CN106783613A - 一种iii‑v族半导体moshemt器件及其制备方法 - Google Patents

一种iii‑v族半导体moshemt器件及其制备方法 Download PDF

Info

Publication number
CN106783613A
CN106783613A CN201710026316.1A CN201710026316A CN106783613A CN 106783613 A CN106783613 A CN 106783613A CN 201710026316 A CN201710026316 A CN 201710026316A CN 106783613 A CN106783613 A CN 106783613A
Authority
CN
China
Prior art keywords
layer
layers
semiconductor
cushions
moshemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710026316.1A
Other languages
English (en)
Other versions
CN106783613B (zh
Inventor
李海鸥
马磊
李思敏
首照宇
李琦
王盛凯
陈永和
张法碧
肖功利
傅涛
李跃
常虎东
孙兵
刘洪刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201710026316.1A priority Critical patent/CN106783613B/zh
Publication of CN106783613A publication Critical patent/CN106783613A/zh
Application granted granted Critical
Publication of CN106783613B publication Critical patent/CN106783613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开一种III‑V族半导体MOSHEMT器件及其制备方法,其组分渐变缓冲层降低III‑V半导体之间晶格失配,减少位错引进的缺陷。同时该器件结构不仅降低MOS界面态密度,并且通过对外延材料采用高In组分In0.7Ga0.3As/In0.6Ga0.4As/In0.5Ga0.5As复合沟道设计以及势垒层和缓冲层平面处的双掺杂设计充分的提高了2‑DEG的浓度与电子迁移率,降低了沟道的方块电阻。本发明具有二维电子气浓度高、沟道电子迁移率大、器件特征频率和振荡频率高和制造工艺简单易于实现等特点。

