CN105932041A - N面GaN基鳍式高电子迁移率晶体管及制作方法 - Google Patents

N面GaN基鳍式高电子迁移率晶体管及制作方法 Download PDF

Info

Publication number
CN105932041A
CN105932041A CN201610297803.7A CN201610297803A CN105932041A CN 105932041 A CN105932041 A CN 105932041A CN 201610297803 A CN201610297803 A CN 201610297803A CN 105932041 A CN105932041 A CN 105932041A
Authority
CN
China
Prior art keywords
gan
layer
face
algan
hemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610297803.7A
Other languages
English (en)
Other versions
CN105932041B (zh
Inventor
张金风
黄旭
安阳
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610297803.7A priority Critical patent/CN105932041B/zh
Publication of CN105932041A publication Critical patent/CN105932041A/zh
Application granted granted Critical
Publication of CN105932041B publication Critical patent/CN105932041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种N面GaN基鳍式高电子迁移率晶体管。主要解决现有小尺寸高电子迁移率晶体管栅控能力差及源、漏电阻大的问题。其自下而上包括衬底、GaN缓冲层、AlGaN势垒层、GaN沟道层、栅介质层、钝化层和源、漏、栅电极。其中缓冲层和沟道层采用N面GaN材料;AlGaN势垒层包括两层AlGaN,并且第一层AlGaN材料的Al组分逐渐变化;GaN沟道层和AlGaN势垒层组成GaN/AlGaN异质结;源、漏电极分别位于势垒层和沟道层的左、右两端;栅电极覆盖在鳍型GaN/AlGaN异质结的两侧和上方。本发明器件具有源、漏电阻小、栅泄漏电流小和栅控能力好的优点,可用作小尺寸高速低功耗器件。

