVO4和FeSe混合后分散在乙醇中;上述溶液蒸发得到FeSe/BiVO4复合光催化剂。本发明将BiVO4与FeSe复合,光生电子将吸附在FeSe表面的O2还原为氧自由基,剩余的空穴将‑OH氧化为羟基自由基。氧自由基和羟基自由基将有机污染物分解为二氧化碳和水。因此,FeSe与BiVO4复合后能够有效提高其光催化性能,且FeSe价格较低,整个制备工艺简单,易推广。

Description

FeSe/BiVO4复合光催化剂及制备方法
技术领域
本发明涉及光催化技术领域,尤其涉及一种用于降解有机物的FeSe/BiVO4复合光催化剂及制备方法。
背景技术
光催化技术是从上世纪70年代逐步发展起来的在能源和环境领域有着重要应用前景的绿色技术。该技术能通过光催化剂光解水产生氢气和氧气,能使有机污染物发生氧化还原分解反应,降解为CO2、H2O和无机离子等小分子物质。当前,TiO2是被用来研究最多的光催化剂。但由于TiO2光催化剂带隙较宽(3.2eV),只能被占太阳光4%能量的紫外光激发。因此,为了充分有效利用太阳光能量,目前许多研究组正在开发新型可见光响应的半导体光催化剂,其中最重要的一类就是铋系半导体光催化剂。
铋系半导体光催化材料如 BiOX(X=Cl、Br、I),Bi2O3, BiVO4, Bi2WO6, Bi2Mo3O12,Bi4Ti3O12,等由于其独特的晶体结构和电子结构,因而表现出较好的可见光催化活性,这是铋系半导体光催化材料的共同特点和显著优势,其中具有代表性的是 BiVO4,但是由于其光生电子-空穴复合高,电子-空穴复合会大大降低光催化活性。目前科学家用金、银、铂等贵金属与BiVO4复合能够有效降低其光生电子-空穴复合率,但贵金属价格昂贵不利于大面积推广。
发明内容
针对上述问题,本发明提供一种成本较低、效率高的FeSe/BiVO4复合光催化剂及制备方法。
为达上述发明目的,本发明采用的技术方案为:一种FeSe/BiVO4复合光催化剂,包括有FeSe纳米棒、BiVO4颗粒,FeSe纳米棒沉积在BiVO4颗粒表面。
较佳地,所述的BiVO4颗粒尺寸为0.5~5µm。
较佳地,所述的FeSe纳米棒长度为0.3~ 1.2 µm、直径为30 nm。
一种FeSe/BiVO4复合光催化剂制备方法,其特征在于:包括以下步骤:
S1,利用化学沉淀法制备BiVO4颗粒;
S2,采用固相烧结法制备FeSe块状物;
S3,采用超声剥离法制备FeSe纳米棒;
S4,将步骤S1制备的BiVO4和S3制备的FeSe按98:2混合后超声分散在无水乙醇中;
S5,将步骤S4分散好的溶液蒸发,得到FeSe/BiVO4复合光催化剂。
较佳地,所述步骤S3的超声剥离法为:将2mg尺寸为1µm 的FeSe块状物放入100mL无水乙醇中,接着在细胞粉碎机上超声粉碎2小时,得到长度为0.3~ 1.2 µm、直径为30 nmFeSe纳米棒。
较佳地,所述步骤S5具体为:将S4中分散好的溶液在油浴磁力搅拌器中于80℃搅拌加热8小时,随后在真空干燥箱中150℃烘干6小时,得到FeSe/BiVO4复合光催化剂。
本发明将BiVO4与FeSe复合,光生电子能够从BiVO4转移到FeSe表面上,电子能够将吸附在FeSe表面的O2还原为氧自由基。同时,剩余在BiVO4上的空穴将-OH氧化为羟基自由基。氧自由基和羟基自由基能够将有机污染物分解为二氧化碳和水。因此,FeSe与BiVO4复合后能够有效提高其的光催化性能,且FeSe价格较低,整个制备工艺简单,易推广。
附图说明
图1为本发明实施例制备FeSe纳米棒的场发射扫描电子显微镜图像;
图2为本发明实施例步骤S1中制备BiVO4的场发射扫描电子显微镜图;
图3为本发明实施例制备FeSe/BiVO4复合光催化剂的场发射扫描电子显微镜图;
图4为本发明实施例的光催化降解机理图;
图5为本发明实施例制备FeSe/BiVO4复合光催化剂用于降解有机物罗丹明B的效率图。
具体实施方式
为更好地理解本发明,下面将结合附图和具体实施方式对本发明的技术方案做进一步说明,参见图1至图5:
按本发明实施的FeSe/BiVO4复合光催化剂,进一步提高BiVO4的光催化效率,其材料由BiVO4颗粒表面沉积FeSe纳米棒制得。BiVO4颗粒大小为0.5~5µm,FeSe纳米棒长度为0.3~1.2 µm、直径为30 nm。图1为采用超声剥离法制得FeSe纳米棒的场发射扫描电子显微镜图像:FeSe纳米棒长度为0.3~ 1.2 µm、直径为30 nm。图2为颗粒尺寸为0.5~5µm 的BiVO4场发射扫描电子显微镜图像。图3为本发明实施例制备FeSe/BiVO4复合光催化剂的场发射扫描电子显微镜图,从图3可看出,FeSe纳米棒不均匀地分布在BiVO4颗粒表面。
按本发明实施的FeSe/BiVO4复合光催化剂制备方法,包括以下步骤:
S1,利用化学沉淀法制备BiVO4颗粒:将12 mmol Bi(NO3)3·5H2O 溶解在64 mL HNO3溶液(1 M/L)中,搅拌1.5小时。随后将12 mmol NH4VO3添加到上述溶液中继续搅拌1.5小时;接着将3 g 尿素添加到溶液中80 oC 加热 24;将沉淀用去离子水和酒精各清洗3次;最后在60 oC 干燥 24小时。
S2,采用固相烧结法制备FeSe块状物:Fe (Alfa, 99.99%) 和 Se (Alfa,99.99%) 粉末按1:1的比例在手套箱中混合均匀,并将其压成圆片;接着将圆片封装在充满氩气的石英管中;然后将其缓慢加热到700°C,并在 700°C 保温 24后随炉冷却到室温;将圆片研磨成粉末后再压片,并在700°C 保温 24小时,最后在400 °C 保温 36小时,将其研细,即得到FeSe粉末。
S3,采用超声剥离法制备FeSe纳米棒:将2mg尺寸为1µm 的FeSe块状物放入100mL无水乙醇中,接着在细胞粉碎机上超声粉碎2小时,得到长度为0.3~ 1.2 µm、直径为30 nmFeSe纳米棒。
S4,将步骤S1制备的BiVO4和S3制备的FeSe按98:2混合后超声分散在无水乙醇中;
S5,将S4中分散好的溶液在油浴磁力搅拌器中于80℃搅拌加热8小时,随后在真空干燥箱中150℃烘干6小时,得到FeSe/BiVO4复合光催化剂。
如图4,本发明工作机理图为:BiVO4与FeSe复合后,光生电子能够从BiVO4转移到FeSe表面上,电子能够将吸附在FeSe表面的O2还原为氧自由基。同时,剩余在BiVO4上的空穴将-OH氧化为羟基自由基。氧自由基和羟基自由基能够将有机污染物分解为二氧化碳和水。因此,FeSe与BiVO4复合后能够有效提高其的光催化性能。
通过降解罗丹明B来表征FeSe/BiVO4复合物的光催化性能,以罗丹明B在554 nm处的吸收峰来表征其浓度。将50mg的FeSe/BiVO4放入50mL浓度为10mg/L的罗丹明B溶液中搅拌1.5小时,随后用可见光照射溶液,每隔30分钟取一次溶液,并测量溶液的浓度。其结果如图5所示。从图5中可以得出,BiVO4与FeSe复合后其光催化性能得到了提高,大约为纯BiVO4的8倍。

Claims (6)

1.一种FeSe/BiVO4复合光催化剂,其特征在于:包括有FeSe纳米棒、BiVO4颗粒,FeSe纳米棒沉积在BiVO4颗粒表面。
2.根据权利要求1所述的FeSe/BiVO4复合光催化剂,其特征在于:所述的BiVO4颗粒尺寸为0.5~5µm。
3.根据权利要求1所述的FeSe/BiVO4复合光催化剂,其特征在于:所述的FeSe纳米棒长度为0.3~ 1.2 µm、直径为30 nm。
4.根据权利要求1所述的FeSe/BiVO4复合光催化剂制备方法,其特征在于:包括以下步骤:
S1,利用化学沉淀法制备BiVO4颗粒;
S2,采用固相烧结法制备FeSe块状物;
S3,采用超声剥离法制备FeSe纳米棒;
S4,将步骤S1制备的BiVO4和S3制备的FeSe按98:2混合后超声分散在无水乙醇中;
S5,将步骤S4分散好的溶液蒸发,得到FeSe/BiVO4复合光催化剂。
5. 根据权利要求4所述的FeSe/BiVO4复合光催化剂制备方法,其特征在于:所述步骤S3的超声剥离法为:将2mg尺寸为1µm 的FeSe块状物放入100mL无水乙醇中,接着在细胞粉碎机上超声粉碎2小时,得到长度为0.3~ 1.2 µm、直径为30 nm FeSe纳米棒。
6.根据权利要求4所述的FeSe/BiVO4复合光催化剂制备方法,其特征在于:所述步骤S5具体为:将S4中分散好的溶液在油浴磁力搅拌器中于80℃搅拌加热8小时,随后在真空干燥箱中150℃烘干6小时,得到FeSe/BiVO4复合光催化剂。
CN201710174965.6A 2017-03-22 2017-03-22 FeSe/BiVO4复合光催化剂及制备方法 Expired - Fee Related CN106824214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710174965.6A CN106824214B (zh) 2017-03-22 2017-03-22 FeSe/BiVO4复合光催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710174965.6A CN106824214B (zh) 2017-03-22 2017-03-22 FeSe/BiVO4复合光催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN106824214A true CN106824214A (zh) 2017-06-13
CN106824214B CN106824214B (zh) 2019-06-18

Family

ID=59130975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710174965.6A Expired - Fee Related CN106824214B (zh) 2017-03-22 2017-03-22 FeSe/BiVO4复合光催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN106824214B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650351A (zh) * 2018-12-25 2019-04-19 台州学院 一种FeSe基超导体及制备方法
CN113649009A (zh) * 2021-08-19 2021-11-16 唐山学院 一种NaNi3O5(OH)2·H2O/MgNiO2复合光催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826519A (zh) * 2012-08-24 2012-12-19 江苏大学 一种二硒化亚铁微米棒簇和微球的制备方法
CN103962146A (zh) * 2014-04-29 2014-08-06 温州大学 一种氧化铁改性的多孔钒酸铋纳米片光催化剂的制备方法
CN105797739A (zh) * 2016-04-12 2016-07-27 天津大学 铁氢氧化物/钒酸铋复合光催化剂的制备方法及应用
CN106311289A (zh) * 2016-09-12 2017-01-11 中国科学院海洋研究所 一种光催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826519A (zh) * 2012-08-24 2012-12-19 江苏大学 一种二硒化亚铁微米棒簇和微球的制备方法
CN103962146A (zh) * 2014-04-29 2014-08-06 温州大学 一种氧化铁改性的多孔钒酸铋纳米片光催化剂的制备方法
CN105797739A (zh) * 2016-04-12 2016-07-27 天津大学 铁氢氧化物/钒酸铋复合光催化剂的制备方法及应用
CN106311289A (zh) * 2016-09-12 2017-01-11 中国科学院海洋研究所 一种光催化剂及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650351A (zh) * 2018-12-25 2019-04-19 台州学院 一种FeSe基超导体及制备方法
CN109650351B (zh) * 2018-12-25 2020-06-02 台州学院 一种FeSe基超导体及制备方法
CN113649009A (zh) * 2021-08-19 2021-11-16 唐山学院 一种NaNi3O5(OH)2·H2O/MgNiO2复合光催化剂的制备方法

Also Published As

Publication number Publication date
CN106824214B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
Cao et al. Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays
Tang et al. Novel Z‐scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation
Zhang et al. Carbon layer derived carrier transport in Co/g-C3N4 nanosheet junctions for efficient H2O2 production and NO removal
Jiang et al. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity
Dong et al. Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate
CN102824921B (zh) 一种Ag2S/Ag3PO4复合光催化剂的制备方法
Sun et al. Bi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysis
Gao et al. Combustion synthesis of Bi/BiOCl composites with enhanced electron–hole separation and excellent visible light photocatalytic properties
Yan et al. Microwave-assisted synthesis of monoclinic–tetragonal BiVO 4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline
Cui et al. Plasmonic Ag@ AgCl-intercalated K4Nb6O17 composite for enhanced photocatalytic degradation of Rhodamine B under visible light
CN110639593B (zh) 一种硼、氮掺杂碳多孔纳米管包覆铂合金纳米颗粒材料催化剂及其制备方法和应用
CN101020143A (zh) 一种卤氧化铋材料的用途
CN101024188A (zh) 卤氧化物光催化材料及其制备方法
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
Bai et al. Enhanced visible light driven photocatalytic performance of Bi2WO6 nano-catalysts by introducing oxygen vacancy
CN114392734B (zh) 一种氧化钨复合材料及其制备方法和应用
CN103990472A (zh) 一种稳定、高效率制氢助催化剂及其制备方法
CN102794186A (zh) 卤氧化物光催化材料及其制备方法
Zhang et al. Enhanced visible-light-driven photocatalytic activity of Bi2WO6-BiSI Z-scheme heterojunction photocatalysts for tetracycline degradation
Zhang et al. Non-metal group doped g-C3N4 combining with BiF3: Yb3+, Er3+ upconversion nanoparticles for photocatalysis in UV–Vis–NIR region
Kumar et al. Synergistic effect of upconversion, plasmonic and semiconducting properties of ternary nanocomposites for photocatalytic application under different light regions
CN106824214A (zh) FeSe/BiVO4复合光催化剂及制备方法
Sanni et al. Accelerated electron transport and improved photocatalytic activity of Ag/AgBr under visible light irradiation based on conductive carbon derived biomass
Cui et al. Synthesis of a Z-scheme ternary photocatalyst (Ta3N5/Ag3PO4/AgBr) for the enhanced photocatalytic degradation of tetracycline under visible light
Chen et al. Synthesis of novel muscovite loaded nano Ag/Cu2-xFexO composites with excellent visible-light responsive photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190523

Address after: 318000 No. 1139, Shifu Road, Jiaojiang District, Taizhou, Zhejiang.

Applicant after: Zhong Wenwu

Applicant after: Taizhou University

Address before: 318000 No. 1139 Shifu Avenue, Taizhou City, Zhejiang Province

Applicant before: Taizhou University

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190618

Termination date: 20210322