CN106311289A - 一种光催化剂及其制备方法和应用 - Google Patents

一种光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN106311289A
CN106311289A CN201610818798.XA CN201610818798A CN106311289A CN 106311289 A CN106311289 A CN 106311289A CN 201610818798 A CN201610818798 A CN 201610818798A CN 106311289 A CN106311289 A CN 106311289A
Authority
CN
China
Prior art keywords
agi
bivo
photocatalyst
preparation
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610818798.XA
Other languages
English (en)
Inventor
相振波
张盾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN201610818798.XA priority Critical patent/CN106311289A/zh
Publication of CN106311289A publication Critical patent/CN106311289A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化领域,具体涉及一种AgI/BiVO4异质结复合光催化剂及其制备方法和应用。AgI/BiVO4异质结复合光催化剂由AgI和BiVO4组成,其中,AgI与BiVO4的摩尔比为1:9~9:1。制备采用水热方法得到AgI/BiVO4异质结复合光催化剂。本发明的制备方法工艺简单、易于控制、成本低廉,构建了具有可见光响应的AgI/BiVO4异质结结构,加速了光生载流子的分离,减小了光生电子‑空穴对的复合几率,在可见光下具有高效的光催化活性和稳定性,对水体中的有害微生物和染料污染物具有高效的杀灭效果,在水体净化和海洋防污等领域具有很好的实用价值和潜在的应用前景。

Description

一种光催化剂及其制备方法和应用
技术领域
本发明属于光催化领域,具体涉及一种AgI/BiVO4异质结复合光催化剂及其制备方法和应用。
背景技术
生物污损是全世界开发利用海洋资源的国家都需要面对与解决的问题。生物污损是由海洋微生物(细菌、藻类、软体动物等)的聚集及其代谢产物等引起[1]。海洋生物污损能够引起一系列的经济与安全问题,包括加快金属的腐蚀,缩短船舶工程等的使用寿命和降低水产业的产量和质量等。传统来说,一般会在船体和海洋工程表面使用防污涂料来降低由生物污损产生的危害。而且防污涂料的使用也确实达到了较好的防污效果。但是由于防污涂料本身具有毒性,给海洋生物带来很大的生物危害。同时,新的欧洲及世界化学品管理条例都限制了具有生物毒性的涂料在环境中的应用 [2]。所以发展一种新型的能够有效防污及环境友好的防污材料是十分急切和必要的[3,4]
半导体光催化技术是一种利用光能进行物质转化的技术,自1972年日本科学家Fujishima和Honda报道TiO2可以利用紫外光光解水产生氢气和氧气以来,半导体光催化技术就开始受到了极大的关注。目前半导体光催化技术在室内空气净化、公共场所的保洁除菌和污水处理等领域都得到了广泛应用。目前,TiO2因为具有化学性质稳定、无毒、低成本等优点成为应用最广泛的光催化材料,但是由于TiO2还存在着如光生电子空穴复合率高、对可见光的利用率低以及回收困难等缺陷,使其应用范围受到了极大制约[2]。因此,开发能够有效利用太阳能,绿色环保的新型高效光催化材料具有重要的现实意义。
银和卤族元素形成的材料同样具有良好的可见光催化性能。如AgCl,AgBr和AgI。与AgCl和AgBr相比,AgI具有更小的禁带宽度(约2.80eV)而受到了广泛关注[3]。BiVO4因其在可见光(λ>420nm)区具有良好的光吸收性能,而且其形貌具有多样性而得到了广泛关注和深入研究。此外,BiVO4是一种n型直接半导体材料,具有较窄的禁带宽度(约2.4eV),在可见光照下具有较高的催化活性,在环境净化和新能源开发领域具有潜在的应用价值,成为目前广泛研究的光催化剂之一[4]。但是由于单体光催化剂中光电子-空穴分离较慢,光生载流子易复合,导致半导体材料的光催化性能受限,而通过半导体复合构建复合材料可以加速电子-空穴分离,提高材料的光催化性能[5,6]。因此,急需在光催化领域开发合成新型复合催化剂。
[1]C.Compere,M.N.Bellon-Fontaine,P.Bertrand,D.Costa,P.Marcus,C.Poleunis,C.M.Pradier,B.Rondot,M.G.Walls,Kinetics of conditioning layerformation on stainless steel immersed in seawater,Biofouling,17(2001)129-145.