Description

N面GaN基鳍式高电子迁移率晶体管及制作方法
技术领域
本发明属于微电子器件技术领域,具体的说是一种N面GaN基鳍式高电子迁移率晶体管Fin-HEMT高速器件结构及制作方法,可用于小尺寸的高速低功耗集成电路。
背景技术
GaN材料作为第三代半导体材料,由于禁带宽度大、二维电子气2DEG浓度高、电子饱和速度高等优点,被认为是制作微波功率器件和高速器件的优良材料。特别是AlGaN/GaN异质结高电子迁移率晶体管HEMT,在军事与商业方面有广泛的应用价值。
随着晶体管尺寸的缩小,栅长越来越短,传统高电子迁移率晶体管HEMT的短沟道效应越来越明显。用鳍式场效应晶体管FinFET结构制作的AlGaN/GaN高电子迁移率晶体管HEMT器件,采用三维立体结构,使栅极将沟道从三个方向包裹起来,提高了栅控能力,改善了短沟道效应。2014年,南洋理工大学的S.Arulkumaran等人首次在硅衬底上制备出了InAlN/GaN Fin-HEMT,这种结构有更低的漏致势垒降低,更高的开关电流比,参见In0.17Al0.83N/AlN/GaN Triple T-shape Fin-HEMTs with gm=646mS/mm,ION=1.03A/mm,IOFF=1.13μA/mm,SS=82mV/dec and DIBL=28mV/V at VD=0.5V,IEEE,International Electron Device Meeting(IEDM),2014:25.6.1-25.6.4。该器件采用的是Ga面GaN基结构,相比于N面GaN基器件,Ga面GaN基器件有较高的欧姆接触电阻,较差的二维电子气限域性,对短沟道效应的抑制能力也较弱。
发明内容
本发明的目的在于针对上述高电子迁移率晶体管HEMT的不足,提出一种N面GaN基鳍式高电子迁移率晶体管Fin-HEMT高速器件及制作方法,以抑制短沟道效应,减小欧姆接触电阻,提高跨导并灵活缩小栅极与沟道的距离。
为实现上述目的,本发明的技术思路如下:采用N面GaN缓冲层,使用AlGaN势垒层和N面GaN沟道层形成GaN/AlGaN异质结,这种N面GaN基结构可以减小欧姆接触电阻,有很好的二维电子气限域性,可以灵活缩小栅与沟道的距离。源、漏电极制作在鳍型GaN/AlGaN异质结两端,直接与GaN/AlGaN异质结生成的二维电子气2DEG沟道接触,使源、漏电阻变小,器件功耗降低。将栅电极包裹在GaN/AlGaN异质结的两侧与上方,形成鳍型Fin三维栅结构,这样可以很好的抑制短沟道效应,加强栅控能力。
依据上述技术思路,本发明的N面GaN基鳍式高电子迁移率晶体管,自下而上包括衬底1、GaN缓冲层2、AlGaN势垒层3、GaN沟道层4、栅介质层5、钝化层6和栅、源、漏电极,GaN沟道层和AlGaN势垒层形成GaN/AlGaN异质结,GaN/AlGaN异质结生成二维电子气,其特征在于:
GaN缓冲层和沟道层采用N面GaN材料;
源、漏电极设在GaN/AlGaN异质结的两端,以实现与二维电子气的直接接触,减小源、漏电阻。
AlGaN势垒层包括两层AlGaN,从下到上的第一层是厚度为20nm,Al组分从5%渐变到30%的AlGaN,第二层是厚度为5~10nm,Al组分为30%的AlGaN。
依据上述技术思路,本发明制作N面GaN基鳍式高电子迁移率晶体管的方法,包括如下步骤:
1)在C面SiC、a面蓝宝石或N面GaN单晶衬底上,利用分子束外延MBE或金属有机化合物化学气相淀积MOCVD生长1~3μm的N面GaN缓冲层;
2)在GaN缓冲层上先生长20nm厚的AlGaN,其Al组分从5%渐变到30%;再生长厚度为5~10nm的AlGaN,其Al组分为30%;
3)在AlGaN势垒层上生长厚度为20~30nm的N面GaN沟道层;
4)通过刻蚀GaN沟道层、AlGaN势垒层和GaN缓冲层的边缘部分,形成鳍型GaN/AlGaN异质结;
5)在GaN沟道层和AlGaN势垒层两端制作源、漏电极;
6)利用原子层淀积ALD或等离子体增强化学气相淀积PECVD技术在AlGaN势垒层和GaN沟道层表面生长SiN作为栅介质层;
7)在栅介质层上光刻栅形状,并用电子束蒸发制备栅电极;
8)在SiN和电极表面利用等离子体增强化学气相淀积PECVD淀积钝化层,刻蚀掉电极键合点上多余的钝化层,并进行金属互连蒸发,完成器件的制备。
本发明具有如下优点:
1.本发明器件由于采用N面GaN材料,所以有很好的二维电子气限域性,而且因为势垒层在沟道层下方,所以可以灵活缩小栅与沟道的距离。
2.本发明器件由于采用鳍型Fin三维栅结构,可以很好的抑制短沟道效应,加强栅控能力,提高开关电流比。
3.本发明器件由于源、漏电极与二维电子气沟道直接接触,源、漏电阻很小,可以用做低功耗器件。
4.本发明器件由于势垒层采用两层AlGaN材料,并且第一层AlGaN材料的Al组分逐渐变化,所以可以减小电流崩塌。
附图说明
图1是本发明器件的结构示意图;
图2是图1中水平方向a的剖视图;
图3是图1中垂直方向b的剖视图;
图4是本发明器件的制作工艺流程示意图。
具体实施方式
以下结合附图对本发明作进一步详细描述。
参照图1、图2和图3,本发明器件包括衬底1、GaN缓冲层2、AlGaN势垒层3、GaN沟道层4、栅介质层5、SiN钝化层6和栅、源、漏电极。其中最下层是SiC或GaN或蓝宝石衬底1;衬底1上为1~3μm的N面GaN缓冲层2;GaN缓冲层2上依次为厚度为20nm,Al组分从5%渐变到30%的AlGaN和厚度为5~10nm,Al组分为30%的AlGaN组成AlGaN势垒层3;势垒层3上是厚度为20~30nm的N面GaN沟道层4;AlGaN势垒层3和GaN沟道层4的宽度均为200~500nm;GaN沟道层4和AlGaN势垒层3组成GaN/AlGaN异质结;沟道层4的周围和势垒层3的两侧是栅介质层5,该栅介质层5采用SiN或Al2O3,其厚度是3~5nm;栅电极位于栅介质层5的两侧和上方;源、漏电极分别位于GaN/AlGaN异质结的两端,即源电极在势垒层3和沟道层4的左端,漏电极在势垒层3和沟道层4的右端;钝化层6覆盖在源、漏电极和栅介质层5的表面,该钝化层6采用厚度为30~100nm的SiN。
参照图4,本发明给出制备N面GaN基鳍式高电子迁移率晶体管的如下三种实施例。
实施例1:制作衬底为蓝宝石,GaN缓冲层厚度是1μm,鳍型GaN/AlGaN异质结宽度为200nm的N面GaN基鳍式高电子迁移率晶体管。
步骤一:生长缓冲层。
在图4(a)所示的蓝宝石衬底上利用分子束外延MBE生长一层厚度为1μm的N面GaN缓冲层,其生长的工艺条件是:生长温度为680℃,压强为5×10-3Pa。
步骤二:生长势垒层。
在GaN层上利用分子束外延MBE先生长一层厚度为20nm的AlGaN,Al组分从下到上由5%渐变到30%;再生长一层厚度为10nm,Al组分为30%的AlGaN层,其生长的工艺条件是:生长温度为680℃,压强为5×10-3Pa。
步骤三:生长沟道层。
在AlGaN层上利用分子束外延MBE生长一层厚度为20nm的N面GaN沟道层,GaN沟道层与AlGaN势垒层形成GaN/AlGaN异质结,GaN/AlGaN异质结界面处形成二维电子气,其工艺条件是:生长温度为680℃,压强为5×10-3Pa。
上述步骤一、步骤二和步骤三的生长结果如图4(b)。
步骤四:刻蚀鳍型GaN/AlGaN异质结。
在GaN层上涂光刻胶,利用电子束光刻机进行曝光,得到鳍型Fin图案,再利用Cl2进行刻蚀,形成宽度为200nm的鳍型GaN/AlGaN异质结,结果如图4(c)。
步骤五:制作源、漏电极。
在鳍型GaN/AlGaN异质结上涂胶得到光刻胶掩模,利用电子束光刻机曝光形成源、漏区域,利用Cl2依次刻蚀掉GaN层和AlGaN层,得到源、漏凹槽;在凹槽位置光刻源、漏图形,并进行金属蒸发,选用Ti/Au做源漏电极,其中Ti为25nm,Au为50nm,蒸发完成后进行金属剥离;再利用快速热退火炉在N2氛围中进行退火处理,得到源、漏电极,结果如图4(d)。
步骤六:制作栅介质层。
在GaN沟道层上利用等离子体增强化学气相淀积PECVD生长一层25nm厚的SiN,结果如图4(e)所示,然后涂胶,光刻得到栅图形;用SF6刻蚀掉栅区域20nm厚的SiN形成栅槽,剩余5nm厚的SiN作为栅介质层,制作结果如图4(f)。
步骤七:制作栅极。
在栅槽位置采用电子束光刻机光刻栅形状,然后进行金属蒸发,选用Ti/Au做栅电极,其中Ti为25nm,然后进行金属剥离,最终形成栅金属电极。
步骤八:制作钝化层。
在SiN和源、漏电极表面利用等离子体增强化学气相淀积PECVD淀积厚度为50nm的SiN钝化层;然后在键合点光刻露出互连窗口,使用Cl2刻蚀掉互连窗口处多余的SiN钝化层,并进行金属互连蒸发,完成器件的制备。
上述步骤七和步骤八的制作结果如图4(g)。
实施例2:制作衬底为SiC,GaN缓冲层厚度是2μm,鳍型GaN/AlGaN异质结宽度为400nm的N面GaN基鳍式高电子迁移率晶体管。
步骤1:生长缓冲层。
在SiC衬底上利用分子束外延MBE生长一层厚度为2μm的N面GaN缓冲层,其生长的工艺条件是:
生长温度为680℃,压强为5×10-3Pa。
步骤2:生长势垒层。
在GaN层上利用分子束外延MBE先生长一层厚度为20nm的AlGaN,Al组分从下到上由5%渐变到30%;再生长一层厚度为8nm,Al组分为30%的AlGaN层,其生长的工艺条件是:
生长温度为680℃,压强为5×10-3Pa。
步骤3:生长沟道层。
在AlGaN层上利用分子束外延MBE生长一层厚度为25nm的N面GaN沟道层,形成GaN/AlGaN异质结,GaN沟道层与AlGaN势垒层的界面处形成二维电子气,其生长的工艺条件是:
生长温度为680℃,压强为5×10-3Pa。
步骤4:刻蚀鳍型GaN/AlGaN异质结。
在GaN层上涂光刻胶,利用电子束光刻机进行曝光,得到鳍型Fin图案,再利用Cl2进行刻蚀,形成宽度为400nm的鳍型GaN/AlGaN异质结。
步骤5:制作源、漏电极。
本步骤的实现与实施例1的步骤五相同。
步骤6:制作栅介质层。
在GaN沟道层上利用等离子体增强化学气相淀积PECVD生长一层25nm厚的SiN,然后涂胶,光刻得到栅图形;用SF6刻蚀掉栅区域22nm的SiN形成栅槽,剩余3nm厚的SiN作为栅介质层。
步骤7:制作栅电极。
本步骤的实现与实施例1的步骤七相同。
步骤8:制作钝化层。
本步骤的实现与实施例1的步骤八相同。
实施例3:制作衬底为SiC,GaN缓冲层厚度是2.5μm,鳍型GaN/AlGaN异质结宽度为500nm的N面GaN基鳍式高电子迁移率晶体管。
步骤A:在衬底上生长缓冲层。
利用分子束外延MBE设备在温度为680℃,压强为5×10-3Pa的工艺条件下,在SiC衬底上生长一层厚度为2.5μm的N面GaN缓冲层。
步骤B:在缓冲层上生长势垒层。
利用分子束外延MBE设备在温度为680℃,压强为5×10-3Pa的工艺条件下,在GaN缓冲层上先生长一层厚度为20nm的AlGaN,Al组分从下到上由5%渐变到30%,再生长一层厚度为5nm,Al组分为30%的AlGaN层。
步骤C:在势垒层上生长沟道层。
利用分子束外延MBE设备在温度为680℃,压强为5×10-3Pa的工艺条件下,在AlGaN层上生长一层厚度为22nm的N面GaN沟道层,形成GaN/AlGaN异质结,GaN沟道层与AlGaN势垒层的界面处形成二维电子气。
步骤D:刻蚀鳍型GaN/AlGaN异质结。
在GaN层上涂光刻胶,利用电子束光刻机进行曝光,得到鳍型Fin图案,再利用Cl2进行刻蚀,形成宽度为500nm的鳍型GaN/AlGaN异质结。
步骤E:制作源、漏电极。
本步骤的实现与实施例1的步骤五相同。
步骤F:制作栅介质层。
本步骤的实现与实施例1的步骤六相同。
步骤G:制作栅电极。
本步骤的实现与实施例1的步骤七相同。
步骤H:制作钝化层。
本步骤的实现与实施例1的步骤八相同。

Claims (9)

1.一种N面GaN基鳍式高电子迁移率晶体管,自下而上包括衬底(1)、GaN缓冲层(2)、AlGaN势垒层(3)、GaN沟道层(4)、栅介质层(5)、钝化层(6)和栅、源、漏电极,GaN沟道层和AlGaN势垒层形成GaN/AlGaN异质结,GaN/AlGaN异质结生成二维电子气,其特征在于:
GaN缓冲层和沟道层采用N面GaN材料;
源、漏电极设在GaN/AlGaN异质结的两端,以实现与二维电子气的直接接触,减小源、漏电阻。
AlGaN势垒层包括两层AlGaN,从下到上的第一层是厚度为20nm,Al组分从5%渐变到30%的AlGaN,第二层是厚度为5~10nm,Al组分为30%的AlGaN。
2.根据权利要求1所述的N面GaN基鳍式高电子迁移率晶体管,其中衬底(1)采用a面蓝宝石或C面SiC或N面GaN。
3.根据权利要求1所述的N面GaN基鳍式高电子迁移率晶体管,其中缓冲层(2)采用N面GaN,厚度为1~3μm。
4.根据权利要求1所述的N面GaN基鳍式高电子迁移率晶体管,其中沟道层(4)采用N面GaN,厚度为20~30nm。
5.根据权利要求1所述的N面GaN基鳍式高电子迁移率晶体管,其中栅介质层(5)采用SiN或Al2O3,厚度为3~5nm。
6.根据权利要求1所述的N面GaN基鳍式高电子迁移率晶体管,其中钝化层(6)采用SiN,厚度为30~100nm。
7.根据权利要求1所述的N面GaN基鳍式高电子迁移率晶体管,其中鳍型GaN/AlGaN异质结的宽度是200~500nm。
8.一种N面GaN基鳍式高电子迁移率晶体管的制作方法,包括如下步骤:
1)在C面SiC、a面蓝宝石或N面GaN单晶衬底上,利用分子束外延MBE或金属有机化合物化学气相淀积MOCVD生长1~3μm的N面GaN缓冲层;
2)在GaN缓冲层上先生长20nm厚的AlGaN,其Al组分从5%渐变到30%;再生长厚度为5~10nm的AlGaN,其Al组分为30%;
3)在AlGaN势垒层上生长厚度为20~30nm的N面GaN沟道层;
4)通过刻蚀GaN沟道层、AlGaN势垒层和GaN缓冲层的边缘部分,形成鳍型GaN/AlGaN异质结;
5)在GaN沟道层和AlGaN势垒层两端制作源、漏电极;
6)利用原子层淀积ALD或等离子体增强化学气相淀积PECVD技术在AlGaN势垒层和GaN沟道层表面生长SiN作为栅介质层;
7)在栅介质层上光刻栅形状,并用电子束蒸发制备栅电极;
8)在SiN和电极表面利用等离子体增强化学气相淀积PECVD淀积钝化层,刻蚀掉电极键合点上多余的钝化层,并进行金属互连蒸发,完成器件的制备。
9.根据权利要求8所述的N面GaN基鳍式高电子迁移率晶体管的制作方法,其中步骤4)中的刻蚀采用Cl2进行。
CN201610297803.7A 2016-05-06 2016-05-06 N面GaN基鳍式高电子迁移率晶体管及制作方法 Active CN105932041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610297803.7A CN105932041B (zh) 2016-05-06 2016-05-06 N面GaN基鳍式高电子迁移率晶体管及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610297803.7A CN105932041B (zh) 2016-05-06 2016-05-06 N面GaN基鳍式高电子迁移率晶体管及制作方法

Publications (2)

Publication Number Publication Date
CN105932041A true CN105932041A (zh) 2016-09-07
CN105932041B CN105932041B (zh) 2019-03-26

Family

ID=56835104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610297803.7A Active CN105932041B (zh) 2016-05-06 2016-05-06 N面GaN基鳍式高电子迁移率晶体管及制作方法

Country Status (1)

Country Link
CN (1) CN105932041B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519174A (zh) * 2018-03-27 2018-09-11 中国电子科技集团公司第十三研究所 GaN电桥式绝压压力传感器及制作方法
CN109256375A (zh) * 2017-07-14 2019-01-22 台湾积体电路制造股份有限公司 用于焊盘开口和沟槽的钝化结构
CN109273527A (zh) * 2018-11-21 2019-01-25 芜湖启迪半导体有限公司 一种半导体结构及其形成方法
CN109346522A (zh) * 2018-11-21 2019-02-15 芜湖启迪半导体有限公司 一种半导体结构及其形成方法
CN111223928A (zh) * 2020-04-22 2020-06-02 浙江集迈科微电子有限公司 栅指渐宽式GaN FinFET结构及其制备方法
WO2022016390A1 (zh) * 2020-07-21 2022-01-27 苏州晶湛半导体有限公司 半导体结构
CN114551573A (zh) * 2022-02-24 2022-05-27 电子科技大学 一种氮化镓p沟道器件
CN116741869A (zh) * 2023-05-23 2023-09-12 苏州科技大学 一种提升太赫兹探测器响应度的器件
CN117279480A (zh) * 2023-09-21 2023-12-22 大连理工大学 一种二维电子气侧壁注入型自旋信息器件结构及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102482A1 (en) * 2001-12-03 2003-06-05 Saxler Adam William Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors
CN101916773A (zh) * 2010-07-23 2010-12-15 中国科学院上海技术物理研究所 一种双沟道mos-hemt器件及制作方法
CN103996707A (zh) * 2014-01-20 2014-08-20 西安电子科技大学 加栅场板增强型AlGaN/GaN HEMT器件结构及其制作方法
CN105448962A (zh) * 2015-11-27 2016-03-30 西安电子科技大学 多沟道侧栅结构的AlGaN/GaN高电子迁移率晶体管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102482A1 (en) * 2001-12-03 2003-06-05 Saxler Adam William Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors
CN101916773A (zh) * 2010-07-23 2010-12-15 中国科学院上海技术物理研究所 一种双沟道mos-hemt器件及制作方法
CN103996707A (zh) * 2014-01-20 2014-08-20 西安电子科技大学 加栅场板增强型AlGaN/GaN HEMT器件结构及其制作方法
CN105448962A (zh) * 2015-11-27 2016-03-30 西安电子科技大学 多沟道侧栅结构的AlGaN/GaN高电子迁移率晶体管

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444046B2 (en) 2017-07-14 2022-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Passivation scheme for pad openings and trenches
CN109256375A (zh) * 2017-07-14 2019-01-22 台湾积体电路制造股份有限公司 用于焊盘开口和沟槽的钝化结构
US12002774B2 (en) 2017-07-14 2024-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Passivation scheme for pad openings and trenches
US10804231B2 (en) 2017-07-14 2020-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Passivation scheme for pad openings and trenches
CN109256375B (zh) * 2017-07-14 2020-10-16 台湾积体电路制造股份有限公司 用于焊盘开口和沟槽的钝化结构
CN108519174A (zh) * 2018-03-27 2018-09-11 中国电子科技集团公司第十三研究所 GaN电桥式绝压压力传感器及制作方法
CN108519174B (zh) * 2018-03-27 2020-09-08 中国电子科技集团公司第十三研究所 GaN电桥式绝压压力传感器及制作方法
CN109273527A (zh) * 2018-11-21 2019-01-25 芜湖启迪半导体有限公司 一种半导体结构及其形成方法
CN109346522A (zh) * 2018-11-21 2019-02-15 芜湖启迪半导体有限公司 一种半导体结构及其形成方法
CN109346522B (zh) * 2018-11-21 2024-02-09 芜湖启迪半导体有限公司 一种半导体结构及其形成方法
CN109273527B (zh) * 2018-11-21 2023-11-28 芜湖启迪半导体有限公司 一种半导体结构及其形成方法
CN111223928A (zh) * 2020-04-22 2020-06-02 浙江集迈科微电子有限公司 栅指渐宽式GaN FinFET结构及其制备方法
CN111223928B (zh) * 2020-04-22 2020-08-21 浙江集迈科微电子有限公司 栅指渐宽式GaN FinFET结构及其制备方法
WO2022016390A1 (zh) * 2020-07-21 2022-01-27 苏州晶湛半导体有限公司 半导体结构
CN114551573A (zh) * 2022-02-24 2022-05-27 电子科技大学 一种氮化镓p沟道器件
CN116741869A (zh) * 2023-05-23 2023-09-12 苏州科技大学 一种提升太赫兹探测器响应度的器件
CN117279480A (zh) * 2023-09-21 2023-12-22 大连理工大学 一种二维电子气侧壁注入型自旋信息器件结构及制备方法

Also Published As

Publication number Publication date
CN105932041B (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
CN105932041A (zh) N面GaN基鳍式高电子迁移率晶体管及制作方法
US20190013399A1 (en) High Electron Mobility Transistors
Im et al. Normally Off Single-Nanoribbon $\hbox {Al} _ {2}\hbox {O} _ {3}\hbox {/GaN} $ MISFET
CN105914232B (zh) T栅N面GaN/AlGaN鳍式高电子迁移率晶体管
CN105762078B (zh) GaN基纳米沟道高电子迁移率晶体管及制作方法
JP5383652B2 (ja) 電界効果トランジスタ及びその製造方法
CN108028273B (zh) 半导体装置和制造半导体装置的方法
US10770556B2 (en) Fluorinated graphene passivated AlGaN/GaN-based HEMT device and manufacturing method
US20130140578A1 (en) Circuit structure having islands between source and drain
US9093510B2 (en) Field effect transistor device
JP2013235873A (ja) 半導体装置およびその製造方法
CN105810728B (zh) 增强型鳍式绝缘栅高电子迁移率晶体管
CN105355657A (zh) 多沟道鳍式结构的绝缘栅AlGaN/GaN高电子迁移率晶体管
CN109524460B (zh) 高空穴移动率晶体管
JP4474292B2 (ja) 半導体装置
CN109560118A (zh) T栅N面GaN/AlGaN鳍式高电子迁移率晶体管
CN109285883A (zh) T栅N面GaN/AlGaN鳍式高电子迁移率晶体管
CN108807524B (zh) 半导体器件及其制造方法
CN106684151A (zh) 一种GaN侧墙绝缘栅鳍式高电子迁移率晶体管及其制造方法
CN106601804A (zh) 场效应晶体管及其制备方法
CN106298903A (zh) 二次外延p型ⅲ族氮化物实现增强型hemt的方法及增强型hemt
CN105470294A (zh) 一种垂直型氮化镓功率开关器件及其制备方法
CN112635545A (zh) 具有不对称栅介质层的增强型GaN基MIS-HEMT及其制备方法
CN106531789A (zh) 通过极性控制实现增强型hemt的方法及增强型hemt
KR101172857B1 (ko) 인헨스먼트 노멀리 오프 질화물 반도체 소자 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant