CN106823839B - 双层湿法水刺分离膜支撑体及其制备方法 - Google Patents

双层湿法水刺分离膜支撑体及其制备方法 Download PDF

Info

Publication number
CN106823839B
CN106823839B CN201710097363.5A CN201710097363A CN106823839B CN 106823839 B CN106823839 B CN 106823839B CN 201710097363 A CN201710097363 A CN 201710097363A CN 106823839 B CN106823839 B CN 106823839B
Authority
CN
China
Prior art keywords
spun lacing
double
separation
polyester fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710097363.5A
Other languages
English (en)
Other versions
CN106823839A (zh
Inventor
于斌
郭玉海
李�杰
申景山
何忠
朱海霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Bao Hong New Material Ltd By Share Ltd
Zhejiang Sci Tech University ZSTU
Original Assignee
Guangdong Bao Hong New Material Ltd By Share Ltd
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Bao Hong New Material Ltd By Share Ltd, Zhejiang Sci Tech University ZSTU filed Critical Guangdong Bao Hong New Material Ltd By Share Ltd
Priority to CN201710097363.5A priority Critical patent/CN106823839B/zh
Publication of CN106823839A publication Critical patent/CN106823839A/zh
Application granted granted Critical
Publication of CN106823839B publication Critical patent/CN106823839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种双层湿法水刺分离膜支撑体及其制备方法,包括涂覆层和支撑层,涂覆层由重量百分含量为60%‑80%的细径聚酯纤维配以20%‑40%的低熔点聚酯纤维或ES纤维构成,其定量为20g/m2‑40g/m2;支撑层由重量百分含量为70%‑90%粗径聚酯纤维配以10%‑30%的低熔点聚酯纤维或PE纤维构成,其定量为40g/m2‑80g/m2,经打浆、配浆等工艺步骤,由不同供浆系统分别输送至双层成型湿法设备抄造成网,后经水刺、热轧压延成型。本发明解决了双层分离膜支撑体层间作用力差、易分层、强力低、柔韧性差的问题,在较低的热轧压力和温度下,制备层间结合力良好、力学性能优异、形态结构稳定和刚柔适度的双层分离膜支撑材料。

Description

双层湿法水刺分离膜支撑体及其制备方法
技术领域
本发明涉及液体分离与过滤用材料制造技术领域,具体地说,涉及一种双层湿法水刺分离膜支撑体及其制备方法。
背景技术
膜技术作为新型分离技术已广泛应用于气体分离、物料分离和水处理,其中水处理领域对膜产品的需求量最大、应用最广。微滤膜、超滤膜应用于净水场的水处理,反渗透膜主要用于海水的淡水化处理。另外,反渗透膜、纳滤膜被用于进行半导体制造用水、热水器用水、医疗用水和试验用纯水等的处理。同时在地下废水处理中,利用微滤膜、超滤膜来进行膜分离洁性污泥。
单纯的膜结构很脆弱,无法承受较高的操作压力,目前市场上销售的平板超滤膜以及反渗透膜绝大多数都是以无纺布作为支撑体的。一般具有分离功能的膜和支撑体通过下述方法来一体化,即在无纺布、织布等的支撑体上流延并固化一层具有分离功能的膜。另外,对于反渗透膜而言,先在无纺布、织布等的支撑体上流延高分子聚合物的溶液以形成底膜,然后在该底膜上形成分离膜,通过这样的方法等来一体化。
因此,这就一方面要求,要求作为支撑体的无纺布、织物等具有优异的平滑性能,使得高分子聚合物的溶液在流延成膜时,不会因过度渗透而穿透背面从而使膜物质剥离,进而不会因支撑体起毛等而出现膜的不均匀化、小孔等的缺陷。另外,大部分分离膜都在一定压力下使用,特别在高压下使用的反渗透膜,更要求支撑体具有高机械强度和高尺寸稳定性。因此这就要求在支撑体的涂覆面要求其有优异的平滑性、同时支撑体还要有较高的物理机械性能和结构稳定性。
为了实现涂覆面的平滑和支撑材料高的物理机械性能和尺寸稳定性,专利CN1819866A公开了一种湿法和纺粘复合的分离膜支撑体的制备方法,纺粘长丝在一定程度上确实可以提高膜支撑材料的物理机械性能和结构稳定性,虽然在高于220℃的高温和高压下经过热轧可以制备双层支撑体,但还存在纺粘材料与湿法粘合点较少、结合牢度不高从而导致层间易分层和涂覆液易漏胶等问题。另外专利CN201380005581.1、CN201380007196.0和CN201380009482.0报到了一系列以聚酯短纤维和低熔点聚酯纤维为原料制备湿法分离膜支撑体的方法,通过构造小克重含大直径的聚酯纤维和低熔点聚酯纤维的涂覆层和大克重含小直径聚酯纤维和低熔点聚酯纤维的底层,然后通过热轧复合制备涂覆层光滑平整、力学性能良好的双层膜支撑材料。但是该材料在厚度方向仍然只靠热轧实现层与层之间的粘合,特别对于80克以上的厚型膜支撑体,结合牢度较低,会有分层现象;另一方面在无纺布的全部厚度方向过分地施加热、压力,无纺布中所含的粘合纤维过分地熔融,造成空隙过于减少,另外在分离膜涂敷时更易产生褶皱。专利CN201410043311.6利用纤维增强聚酯纤维湿法分离膜的方法,但该方法一是纤维素纤维在过滤过程中强力损失会比较大,另外还存在纤维素纤维长期浸在水中发霉腐烂的问题。
此外上述复合膜支撑材料由于都在高温和高压力复合而成,因此还存在材料刚性大柔性差的问题,不能在液体过滤时给予材料有限缓冲,从而增加了过滤时阻力,缩短了过滤组件的使用寿命。
如上所述,通过以上技术无法得到完全满足分离膜涂敷面的平滑性、良好的物理机械性能和结构稳定性以及柔韧性的分离膜支撑材料。
发明内容
本发明克服了现有技术中的缺点,提供了一种双层湿法水刺分离膜支撑体及其制备方法,解决双层分离膜支撑体层间作用力差、易分层、强力低、柔韧性差的问题,在无需较高的温度和热轧压力下,提供制备层间结合力良好、力学性能优异、形态结构稳定的刚柔适度的双层分离膜支撑材料的方法。
为了解决上述技术问题,本发明是通过以下技术方案实现的:
双层湿法水刺分离膜支撑体,包括涂覆层和支撑层,所述涂覆层由重量百分含量为60%-80%的细径聚酯纤维配以20%-40%的低熔点聚酯纤维或ES纤维构成,其定量为20g/m2-40g/m2;所述支撑层由重量百分含量为70%-90%粗径聚酯纤维配以10%-30%的低熔点聚酯纤维或PE纤维构成,其定量为40g/m2-80g/m2
进一步,所述低熔点聚酯纤维为纤维熔点为100℃-135℃的低熔点聚醋/聚醋复合纤维、聚乙烯纤维、或重量配比分别为3-4:7-6的聚乙烯/聚丙烯的ES复合纤维。
进一步,所述涂覆层由重量百分含量为65%-80%的细径聚酯纤维配以20%-35%的低熔点聚酯纤维或ES纤维构成。
进一步,所述支撑层由重量百分含量为75%-90%粗径聚酯纤维配以10%-25%的低熔点聚酯纤维或PE纤维构成。
进一步,所述粗径纤维直径在在10μm~20μm之间,细径纤维直径在5μm~15μm之间。
双层湿法水刺分离膜支撑体的制备方法,包括以下步骤:
1)取重量百分含量为60%-80%的细径聚酯纤维配以20%-40%的低熔点聚酯纤维或ES纤维依次投入己贮有水的打浆机中,控制纤维浓度为2-4%,疏解40-60min,放入另一配浆池,加水和分散剂搅拌均匀,使浓度为0.01-0.1%,配成涂覆层的浆料;