Description

一种III-V族半导体MOSHEMT器件及其制备方法
技术领域
本发明涉及半导体器件技术领域,具体涉及一种III-V族半导体MOSHEMT器件及其制备方法。
背景技术
目前半导体工业的主流是硅技术,随着半导体技术最小尺寸发展到纳米尺度,硅集成电路技术日益逼近其理论和技术的双重极限。而III-V族半导体材料相比硅材料具有更高的电子迁移率(6-60倍)和在低电场和强场下具有更加优异的电子输运性能等特性,因此,III-V族半导体材料将是新一代超高频低功耗集成电子系统的必然选择。
然而,传统的GaAs HEMT的沟道二维电子气浓度和电子迁移率,受材料结构的影响无法做到使得导电沟道电子迁移率与二维电子气浓度均很大,限制了GaAs HEMT器件在微波通信中的发展。需要在III-V族半导体上采用新的器件结构,以充分发挥III-V族半导体材料的特性,增强沟道中二维电子气浓度与电子迁移率。由于InP衬底的制造成本较高,材质较脆,不利于的推广,所以利用在GaAs衬底采用新的器件结构,使得GaAs HEMT器件具有很强的实用性与利用价值。
发明内容
本发明所要解决的技术问题是现有HEM器件导电沟道电子迁移率与二维电子气浓度无法同时做到更大的问题,提供一种III-V族半导体MOSHEMT器件及其制备方法。
为解决上述问题,本发明是通过以下技术方案实现的:
一种III-V族半导体MOSHEMT器件的制备方法,包括如下步骤:
步骤S1:在单晶衬底上外延形成变In组分InxAl1-xAs缓冲层;
步骤S2:在变In组分InxAl1-xAs缓冲层上外延形成In0.52Al0.48As缓冲层;
步骤S3:在In0.52Al0.48As缓冲层上外延生长第一层In0.5Ga0.5As沟道层;
步骤S4:在第一层In0.7Ga0.3As沟道层外延生长第二层In0.6Ga0.4As沟道层;
步骤S5:在第二层In0.6Ga0.4As沟道层外延生长第三层In0.5Ga0.5As沟道层;
步骤S6:在第三层In0.5Ga0.5As沟道层外延形成In0.52Al0.48As势垒层;
步骤S7:在In0.52Al0.48As势垒层上外延形成重掺杂的窄带隙欧姆接触层;
步骤S8:在步骤S7所得的外延结构的窄带隙欧姆接触层中刻出有源区,该有源区刻至In0.52Al0.48As势垒层;
步骤S9:在窄带隙欧姆接触层的上方形成源漏金属;
步骤S10:对源漏金属进行腐蚀,形成栅槽;
步骤S11:在有源区和栅槽中生长栅介质;
步骤S12:在栅介质上形成T形的栅金属。
在步骤S5之前还进一步包括,在In0.52Al0.48As缓冲层中形成第一平面掺杂层的步骤。
在步骤S6之前还进一步包括,在第三层In0.5Ga0.5As沟道层中形成第二平面掺杂层的步骤。
步骤S8中,采用光刻或刻蚀在窄带隙欧姆接触层中刻出有源区。
步骤S12中,栅金属采用两次电子束曝光一次显影形成。
步骤S1中,单晶衬底为GaAs族的单晶衬底。
一种III-V族半导体MOSHEMT器件,包括单晶衬底、变In组分InxAl1-xAs缓冲层、In0.52Al0.48As缓冲层、第一层In0.7Ga0.3As沟道层、第二层In0.6Ga0.4As沟道层、第三层In0.5Ga0.5As沟道层、In0.52Al0.48As势垒层、窄带隙欧姆接触层、源漏金属、栅介质和栅金属;单晶衬底、变In组分InxAl1-xAs缓冲层、In0.52Al0.48As缓冲层、第一层In0.7Ga0.3As沟道层、第二层In0.6Ga0.4As沟道层、第三层In0.5Ga0.5As沟道层、In0.52Al0.48As势垒层和窄带隙欧姆接触层自下而上依次叠放;窄带隙欧姆接触层的中间部分开设有有源区;源漏金属设置在窄带隙欧姆接触层,源漏金属的中间部分开设有栅槽;栅介质填充在有源区和栅槽中;栅金属呈T形,其下部嵌入栅介质中。
上述方案中,In0.52Al0.48As缓冲层的上部设有第一平面掺杂层。
上述方案中,第三层In0.5Ga0.5As沟道层的上部设有第二平面掺杂层。
上述方案中,单晶衬底为GaAs族的单晶衬底。
与现有技术相比,本发明的组分渐变缓冲层降低III-V半导体之间晶格失配,减少位错引进的缺陷。同时该器件结构不仅降低MOS界面态密度,并且通过对外延材料采用高In组分In0.7Ga0.3As/In0.6Ga0.4As/In0.5Ga0.5As复合沟道设计以及势垒层和缓冲层平面处的双掺杂设计充分的提高了2-DEG的浓度与电子迁移率,降低了沟道的方块电阻。本发明具有二维电子气浓度高、沟道电子迁移率大、器件特征频率和振荡频率高和制造工艺简单易于实现等特点。
附图说明
图1是一种III-V族半导体MOSHEMT器件的结构示意图。
图2是一种III-V族半导体MOSHEMT器件的制备流程图。
具体实施方式
一种III-V族半导体MOSHEMT器件,如图1所示,包括单晶衬底101、变In组分InxAl1-xAs缓冲层102、In0.52Al0.48As缓冲层103、第一平面掺杂层104、第一层In0.7Ga0.3As沟道层105、第二层In0.6Ga0.4As沟道层106、第三层In0.5Ga0.5As沟道层107、第二平面掺杂层108、In0.52Al0.48As势垒层109、窄带隙欧姆接触层110、源漏金属111、栅介质112和栅金属113。
单晶衬底101、变In组分InxAl1-xAs缓冲层102、In0.52Al0.48As缓冲层103、第一层In0.7Ga0.3As沟道层105、第二层In0.5Ga0.5As沟道层106、第三层In0.6Ga0.4As沟道层107、In0.52Al0.48As势垒层109和窄带隙欧姆接触层110自下而上依次叠放。单晶衬底101为GaAs族的单晶衬底101。第一平面掺杂层104设置在In0.52Al0.48As缓冲层103的上部。第二平面掺杂层108设置在第三层In0.4Ga0.6As沟道层107的上部。
窄带隙欧姆接触层110的中间部分开设有有源区。源漏金属111设置在窄带隙欧姆接触层110,源漏金属111的中间部分开设有栅槽。栅介质112填充在有源区和栅槽中。栅金属113呈T形,其下部嵌入栅介质112中。
一种III-V族半导体MOSHEMT器件的制备方法,如图2所示,其具体包括如下步骤:
S1:在GaAs族衬底片上外延形成变In组分InxAl1-xAs缓冲层102
S2:在变In组分InxAl1-xAs缓冲层102上外延形成In0.52Al0.48As缓冲层103;
S3:在In0.52Al0.48As缓冲层上外延生长第一层In0.5Ga0.5As沟道层105;
S4:在第一层In0.7Ga0.3As沟道层105外延生长第二层In0.6Ga0.4As沟道层106;
S5:在第二层In0.6Ga0.4As沟道层106外延生长第三层In0.5Ga0.5As沟道层107;
S6:在第三层In0.5Ga0.5As沟道层107外延形成In0.52Al0.48As势垒层109;
S7:在In0.52Al0.48As势垒层109上外延形成重掺杂的窄带隙欧姆接触层110;
S8:在以上外延结构上的窄带隙欧姆接触层110处利用光刻和刻蚀工艺形成有源区;有源区得到的方法可以是干法刻蚀,也可以使湿法刻蚀;
S9:在窄带隙欧姆接触层110上形成源漏金属111;源漏金属111采用Ti/Pt/Au金属系统;
S10:在源漏金属111中采用湿法腐蚀方法对栅槽进行腐蚀;
S11:在腐蚀完栅槽后,采用ALD沉积系统在栅槽中生长高K栅介质112;
S12:在高K栅介质112上形成T形的栅金属113。栅金属113采用PMMA/MMA/PMMA胶两次电子束曝光一次显影。

Claims (10)

1.一种III-V族半导体MOSHEMT器件的制备方法,其特征是,包括如下步骤:
步骤S1:在单晶衬底(101)上外延形成变In组分InxAl1-xAs缓冲层(102);
步骤S2:在变In组分InxAl1-xAs缓冲层(102)上外延形成In0.52Al0.48As缓冲层(103);
步骤S3:在In0.52Al0.48As缓冲层(103)上外延生长第一层In0.5Ga0.5As沟道层(105);
步骤S4:在第一层In0.7Ga0.3As沟道层(105)外延生长第二层In0.6Ga0.4As沟道层(106);
步骤S5:在第二层In0.6Ga0.4As沟道层(106)外延生长第三层In0.5Ga0.5As沟道层(107);
步骤S6:在第三层In0.5Ga0.5As沟道层(107)外延形成In0.52Al0.48As势垒层(109);
步骤S7:在In0.52Al0.48As势垒层(109)上外延形成重掺杂的窄带隙欧姆接触层(110);
步骤S8:在步骤S7所得的外延结构的窄带隙欧姆接触层(110)中刻出有源区,该有源区刻至In0.52Al0.48As势垒层(109);
步骤S9:在窄带隙欧姆接触层(110)的上方形成源漏金属(111);
步骤S10:对源漏金属(111)进行腐蚀,形成栅槽;
步骤S11:在有源区和栅槽中生长栅介质(112);
步骤S12:在栅介质(112)上形成T形的栅金属(113)。
2.根据权利要求1所述一种III-V族半导体MOSHEMT器件的制备方法,其特征是:在步骤S5之前还进一步包括,在In0.52Al0.48As缓冲层(103)中形成第一平面掺杂层(104)的步骤。
3.根据权利要求1所述一种III-V族半导体MOSHEMT器件的制备方法,其特征是:在步骤S6之前还进一步包括,在第三层In0.5Ga0.5As沟道层(107)中形成第二平面掺杂层(108)的步骤。
4.根据权利要求1所述一种III-V族半导体MOSHEMT器件的制备方法,其特征是:步骤S8中,采用光刻或刻蚀在窄带隙欧姆接触层(110)中刻出有源区。
5.根据权利要求1所述一种III-V族半导体MOSHEMT器件的制备方法,其特征是:步骤S12中,栅金属(113)采用两次电子束曝光一次显影形成。
6.根据权利要求1所述一种III-V族半导体MOSHEMT器件的制备方法,其特征是:步骤S1中,单晶衬底(101)为GaAs族的单晶衬底(101)。
7.一种III-V族半导体MOSHEMT器件,其特征是,包括单晶衬底(101)、变In组分InxAl1- xAs缓冲层(102)、In0.52Al0.48As缓冲层(103)、第一层In0.7Ga0.3As沟道层(105)、第二层In0.6Ga0.4As沟道层(106)、第三层In0.5Ga0.5As沟道层(107)、In0.52Al0.48As势垒层(109)、窄带隙欧姆接触层(110)、源漏金属(111)、栅介质(112)和栅金属(113);
单晶衬底(101)、变In组分InxAl1-xAs缓冲层(102)、In0.52Al0.48As缓冲层(103)、第一层In0.7Ga0.3As沟道层(105)、第二层In0.6Ga0.4As沟道层(106)、第三层In0.5Ga0.5As沟道层(107)、In0.52Al0.48As势垒层(109)和窄带隙欧姆接触层(110)自下而上依次叠放;
窄带隙欧姆接触层(110)的中间部分开设有有源区;源漏金属(111)设置在窄带隙欧姆接触层(110),源漏金属(111)的中间部分开设有栅槽;栅介质(112)填充在有源区和栅槽中;栅金属(113)呈T形,其下部嵌入栅介质(112)中。
8.根据权利要求7所述一种III-V族半导体MOSHEMT器件,其特征是:In0.52Al0.48As缓冲层(103)的上部设有第一平面掺杂层(104)。
9.根据权利要求7所述一种III-V族半导体MOSHEMT器件,其特征是:第三层In0.5Ga0.5As沟道层(107)的上部设有第二平面掺杂层(108)。
10.根据权利要求7所示的一种III-V族半导体MOSHEMT器件,其特征是,单晶衬底(101)为GaAs族的单晶衬底(101)。
CN201710026316.1A 2017-01-13 2017-01-13 一种iii-v族半导体moshemt器件及其制备方法 Active CN106783613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710026316.1A CN106783613B (zh) 2017-01-13 2017-01-13 一种iii-v族半导体moshemt器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710026316.1A CN106783613B (zh) 2017-01-13 2017-01-13 一种iii-v族半导体moshemt器件及其制备方法

Publications (2)

Publication Number Publication Date
CN106783613A true CN106783613A (zh) 2017-05-31
CN106783613B CN106783613B (zh) 2022-12-13

Family

ID=58946522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710026316.1A Active CN106783613B (zh) 2017-01-13 2017-01-13 一种iii-v族半导体moshemt器件及其制备方法

Country Status (1)

Country Link
CN (1) CN106783613B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736132A (zh) * 2021-01-06 2021-04-30 湖北文理学院 InP PHEMT外延结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226372A (ja) * 1992-02-14 1993-09-03 Hitachi Ltd 電界効果トランジスタ及びそれを用いた低雑音増幅回路
CN101192517A (zh) * 2006-12-01 2008-06-04 中国科学院半导体研究所 砷化镓衬底上的多层变形缓冲层的制作方法
CN102931231A (zh) * 2012-11-23 2013-02-13 中国科学院微电子研究所 一种高迁移率iii-v族半导体mos场效应晶体管
JP2014033080A (ja) * 2012-08-03 2014-02-20 Nippon Telegr & Teleph Corp <Ntt> 電界効果型トランジスタ構造の製造方法及び電界効果型トランジスタ構造
CN206422040U (zh) * 2017-01-13 2017-08-18 桂林电子科技大学 一种iii‑v族半导体moshemt器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226372A (ja) * 1992-02-14 1993-09-03 Hitachi Ltd 電界効果トランジスタ及びそれを用いた低雑音増幅回路
CN101192517A (zh) * 2006-12-01 2008-06-04 中国科学院半导体研究所 砷化镓衬底上的多层变形缓冲层的制作方法
JP2014033080A (ja) * 2012-08-03 2014-02-20 Nippon Telegr & Teleph Corp <Ntt> 電界効果型トランジスタ構造の製造方法及び電界効果型トランジスタ構造
CN102931231A (zh) * 2012-11-23 2013-02-13 中国科学院微电子研究所 一种高迁移率iii-v族半导体mos场效应晶体管
CN206422040U (zh) * 2017-01-13 2017-08-18 桂林电子科技大学 一种iii‑v族半导体moshemt器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
仇志军等: "变In组分沟道的MM-HEMT材料电子输运特性研究", 《物理学报》 *
常虎东等: "高迁移率In_(0.6)Ga_(0.4)As沟道MOSHEMT与MOSFET器件特性的研究", 《物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736132A (zh) * 2021-01-06 2021-04-30 湖北文理学院 InP PHEMT外延结构及其制备方法

Also Published As

Publication number Publication date
CN106783613B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
KR101045573B1 (ko) Ⅲ족 질화물 인헨스먼트 모드 소자
US7615774B2 (en) Aluminum free group III-nitride based high electron mobility transistors
CN102054862B (zh) 锑化物高电子迁移率晶体管及其制造方法
US20050133816A1 (en) III-nitride quantum-well field effect transistors
JP2001230407A (ja) 半導体装置
JP2005086171A (ja) 半導体装置及びその製造方法
JP2010206020A (ja) 半導体装置
CN104347696A (zh) 半导体装置以及其制造方法
JP4474292B2 (ja) 半導体装置
US20130200387A1 (en) Nitride based heterojunction semiconductor device and manufacturing method thereof
KR101159952B1 (ko) 3차원 화합물 반도체 소자 및 그 제조방법
CN105932041A (zh) N面GaN基鳍式高电子迁移率晶体管及制作方法
KR20160132108A (ko) 이질접합 전계효과 트랜지스터
CN107799590A (zh) 一种大栅宽的GaN基微波功率器件及其制造方法
CN113035783B (zh) 石墨烯器件与GaN器件异质集成结构及制备方法
JP5451750B2 (ja) 半導体デバイス
US11049952B2 (en) Integrated enhancement/depletion mode HEMT
CN101515568A (zh) InP衬底上集成增强型和耗尽型HEMT的制作方法
CN206422040U (zh) 一种iii‑v族半导体moshemt器件
CN106783613A (zh) 一种iii‑v族半导体moshemt器件及其制备方法
CN100365825C (zh) 双极晶体管以及包含该双极晶体管的电子装置
CN205303470U (zh) 一种增强型GaN器件
JP5087235B2 (ja) 窒化物半導体装置の製造方法
JP2008198675A (ja) 積層型半導体集積装置
CN106711211A (zh) InP基MOSHEMT结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170531

Assignee: GUILIN G-LINK TECHNOLOGY Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2023980046628

Denomination of invention: A III-V semiconductor MOSHEMT device and its preparation method

Granted publication date: 20221213

License type: Common License

Record date: 20231108