[2]F.Azemar,F.Fay,K.Rehel,I.Linossier,Development of hybridantifouling paints,Prog.Org.Coat.,87(2015)10-19.
[3]Victora R H.Calculated electronic structure of silver halidecrystals.Phys Rev B,56(1997):4417-4421.
[4]M.Lejars,A.Margaillan,C.Bressy,Fouling release coatings:A nontoxicalternative to biocidal antifouling coatings,Chem.Rev.,112(2012)4347-4390.
[5]J.A.Callow,M.E.Callow,Trends in the development of environmentallyfriendly fouling-resistant marine coatings,Nat.Commun.,2(2011)10.
[6]R.A.He,S.W.Cao,P.Zhou,J.G.Yu,Recent advances in visible light Bi-based photocatalysts,Chin.J.Catal.,35(2014)989-1007.
发明内容
本发明的目的在于针对现有技术中存在的问题,提供一种光催化剂及其制备方法和应用。
为实现上述目的,本发明采用以下技术方案实施:
一种AgI/BiVO4异质结复合光催化剂,AgI/BiVO4异质结复合光催化剂由AgI和BiVO4组成,其中,AgI与BiVO4的摩尔比为18:1~1:18。
所述BiOI与BiVO4的摩尔比为9:1~1:9。
一种AgI/BiVO4异质结复合光催化剂的制备方法,将KI和NH4VO3分散于20~60mL的去离子水中,得溶液A。同时,将适量AgNO3和Bi(NO3)3·5H2O溶解于20~60mL去离子水中,得溶液B。在搅拌的情况下将溶液A逐滴加入到溶液B中。将上述悬浊液搅拌40~80min后转移到水热釜中,160~200℃水热12~36h。水热结束后,经过抽滤、洗涤,而后于50~100℃下干燥3~24h后可得到的AgI/BiVO4复合光催化剂。
所述Bi(NO3)3·5H2O和AgNO3,KI和NH4VO3之间的用量关系均为1:9~9:1;分散液A和分散液B之间的用量关系1:2~2:1。
所述分散采用搅拌分散10~60min。
一种AgI/BiVO4异质结复合光催化剂的应用,所述AgI/BiVO4异质结复合光催化剂作为用于水体中的杀菌剂。
一种AgI/BiVO4异质结复合光催化剂的应用,所述AgI/BiVO4异质结复合光催化剂在降解染料中的应用。
一种AgI/BiVO4异质结复合光催化剂的应用,所述AgI/BiVO4异质结复合光催化剂在水体净化中的应用。
AgI/BiVO4异质结复合光催化剂应用于水体中,对典型污损微生物铜绿假单胞杆菌(P.aeruginosa)和染料污染物罗丹明B(RhB)可见光催化杀灭和降解,采用500W氙灯作为光源,其波长范围为420~760nm;所述微生物浓度为108cfu/mL;所述罗丹明B浓度为20mg/L;所述AgI/BiVO4异质结复合光催化剂的用量为1.0mg/mL。
其光催化活性具体测试方法为:采用500W氙灯作为光源,辅以滤光片;将铜绿假单胞杆菌液加入到反应器中,然后加入AgI/BiVO4异质结复合光催化剂,暗态吸附达到平衡后实验体系开始处于光照下,光照过程中间隔一定时间取样,通过平板计数法测定存活细菌浓度,计算细菌存活率。所述的光源为氙灯,其波长范围为420~760nm;所述微生物浓度为108cfu/mL;;所述AgI/BiVO4异质结复合光催化剂的用量为1.0mg/mL。
本发明的有益效果在于:
本发明通过将AgI和BiVO4复合,构建形成具有异质结结构的复合材料,加速光生载流子在复合材料表面的分离,进而提高光催化性能,对AgI和BiVO4两种材料在光催化领域的实际应用具有重大意义。具体:
(1)本发明采用简单的水热合成法制备AgI/BiVO4异质结复合光催化剂,制备方法工艺简单、易于控制、成本低廉;
(2)本发明制备的AgI/BiVO4异质结复合光催化剂,具有良好的可见光吸收性能;
(3)本发明制备的AgI/BiVO4异质结复合光催化剂可见光催化活性相比AgI和BiVO4均显著提高,在500W氙灯照射下,1.0mg/mL AgI/BiVO4异质结复合光催化剂对浓度为108cfu/mL的微生物30min内杀灭率可达到99.99%,对浓度20mg/L的罗丹明B的降解率150min超过98%;
(4)本发明制备的AgI/BiVO4异质结复合光催化剂具有良好的稳定性和重复利用性,5次循环使用后仍然具有高效的光催化活性;
(5)本发明制备的AgI/BiVO4异质结复合光催化剂具有异质结结构,加快了光生载流子的分离,减小了光生电子-空穴对的复合几率,提高了可见光催化活性和稳定性,在水体净化和海洋防污等领域具有很好的实用价值和潜在的应用前景。
附图说明
图1为本发明实施例提供的样品的XRD图谱(其中横坐标为2θ(角度),单位为degree(度);纵坐标为Intensity(强度),单位为a.u.(绝对单位));
图2为本发明所制备样品的FESEM照片:(a)AgI,(b)10%AgI/BiVO4,(c)20%AgI/BiVO4,(d)30%AgI/BiVO4,(e)40%AgI/BiVO4,(f)BiVO4
图3为本发明实施例提供的样品的紫外可见漫反射光谱图(UV-DRS)(其中横坐标为Wavelength(波长),单位为nm(纳米),纵坐标为Absorbance(吸光度),单位为a.u.(绝对单位));
图4为本发明实施例提供的的样品光催化降解反应中罗丹明B浓度随时间变化曲线(其中A图中横坐标为Time(时间),单位为min(分钟),纵坐标为Ct/C0,C0为反应开始前亚甲基蓝初始浓度,Ct为反应时间为t时的亚甲基蓝浓度)。
图5为本发明实施例提供的的样品光催化降解反应中对铜绿假单胞杆 菌的光催化杀菌率(图中纵坐标为Antibacterial rate(杀菌率),单位为%)。
图6为本发明实施例1中制备的20%AgI/BiVO4异质结复合光催化剂重复进行5次杀菌实验后的杀菌率(图中横坐标为Cycle number(重复使用次数),纵坐标为Antibacterial rate(杀菌率),单位为%)。
具体实施方式
以下通过具体的实施例对本发明作进一步说明,有助于本领域的普通技术人员更全面的理解本发明,但不以任何方式限制本发明。
本发明通过水热合成法制备了AgI/BiVO4异质结复合光催化剂,该复合光催化剂具有良好的可见光吸收性能,构建的异质结结构加快了光生载流子的分离,减小了光生电子-空穴对的复合几率,在可见光下具有高效的光催化活性和稳定性,对水体中污染物和污损微生物分别具有高效的降解和杀灭效果,在海洋防污等领域具有很好的实用价值和潜在的应用前景。同时该复合光催化剂的制备方法具有简单易行、价格低廉和重复性好等特点。
实施例1:
0.002mol的KI和0.008mol Bi(NO3)3·5H2O溶解于40mL去离子水中,搅拌30min得溶液A。同时,0.002moL的AgNO3和0.008mol NH4VO3溶解于40mL去离子水中,搅拌30min得溶液B。在搅拌的情况下将溶液A逐滴加入到溶液B中。上述悬浊液在搅拌60min后转移到100mL反应釜中,180℃水热24h。冷却至室温后,在孔径0.45μm的微孔滤膜上抽滤,产物分别用超纯水和无水乙醇洗涤数次,并置于真空干燥箱中60℃干燥6h,得样品标记为20%AgI/BiVO4
对比实施例1:
单体BiVO4的制备方法:
0.01mol NH4VO3溶解于40mL去离子水中,搅拌30min得溶液A。同时,0.01moL的Bi(NO3)3·5H2O溶解于40mL去离子水中,搅拌30min得溶液B。然在在搅拌的情况下将溶液A逐滴加入到溶液B中。上述悬浊液在搅拌60min后转移到100mL反应釜中,180℃水热24h。冷却至室温后,在孔径0.45μm的微孔滤膜上抽滤,产物分别用超纯水和无水乙醇洗涤数次,并置于真空干燥箱中60℃干燥6h,得样品标记为BiVO4
由图1可见AgI,BiVO4和不同物质的量比的AgI/BiVO4复合物的XRD谱图。这些衍射峰强度较高,峰型较好;说明合成的样品都具有较好的晶型。另外,从图1a中可以看出所有的衍射峰都能与四方相的BiVO4(JCPDS No.14-0688)很好的吻合;同时,图1f中所有的衍射峰都能与六方纤锌矿结构的β-AgI(JCPDS No.09-0445)相吻合。而图1c~1f中包含所有四方相的BiVO4(JCPDS No.14-0688)和六方纤锌矿结构的β-AgI(JCPDS No.09-0445)的特征峰,并且没有其他的杂峰。说明合成的复合物由BiVO4和 β-AgI两种物相组成。
由图2f可以看出纯相的BiVO4由尺寸为200-300nm块状节奏组成。而由共沉淀方法制备的AgI/BiVO4样品,从图2b~2f中可以看出,随着AgI用量的增加,AgI逐渐发生团聚,纯相的AgI为纳米片状结构(图2a)。
结果如图3所示:AgI/BiVO4样品的光吸收范围与BiVO4相比发生了明显变化。从图中可以看出AgI和BiVO4复合以后形成了异质结结构,导致复合材料的可见光吸收性能增强。
实施例2:
AgI/BiVO4异质结复合光催化剂的制备方法:
通过共沉淀和水热方法制备,与实施例1不同之处在于,控制AgI与BiVO4的摩尔比为1:9。0.001mol的KI和0.009mol NH4VO3溶解于40mL去离子水中,搅拌30min得溶液A。同时,0.001mol AgVO3和0.009mol的Bi(NO3)3·5H2O溶解于40mL去离子水溶液,搅拌30min得溶液B。然在在搅拌的情况下将溶液A逐滴加入到溶液B中。上述悬浊液在搅拌60min后转移到100mL反应釜中,180℃水热24h。冷却至室温后,在孔径0.45μm的微孔滤膜上抽滤,产物分别用超纯水和无水乙醇洗涤数次,并置于真空干燥箱中60℃干燥6h,得样品标记为10%AgI/BiVO4
实施例3:
AgI/BiVO4异质结复合光催化剂的制备方法:
通过共沉淀和水热方法制备,与实施例1不同之处在于,控制AgI与BiVO4的摩尔比为3:7。0.003mol的KI和0.007mol NH4VO3溶解于40mL去离子水中,搅拌30min得溶液A。同时,0.003mol AgVO3和0.007moL的Bi(NO3)3·5H2O溶解于40mL去离子水中,搅拌30min得溶液B。然在在搅拌的情况下将溶液A逐滴加入到溶液B中。上述悬浊液在搅拌60min后转移到100mL反应釜中,180℃水热24h。冷却至室温后,在孔径0.45μm的微孔滤膜上抽滤,产物分别用超纯水和无水乙醇洗涤数次,并置于真空干燥箱中60℃干燥6h,得样品标记为30%AgI/BiVO4
实施例4:
AgI/BiVO4异质结复合光催化剂的制备方法:
通过共沉淀和水热方法制备,与实施例1不同之处在于,控制AgI与BiVO4的摩尔比为4:6。0.004mol的KI和0.006mol NH4VO3溶解于40mL去离子水中,搅拌30min得溶液A。同时,0.004mol AgVO3和0.006moL的Bi(NO3)3·5H2O溶解于40mL去离子水中,搅拌30min得溶液B。然在在搅拌的情况下将溶液A逐滴加入到溶液B中。上述悬浊液在搅拌60min后转移到100mL反应釜中,180℃水热24h。冷却至室温后,在孔径0.45μm的微孔滤膜上抽滤,产物分别用超纯水和无水乙醇洗涤数次,并置于真空干燥箱中60℃干燥6h,得样品标记为40%AgI/BiVO4
应用例1:
上述所得AgI/BiVO4异质结复合光催化剂应用于染料污染物亚罗丹明B(RhB)的可见光催化降解:
以500W氙灯作为光源,辅以滤光片滤掉紫外光,使其波长范围为420~760nm。将10mL 20mg/L的亚甲基蓝溶液加入到10mL石英试管中,加入10mg本发明制备的光催化剂,暗态吸附达到平衡后进行光催化反应,反应过程中间隔一定时间取样,离心分离后取上层清液在紫外-可见分光光度计上测定552nm波长下罗丹明B溶液的吸光度,得到罗丹明B溶液的残余浓度,以此计算降解率,空白实验和暗态实验作为对照实验(参见图4)。
由图4可见,空白实验和暗态实验中罗丹明B几乎没有降解,对实验的影响可以忽略。在可见光照下,20%AgI/BiVO4异质结复合光催化剂显示出良好的光催化活性,光催化性能明显优于单体AgI和BiVO4,在150min光催化反应时间内对罗丹明B的降解率可达到98%。因此,将具有良好可见光吸收性能和光催化活性的AgI与BiVO4复合形成异质结结构可使光生电子-空穴在复合材料表面有效分离,并提高了复合材料的可见光吸收性能和比表面积,增强了复合材料的可见光催化性能。
应用例2:
上述所得AgI/BiVO4异质结复合光催化剂应用于水体中,对典型污损微生物铜绿假单胞杆菌的可见光杀灭:
以500W氙灯作为光源,辅以滤光片滤掉紫外光,使其波长范围为420~760nm。以铜绿假单胞杆菌(P.aeruginosa,3.6×108cfu/mL)评价AgI/BiVO4异质结复合光催化剂的可见光催化杀菌性能:
首先准备细菌悬液,将铜绿假单胞杆菌储存液接种到灭菌LB液体培养基中,然后将其置于37℃、150rpm的空气恒温摇床中,过夜培养。培养得到的细菌悬液离心后悬浮于0.01mol/L PBS(pH=7.4)缓冲液中,得到浓度为3.6×108cfu/mL的铜绿假单胞杆菌悬液。
光催化实验中取9.9mL灭菌海水加入到10mL反应器中,然后加入100μL细菌悬液,使反应液中细菌浓度为3.6×106cfu/mL,加入10mg本发明制备的光催化剂。暗态吸附达到平衡后进行光催化反应,反应过程中间隔一定时间取样,通过平板计数法确定细菌的存活率和杀菌率。具体步骤为:取100μL反应液,用灭菌海水按照系列稀释法依次稀释几个梯度,然后从不同稀释倍数的溶液中取100μL至已经准备好的LB固体培养基上,将菌液均匀地涂抹在LB培养基上。将LB培养基倒置,放入电热恒温培养箱中37℃培养24h,通过计数培养基上长出的菌落个数,以及相应稀释倍数得出细菌浓度,以确定细菌的存活率和杀菌率。实验中每组实验均需平行测定3次,取平均值作为最后结果,空白实验和暗态实验作为对照实验(参见图5)。
由图5可见,在空白实验中铜绿假单胞杆菌数目几乎没有变化,表明可见光照的影响可以忽略;而在黑暗条件下,细菌数目也无明显变化,表 明本实验使用的材料本身没有生物毒性。而在可见光照下20%AgI/BiVO4异质结复合光催化剂显示了良好的光催化活性,光催化杀菌性能明显优于单体BiVO4和AgI,经过30min的光照只有约1.7log的铜绿假单胞杆菌存活,杀菌率可达到99.99%。因此,20%AgI/BiVO4异质结复合光催化剂具有极佳的光催化杀菌防污性能,可归因于AgI与BiVO4的复合形成异质结结构,加速了光生电子-空穴的分离,提高了复合材料的光催化活性。同时,AgI/BiVO4异质结复合光催化剂具有良好的可见光吸收性能,导致其可见光催化性能提高,具有良好的可见光催化杀菌性能。
应用例3:
上述所得AgI/BiVO4异质结复合光催化剂重复应用于水体中,对典型污损微生物铜绿假单胞杆菌的可见光杀灭。
将应用例2中光催化杀菌中所用的20%AgI/BiVO4异质结复合光催化剂回收,分别用超纯水和无水乙醇多次洗涤,经干燥后按照应用例2中的步骤进行下一次光催化杀菌反应,连续进行5次,保持其他条件不变(参见图6)。
由图6可见,20%AgI/BiVO4异质结复合光催化剂对细菌的杀灭率在连续反应5次后并没有明显降低,依然保持在97%以上,显示出良好的重复利用性。

Claims (8)

1.一种光催化剂,其特征在于:光催化剂为AgI/BiVO4异质结复合物,其,由AgI和BiVO4组成,AgI与BiVO4的摩尔比为9:1~1:9。
2.根据权利要求1所述的光催化剂,其特征在于:所述AgI与BiVO4的摩尔比为9:1~1:9。
3.一种权利要求1所述的光催化剂的制备方法,其特征在于:将AgNO3和NH4VO3分散于去离子水溶液中,得分散液A;同时,将Bi(NO3)3·5H2O和KI分散于过量的去离子水水溶液中,得分散液B;在搅拌的情况下将溶液A逐滴加入到溶液B中,将上述悬浊液搅拌40~60min后转移到水热釜中,160~200℃水热12~36h,水热过程结束后,经过抽滤、洗涤,而后于50~100℃干燥6~18h即得具有片状及块状结构的AgI/BiVO4
4.根据权利要求3所述的光催化剂的制备方法,其特征在于:所述Bi(NO3)3·5H2O和AgNO3,KI和NH4VO3之间的用量关系均为1:9~9:1;分散液A和分散液B之间的用量关系1:2~2:1。
5.根据权利要求3所述的光催化剂的制备方法,其特征在于:所述获得分散液A和分散液B采用搅拌分散10~60min。
6.一种权利要求1所述的光催化剂的应用,其特征在于:所述AgI/BiVO4异质结复合光催化剂作为用于船体及海洋设施上的防污剂。
7.一种权利要求1所述的光催化剂的应用,其特征在于:所述AgI/BiVO4异质结复合光催化剂在降解染料中的应用。
8.一种权利要求1所述的光催化剂的应用,其特征在于:所述AgI/BiVO4异质结复合光催化剂在水体净化中的应用。
CN201610818798.XA 2016-09-12 2016-09-12 一种光催化剂及其制备方法和应用 Pending CN106311289A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610818798.XA CN106311289A (zh) 2016-09-12 2016-09-12 一种光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610818798.XA CN106311289A (zh) 2016-09-12 2016-09-12 一种光催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106311289A true CN106311289A (zh) 2017-01-11

Family

ID=57787731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610818798.XA Pending CN106311289A (zh) 2016-09-12 2016-09-12 一种光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106311289A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824214A (zh) * 2017-03-22 2017-06-13 台州学院 FeSe/BiVO4复合光催化剂及制备方法
CN108097273A (zh) * 2018-01-30 2018-06-01 青岛科技大学 一种管状AgCl结构的AgCl/BiOCl光催化剂
CN116408110A (zh) * 2023-04-28 2023-07-11 长安大学 一种铜掺杂钒酸铋-碘化银活化过硫酸盐光催化剂及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289240A (zh) * 2014-07-03 2015-01-21 上海电力学院 一种Ag3PO4/BiVO4异质结复合光催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289240A (zh) * 2014-07-03 2015-01-21 上海电力学院 一种Ag3PO4/BiVO4异质结复合光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGWEI HUANG等: "A General and Facile Approach to Heterostructured Core/Shell BiVO4/BiOI p-n Junction:Room-Temperature in Situ Assembly and Highly Boosted Visible-Light Photocatalysis", 《CHEM. ENG.》 *
LINLIN CHEN等: "In-situ ion exchange synthesis of hierarchical AgI/BiOI microsphere photocatalyst with enhanced photocatalytic properties", 《CRYSTENGCOMM》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824214A (zh) * 2017-03-22 2017-06-13 台州学院 FeSe/BiVO4复合光催化剂及制备方法
CN108097273A (zh) * 2018-01-30 2018-06-01 青岛科技大学 一种管状AgCl结构的AgCl/BiOCl光催化剂
CN108097273B (zh) * 2018-01-30 2020-10-16 青岛科技大学 一种管状AgCl结构的AgCl/BiOCl光催化剂
CN116408110A (zh) * 2023-04-28 2023-07-11 长安大学 一种铜掺杂钒酸铋-碘化银活化过硫酸盐光催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
Geng et al. H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst
Peighambardoust et al. Sono-photocatalytic activity of sea sediment@ 400/ZnO catalyst to remove cationic dyes from wastewater
Ma et al. Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification
Varnagiris et al. Floating TiO2 photocatalyst for efficient inactivation of E. coli and decomposition of methylene blue solution
CN106423224B (zh) 一种BiVO4/BiOI异质结复合光催化剂及其制备方法和应用
CN105688970B (zh) g‑C3N4修饰的自掺杂Bi2WO6复合光催化剂及其制备方法和应用
You et al. Multifunctional porous nanofibrous membranes with superior antifouling properties for oil-water separation and photocatalytic degradation
CN105289673A (zh) 一种Bi2WO6/Ag3PO4异质结复合光催化剂及其制备方法和应用
CN105289674A (zh) 一种AgVO3/Ag3PO4异质结复合光催化剂及其制备方法和应用
Liu et al. Fabrication oxygen defect-mediated double Z-scheme BiOI/BiO2− x/BiOBr photocatalyst for pollutions degradation and bacteria inactivation
Khedr et al. The synergistic effect of anatase and brookite for photocatalytic generation of hydrogen and diclofenac degradation
CN106311289A (zh) 一种光催化剂及其制备方法和应用
Merah Electrosynthesis of silver oxide deposited onto hot spring mud with enhanced degradation of Congo red
CN105688948B (zh) 一种光催化剂及其制备方法和应用
CN108325516A (zh) 一种BiVO4/InVO4异质结催化剂及其制备方法和应用
Noroozi et al. Preparation and characterization of ZrO2-Cr2O3 nanocomposite as a pn heterojunction by a facile sol-gel method: A kinetic investigation on the removal of p-nitrophenol dye from aqueous media
CN105597793B (zh) 一种光催化剂及其制备方法和应用
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
CN105214695A (zh) 一种Bi2WO6/BiOI异质结复合光催化剂及其制备方法和应用
Zhang et al. Superwetting stainless steel mesh decorated with TCPP-doped UiO-66-NH2 with enhanced gravity-driven oil–water separation and visible-light-driven sterilization performance
CN114570406A (zh) 一种用于有机污水修复的氮化碳复合光催化材料及其制备方法
Hu et al. Decoloring methyl orange under sunlight by a photocatalytic membrane reactor based on ZnO nanoparticles and polypropylene macroporous membrane
CN105457625A (zh) 一种Bi2WO6/BiVO4异质结复合光催化剂及其制备方法和应用
CN108607580A (zh) 硫化铟/钒酸铟复合光催化剂及其制备方法和应用
CN111686769A (zh) 一种光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170111