2)取重量百分含量为70%-90%粗径聚酯纤维维配以20%-40%的低熔点聚酯纤维或PE纤维投入己贮有水的另一打浆机中,控制纤维浓度为1-4%,疏解40-60min,放入另一配浆池,加水和分散剂搅拌均匀,使浓度为0.01-0.1%,配成支撑层的浆料;
3)将步骤2)和步骤3)制备的两种不同浆料,由不同供浆系统送至圆网/斜网湿法成型器或双层斜网湿法成型器,得到双层湿法纤网;
4)将双层湿法纤网先经过水刺加固、经烘缸干燥、热轧压延成型即制成定量60-120g/m2的双层结构水刺热轧分离膜支撑体。
进一步,在步骤4所述水刺加固过程中,预刺水刺压力20bar-50bar,主刺水刺压力30bar-60bar。
进一步,分散剂是聚丙烯酰胺或聚氧化乙烯。
进一步,在步骤4)所述热轧压延过程中,热轧压延设备由串联配置的第一压延设备和第二压延设备两部分组成,其中第一压延设备是有上加热金属辊和无加热弹性辊组合的压延装置;第二压延设备是由两金属加热辊组成的热轧设备。
进一步,第一压延设备和第二压延设备压延温度在110℃-130℃,辊压力在300N/cm-500N/cm。
进一步,纤维网经过第一压延设备时,直接接触上加热金属辊的纤维层是涂覆面,直接接触无加热弹性辊的纤维网面为支撑层。
与现有技术相比,本发明的有益效果是:
(1)通过水刺复合构建了双层湿法膜支撑材料,实现了膜支撑材料在厚度方向的有效缠结,解决了现有双层膜支撑材料易分层的难题,大大提高了双层膜材料的物理机械性能和结构稳定性。
(2)通过水刺和热轧工艺的结合,克服了现有复合层压湿法膜支撑材料需要高温高压的热轧压延,产品过于密实、后期使用结构不稳定的不足,在保证膜支撑材料良好物理机械性能和结构稳定性的同时,通过低压、低温热轧压延实现涂覆层表面结构的平滑度和平整度。
(3)引入水刺加固技术,克服了现有膜支撑材料仅仅通过热轧压延技术加固成型,其存在刚度有余而柔性不足的难题,充分发挥水刺材料的柔性特征,实现了强度和柔性的平衡,在液体过滤时给予材料有效缓冲,从而降低过滤组件阻力,延长过滤组件的使用寿命。
附图说明
附图用来提供对本发明的进一步理解,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制,在附图中:
图1是本发明是热轧压延示意图。
1——无加热弹性辊;2——上加热金属辊;3——下加热金属辊;4——卷绕辊。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
双层湿法水刺分离膜支撑体制备主要包括以下步骤:
1、配浆
将聚酯纤维(纤维直径6.3μm、纤维长度5mm)和ES纤维(3.2μm,纤维长度5mm)以60:40的混合比例分散于水中,控制纤维浓度为2%,疏解40min,放入配浆池,加水和聚丙烯酰胺分散剂搅拌均匀,使浓度0.03,粘度为60秒,配成涂覆层浆料;
将聚酯纤维(纤维直径14.5μm、纤维长度5mm)和聚乙烯纤维(10.2μm,纤维长度5mm)以60:40的混合比例分散于水中,控制纤维浓度为2%,疏解40min,放入配浆池,加水和聚丙烯酰胺分散剂搅拌均匀,使浓度0.04,粘度为65秒,配成支撑层浆料;
2、成网、水刺加固
将上述浆料由不同的供浆系统分别输送至圆网/斜网组合湿法成型器制成涂覆层和支撑层干重分别为20g/m2和60g/m2复合纤网,经过水刺头压力分别为20bar和30bar的预刺和主刺复合加固成型;经130℃烘缸干燥制得干燥的湿法水刺片。
3、热轧压延成型
上述烘干湿法水刺片经过一组串联配置的热轧压延装置(如图1),首先纤维网经过有上加热金属辊2(压延温度125℃,压力300N/m)和无加热弹性辊1组合第一压延设备,其中直接接触上加热金属辊2的纤维层是涂覆面,直接接触无加热弹性辊的纤维网面为支撑层。然后纤维网进入由上加热金属辊2和下加热金属辊3(压辊温度125℃,压力400N/m)组成的第二压延设备,经过卷绕辊4,最终获得定量80g/m2的双层湿法水刺分离膜支撑体。
实施例2
双层湿法水刺分离膜支撑体制备主要包括以下步骤:
1、配浆
将聚酯纤维(纤维直径7.2μm、纤维长度5mm)和低熔点聚酯纤维(熔点130℃,4.3μm,纤维长度5mm)以60:40的混合比例分散于水中,控制纤维浓度为2%,疏解40min,放入配浆池,加水和聚丙烯酰胺分散剂搅拌均匀,使浓度0.03,粘度为60秒,配成涂覆层浆料;
将聚酯纤维(纤维直径13.8μm、纤维长度5mm)和低熔点聚酯纤维(熔点130℃,12.6μm,纤维长度5mm)以60:40的混合比例分散于水中,控制纤维浓度为2%,疏解40min,放入配浆池,加水和聚丙烯酰胺分散剂搅拌均匀,使浓度0.04,粘度为65秒,配成支撑层浆料;
2、成网、水刺加固
将上述浆料由不同的供浆系统分别输送至圆网/斜网组合湿法成型器制成涂覆层和支撑层干重分别为20g/m2和60g/m2复合纤网,经过水刺头压力分别为30bar和40bar的预刺和主刺复合加固成型;经130℃烘缸烘干制得干燥的湿法水刺片。
3、热轧压延成型
上述烘干湿法水刺片经过一组并联配置的热轧压延装置(如图1)。复合纤网首先经过有上加热金属辊2(压延温度135℃,压力350N/m)和无加热弹性辊1组合第一压延设备,然后进入由两金属加热辊(压辊温度135℃,压力450N/m)组成的热第二压延设备,最终获得定量80.0g/m2的双层湿法水刺分离膜支撑体。
实施例3
与实施例2采用相同的工艺条件和加工方法,不同的是水刺主刺压力调整为55bar,制得定量79.6g/m2的双层湿法水刺分离膜支撑体。
对比例1
与实施例1采用相同的工艺条件和加工方法,不同的是纤网复合后直接在130℃烘缸内干燥,不经过水刺直接热轧压延成型,热轧温度和压力分别提高到145℃和550N/m,制得定量78.9g/m2的双层湿法水刺分离膜支撑体。
对比例2
与实施例2采用相同的工艺条件和加工方法,不同的是纤网复合后直接在130℃烘缸内干燥,不经过水刺直接热轧压延成型,热轧温度和压力分别提高到,210℃和750N/m,制备的定量79.2g/m2的双层湿法水刺分离膜支撑体。
对比例3
市售以聚酯纤维与低熔点聚酯纤维为原料,经湿法热轧制备的一种克重80.9g/m2分离膜支撑体。
对上述实施例、对比例膜支撑材料分别测试其物理机械性能、柔软度(用弯曲刚度表示)和层间结合力(根据GB/T 26203-2010《纸和纸板内结合强度的测定》)。测试结果表1所示,可以看出,不论与双层热轧膜支撑材料还是市售的膜支撑材料相比,经过水刺热轧的膜支撑材料,在保持涂覆面平滑度基本不变的情况下,纵横向力学性能显著提升,层间结合强度显著增强,由于实施例膜支撑材料强力主要来源于纤维与纤维的柔性缠结因此其弯曲刚度反而略有下降,呈现较好的柔韧性。特别是高的水刺压力下,本发明制备的膜支撑材料增强效果更明显。
表1分离膜支撑体的性能
最后应说明的是:以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但是凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.双层湿法水刺分离膜支撑体的制备方法,其特征在于,包括以下步骤:
1)取重量百分含量为60%-80%的直径在5μm~15μm之间的聚酯纤维配以20%-40%的低熔点聚酯纤维或ES纤维依次投入已贮有水的打浆机中,控制纤维浓度为2-4%,疏解40-60min,放入配浆池,加水和分散剂搅拌均匀,使浓度为0.01-0.1%,配成涂覆层的浆料;
2)取重量百分含量为70%-90%的直径在10μm~20μm之间的聚酯纤维配以20%-40%的低熔点聚酯纤维或PE纤维投入已 贮有水的另一打浆机中,控制纤维浓度为1-4%,疏解40-60min,放入另一配浆池,加水和分散剂搅拌均匀,使浓度为0.01-0.1%,配成支撑层的浆料;
3)将步骤2)和步骤3)制备的两种不同浆料,由不同供浆系统送至圆网/斜网湿法成型器或双层斜网湿法成型器,得到双层湿法纤网;
4)将双层湿法纤网先经过水刺加固、经烘缸干燥、热轧压延成型即制成定量60-120g/m2的双层湿法水刺分离膜支撑体。
2.根据权利要求1所述双层湿法水刺分离膜支撑体的制备方法,其特征在于,在步骤4所述水刺加固过程中,预刺水刺压力20bar-50bar,主刺水刺压力30bar-60bar。
3.根据权利要求1所述双层湿法水刺分离膜支撑体的制备方法,其特征在于,在步骤4)所述热轧压延过程中,热轧压延设备由串联配置的第一压延设备和第二压延设备两部分组成,其中第一压延设备是有上加热金属辊和无加热弹性辊组合的压延装置;第二压延设备是由两加热金属辊组成的热轧设备。
4.根据权利要求3所述双层湿法水刺分离膜支撑体的制备方法,其特征在于,第一压延设备和第二压延设备压延温度在110℃-130℃,辊压力在300N/cm2-500N/cm2
CN201710097363.5A 2017-02-22 2017-02-22 双层湿法水刺分离膜支撑体及其制备方法 Active CN106823839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710097363.5A CN106823839B (zh) 2017-02-22 2017-02-22 双层湿法水刺分离膜支撑体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710097363.5A CN106823839B (zh) 2017-02-22 2017-02-22 双层湿法水刺分离膜支撑体及其制备方法

Publications (2)

Publication Number Publication Date
CN106823839A CN106823839A (zh) 2017-06-13
CN106823839B true CN106823839B (zh) 2019-07-12

Family

ID=59133908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710097363.5A Active CN106823839B (zh) 2017-02-22 2017-02-22 双层湿法水刺分离膜支撑体及其制备方法

Country Status (1)

Country Link
CN (1) CN106823839B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950863A (zh) * 2018-09-21 2018-12-07 大连瑞源非织造布有限公司 湿法水刺油滤布及其制备方法
CN112316737B (zh) * 2020-09-30 2022-09-02 天津工业大学 一种分离膜支撑体及其制备方法
CN114381863B (zh) * 2022-01-26 2024-03-12 南京瑞洁特膜分离科技有限公司 水刺无纺布基材的制法及其作为过滤膜支撑材料的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046675A1 (de) * 2005-09-29 2007-04-05 Microdyn-Nadir Gmbh Filterelement mit integralem Aufbau und Verfahren zu seiner Herstellung
CN101380535A (zh) * 2008-09-28 2009-03-11 华南理工大学 一种多层复合微孔过滤分离材料及其制备方法与应用
CN102031640A (zh) * 2009-09-25 2011-04-27 衡阳市恒威工贸有限公司 用于超滤膜支撑层的聚酯纤维复合无纺布及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101213A (ja) * 2010-10-13 2012-05-31 Mitsubishi Paper Mills Ltd 半透膜支持体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046675A1 (de) * 2005-09-29 2007-04-05 Microdyn-Nadir Gmbh Filterelement mit integralem Aufbau und Verfahren zu seiner Herstellung
CN101380535A (zh) * 2008-09-28 2009-03-11 华南理工大学 一种多层复合微孔过滤分离材料及其制备方法与应用
CN102031640A (zh) * 2009-09-25 2011-04-27 衡阳市恒威工贸有限公司 用于超滤膜支撑层的聚酯纤维复合无纺布及其制造方法

Also Published As

Publication number Publication date
CN106823839A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN106835499B (zh) 三层复合分离膜支撑材料
CN106582313B (zh) 一种双层耐碱分离膜支撑材料及其制备方法
KR100809566B1 (ko) 함습 - 스펀본드 적층 막 지지체
CN102574070B (zh) 半透膜支撑体、半透膜、螺旋型半透膜元件及半透膜支撑体的制造方法
US6156680A (en) Reverse osmosis support substrate and method for its manufacture
JP3153487B2 (ja) 半透膜支持体
JP5216229B2 (ja) 半透膜支持体
CN106823839B (zh) 双层湿法水刺分离膜支撑体及其制备方法
JP2013220382A (ja) 半透膜支持体
JP5203518B1 (ja) 半透膜支持体用不織布及びその製造方法
CN104136104A (zh) 分离膜支持体和其制造方法、以及使用分离膜支持体的分离膜和流体分离元件
CN112663399B (zh) 一种用于水处理反渗透膜支撑体基材的湿法无纺布及其制备方法
JP6005542B2 (ja) 半透膜支持体用不織布
JP6625916B2 (ja) 半透膜支持体
CN111485453A (zh) 一种分离膜支撑用无纺布的制造方法
JP2012106177A (ja) 半透膜支持体
JP5809583B2 (ja) 半透膜支持体
JP2014100625A (ja) 半透膜支持体及びその製造方法
JP2014180638A (ja) 半透膜の製造方法
KR102527557B1 (ko) 습식 부직포, 이의 제조 방법 및 이를 포함하는 수처리막
JP2019042649A (ja) 半透膜支持体用不織布およびその製造方法
JP2013180294A (ja) 半透膜支持体用不織布及びその製造方法
JP7431523B2 (ja) 水処理用不織布シート及びその製造方法
JP2013139030A (ja) 半透膜支持体及び半透膜支持体の製造方法
JP2020146606A (ja) 半透膜支持体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 528225 No. 5, Jun Ye Road, C area, Shishan science and Technology Industrial Park, Nanhai District, Foshan, Guangdong

Applicant after: Guangdong Bao Hong new material Limited by Share Ltd

Applicant after: Zhejiang Sci-Tech University

Address before: 528225 No. 5, Jun Ye Road, C area, Shishan science and Technology Industrial Park, Nanhai District, Foshan, Guangdong

Applicant before: Guangdong environmental technology Limited by Share Ltd

Applicant before: Zhejiang Sci-Tech University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant