CN106772354A - 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置 - Google Patents

基于并行模糊高斯和粒子滤波的目标跟踪方法及装置 Download PDF

Info

Publication number
CN106772354A
CN106772354A CN201611249493.8A CN201611249493A CN106772354A CN 106772354 A CN106772354 A CN 106772354A CN 201611249493 A CN201611249493 A CN 201611249493A CN 106772354 A CN106772354 A CN 106772354A
Authority
CN
China
Prior art keywords
probability density
observation time
density function
state
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611249493.8A
Other languages
English (en)
Other versions
CN106772354B (zh
Inventor
李良群
谢维信
刘宗香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunshan Ruixiang Xuntong Communication Technology Co Ltd
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201611249493.8A priority Critical patent/CN106772354B/zh
Publication of CN106772354A publication Critical patent/CN106772354A/zh
Application granted granted Critical
Publication of CN106772354B publication Critical patent/CN106772354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种基于并行模糊高斯和粒子滤波的目标跟踪方法,包括:将传感器系统划分为多个子系统;分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数;利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。本发明还公开了一种目标跟踪装置。通过上述方式,本发明能保证跟踪结果的准确性和实时性。

Description

基于并行模糊高斯和粒子滤波的目标跟踪方法及装置
技术领域
本发明涉及目标跟踪领域,特别是涉及一种基于并行模糊高斯和粒子滤波的目标跟踪方法及装置。
背景技术
目前,随着大范围监视任务需求的加大,利用大量传感器组网的大规模传感器系统及其相关关键技术的研究日益受到各国的重视。实践证明,大规模传感器组网不仅可以有效扩大传感器系统的观测距离,实现大范围的有效覆盖,且受气象条件影响小,能够有效对复杂环境下的目标进行可靠监视。然而,大规模传感器系统覆盖范围广,监视目标多,数据处理量大,对系统的通信需求和数据处理能力要求很高。为解决这一难题,研究者提出了许多有效的非线滤波方法,如分布式扩展卡尔曼滤波、分布式无损卡尔曼滤波,这些方法操作简单、实施比较容易,但对复杂的非线性非高斯环境时,滤波跟踪性能下降,并不能满足大规模被动传感器系统实际应用的要求。
粒子滤波由于适用于任何能用状态空间模型表示的非线性非高斯系统,且对系统状态维数不敏感,成为当前非线性滤波研究的热点。但是,粒子滤波算法也存在着自身的一些缺陷,比如粒子的退化、计算量巨大、实时性差等,影响和制约了它的发展,特别是应用到大规模传感器系统,处理非周期、稀疏性大规模观测数据时,性能明显下降。
发明内容
本发明主要解决的技术问题是提供一种基于并行模糊高斯和粒子滤波的目标跟踪方法及装置,能够解决现有技术中的粒子滤波方法处理非周期、稀疏性大规模观测数据时性能下降的问题。
为了解决上述技术问题,本发明采用的一个技术方案是:提供一种基于并行模糊高斯和粒子滤波的目标跟踪方法,包括:将传感器系统划分为多个子系统;分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数;利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
其中,为子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波包括:对于子系统,利用高斯和构建上一目标观测时刻的目标状态后验概率密度函数、观测噪声概率密度函数以及过程噪声概率密度函数;根据高斯-厄米特积分和蒙特卡罗原理,利用上一目标观测时刻的目标状态后验概率密度函数、过程噪声概率密度函数和边界状态获取当前目标观测时刻的目标状态预测概率密度函数;利用当前目标观测时刻的目标状态预测概率密度函数、观测结果和观测噪声概率密度函数获取多个高斯项及其权值;利用权值对高斯项进行重采样,获取其中权值最大的G个高斯项,其中G为正整数;利用权值最大的G个高斯项获取子系统当前目标观测时刻的目标状态后验概率密度函数。
其中,对于第s个子系统,利用高斯和构建的上一目标观测时刻n的目标状态后验概率密度函数为G个第一高斯分布函数的加权和,具体定义为:
其中s=1,2,…,S,S为传感器系统中子系统的总数,为第g个第一高斯分布函数的均值,为第g个第一高斯分布函数的协方差,为第g个第一高斯分布函数的权值,g=1,2,…,G,均值和协方差是利用当前目标观测时刻n+1之前第s个子系统对目标状态的观测结果而获得的;
过程噪声概率密度函数p(un)为K个第二高斯分布函数的加权和,具体定义为:
其中αk为第k个第二高斯分布函数的权值,且为非负常数同时满足 分别表示第k个第二高斯分布函数的均值和协方差,k=1,2,…,K;
观测噪声概率密度函数p(vn)为L个第三高斯分布函数的加权和,具体定义为:
其中βj为第j个第三高斯分布函数的权值,且为非负常数同时满足 分别表示第j个第三高斯分布函数的均值和协方差,j=1,2,…,L。
其中,根据高斯-厄米特积分和蒙特卡罗原理,利用上一目标观测时刻的目标状态后验概率密度函数、过程噪声概率密度函数和边界状态获取当前目标观测时刻的目标状态预测概率密度函数包括:利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数获取第一积分点粒子集,利用边界状态获取边界状态粒子集,第一积分点粒子集和边界状态粒子集组成第一近似粒子集;利用第一近似粒子集和子系统的状态方程获取预测粒子集;利用预测粒子集获取当前目标观测时刻n+1的目标状态预测概率密度函数。
其中,利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数获取第一积分点粒子集包括:利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数p(un)获取上一目标观测时刻n的目标状态后验概率密度函数的每个第一高斯分布函数对应的第一积分点
其中g’=g+(k-1)K,g为第一高斯分布函数的序号,ξl为高斯-厄米特积分点,ξl对应的权系数为l为高斯-厄米特积分点的序号,为过程噪声概率密度函数p(un)的第k个第二高斯分布函数的均值,g=1,2,…,G,k=1,2,…,K,l=1,2,…,m,m为高斯-厄米特积分点的总数;
根据高斯-厄米特积分原理,以第一积分点为均值,以第g个第一高斯分布函数的协方差为协方差,构建上一目标观测时刻n的第一积分点概率密度函数
利用第一积分点概率密度函数获取对应的第一积分点粒子集其中i=1,2,…,N,N为第一积分点粒子集中粒子的总数,第一积分点粒子集
利用边界状态获取边界状态粒子集包括:
第s个子系统在上一目标观测时刻n收到m1个子系统的边界状态边界状态概率密度函数为其中边界状态概率密度函数的均值和协方差分别为:
其中表示第s个子系统在上一目标观测时刻n收到的第i1个子系统的权值,其取值范围为[0,1]且满足
利用边界状态概率密度函数获取边界状态粒子集其中
利用第一近似粒子集和子系统的状态方程获取预测粒子集包括:
预测粒子集为其中为子系统的状态转移概率密度函数,可由子系统的状态方程得到,子系统的状态方程为:
其中为第s个子系统在上一目标观测时刻n收到的所有邻近子系统的状态矢量;
利用预测粒子集获取当前目标观测时刻n+1的目标状态预测概率密度函数包括:
利用预测粒子集获取第一积分点对应的当前目标观测时刻n+1的均值和协方差
利用均值和协方差获取当前目标观测时刻n+1的目标状态的共G’个第四高斯分布函数,其中G’=K*G,第g’个第四高斯分布函数的均值和协方差为:
计算第g’个第四高斯分布函数的权值:
将G’个第四高斯分布函数的加权和作为当前目标观测时刻n+1的目标状态预测概率密度函数
其中,利用当前目标观测时刻的目标状态预测概率密度函数、观测结果和观测噪声概率密度函数获取多个高斯项及其权值包括:利用当前目标观测时刻n+1的目标状态预测概率密度函数获取当前目标观测时刻n+1的目标状态预测概率密度函数的每个第四高斯分布函数对应的第二积分点
其中g’=1,2,…,G’,j=1,2,…,L;
为第二积分点构建其重要性函数
利用重要性函数获取第二积分点的第二近似粒子集其中
利用最大熵模糊聚类原理计算第二近似粒子集中粒子的权值
其中α为拉格朗日乘子,为当前目标观测时刻n+1的观测结果zn+1与第二近似粒子集中的粒子之间的模糊隶属度,表示第二近似粒子集中的粒子与当前目标观测时刻n+1的观测结果zn+1之间的欧氏距离;
利用第二近似粒子集中的粒子权值计算其对应的第二积分点的权值
其中m2为加权指数,l1=1,2,…m;
利用第二近似粒子集及其中粒子的权值获取第二积分点对应的均值和协方差
利用第二积分点的权值均值和协方差获取高斯项其中高斯项的均值和协方差分别为:
利用第二近似粒子集及其中粒子的权值和观测噪声概率密度函数p(vn)获取高斯项的权值
其中
利用权值对高斯项进行重采样,获取其中权值最大的G个高斯项包括:
将计算得到的G*K*L个高斯项按照权值的降序排列并获取前G个高斯项及权值
判断权值是否小于预设阈值
若小于,则修改高斯项的均值为协方差为其中q为随机提取,且q∈{1,...,G},提取到q的概率正比于标准化权值若不小于,则保留高斯项
为每个高斯项执行前一步骤以获取权值最大的G个高斯项;
利用权值最大的G个高斯项获取子系统当前目标观测时刻n+1的目标状态后验概率密度函数包括:当前目标观测时刻n+1的目标状态后验概率密度函数为均值为协方差为的高斯分布,其中均值和协方差分别为:
其中,利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数包括:传感器系统当前目标观测时刻n+1的目标状态后验概率密度函数p(xn+1|z0:n+1)为均值为协方差为Pn+1|n+1的高斯分布,其中均值和协方差Pn+1|n+1分别为:
其中
其中,利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值包括:根据最大后验准则或最小均方误差准则,利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
为了解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于并行模糊高斯和粒子滤波的目标跟踪装置,包括:划分模块,用于将传感器系统划分为多个子系统;滤波模块,用于分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;综合模块,用于利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数;估计模块,用于利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
为了解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于并行模糊高斯和粒子滤波的目标跟踪装置,包括:处理器和传感器系统,处理器耦接传感器系统;处理器用于将传感器系统划分为多个子系统;分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数;利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
本发明的有益效果是:通过将传感器系统被划分为多个子系统,使得状态空间的维数减少了,减少滤波所需要的粒子数量;子系统在滤波过程中利用了其边界状态,保证跟踪结果的准确性;不同的子系统在滤波过程中使用的状态粒子不共享,可以选择并行处理,保证目标跟踪实时性。
附图说明
图1是本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第一实施例的流程图;
图2是本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第一实施例中不同子系统并行进行粒子滤波的示意图;
图3是本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第二实施例的流程图;
图4是本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第二实施例中获取当前目标观测时刻的目标预测概率密度函数的流程图;
图5是本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第二实施例进行实验验证得到的跟踪效果图;
图6是本发明基于并行模糊高斯和粒子滤波的目标跟踪装置第一实施例的结构示意图;
图7是本发明基于并行模糊高斯和粒子滤波的目标跟踪装置第二实施例的结构示意图。
具体实施方式
如图1所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第一实施例包括:
S1:将传感器系统划分为多个子系统。
将传感器系统划分为S个子系统,相邻的子系统之间可以不重叠,也可以部分重叠。在当前目标观测时刻n+1,整个传感器系统的目标状态为其中为第s个子系统的目标状态,整个传感器系统对目标状态的观测结果为其中为第s个子系统的观测结果,s=1,2,…,S。
第s个子系统的状态方程和观测方程为:
其中,n为上一目标观测时刻,为状态转移函数,为上一目标观测时刻n第s个子系统的目标状态,为第s个子系统在上一目标观测时刻n收到的所有邻近子系统的状态矢量,为当前目标观测时刻n+1的过程噪声,h(·)为观测函数,为当前目标观测时刻n+1的观测噪声。每个子系统的观测结果只依靠本子系统的目标状态,各子系统的过程噪声和观测噪声是相互独立的。
S2:分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取该子系统当前目标观测时刻的目标状态后验概率密度函数。
并行模糊高斯和粒子滤波算法主要包括三大步骤:1)时间更新,获取当前目标观测时刻的目标状态预测概率密度函数;2)权值计算和观测更新,获取多个高斯项及其权值;3)高斯项重采样,获取当前目标观测时刻的目标状态后验概率密度函数。
不同的子系统在滤波过程中使用的状态粒子不共享。不同子系统的滤波过程可以是并行的,如图2所示,以缩短处理时间,改善目标跟踪的实时性,在其他实施例中,不同的子系统的滤波过程也可以是依次进行的。
S3:利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数。
传感器系统当前目标观测时刻n+1的目标状态后验概率密度函数p(xn+1|z0:n+1)为均值为协方差为Pn+1|n+1的高斯分布,其中均值和协方差Pn+1|n+1分别为:
其中分别为第s个子系统在当前目标观测时刻n+1的目标状态后验概率密度函数的均值和协方差,
S4:利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
可以根据最大后验准则或最小均方误差准则来计算当前目标观测时刻的目标状态估计值作为跟踪结果,实现目标跟踪。
通过上述实施例的实施,将传感器系统被划分为多个子系统,使得状态空间的维数也减少了,减少滤波所需要的粒子数量;子系统在滤波过程中利用了其边界状态,保证跟踪结果的准确性;不同的子系统在滤波过程中使用的状态粒子不共享,可以选择并行处理,保证目标跟踪实时性。
如图3所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第二实施例,是在本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第一实施例的基础上,步骤S2中为第s个子系统进行粒子滤波具体包括:
S21:对于第s个子系统,利用高斯和构建上一目标观测时刻的目标状态后验概率密度函数、观测噪声概率密度函数以及过程噪声概率密度函数。
上一目标观测时刻n的目标状态后验概率密度函数为G个第一高斯分布函数的加权和,具体定义为:
其中s=1,2,…,S,S为传感器系统中子系统的总数,为第g个第一高斯分布函数的均值,为第g个第一高斯分布函数的协方差,为第g个第一高斯分布函数的权值,g=1,2,…,G。均值和协方差是利用当前目标观测时刻n+1之前第s个子系统对目标状态的观测结果而获得的。
过程噪声概率密度函数p(un)为K个第二高斯分布函数的加权和,具体定义为:
其中αk为第k个第二高斯分布函数的权值,且为非负常数,同时满足 分别表示第k个第二高斯分布函数的均值和协方差,k=1,2,…,K;
观测噪声概率密度函数p(vn)为L个第三高斯分布函数的加权和,具体定义为:
其中βj为第j个第三高斯分布函数的权值,且为非负常数,同时满足 分别表示第j个第三高斯分布函数的均值和协方差,j=1,2,…,L。
S22:根据高斯-厄米特积分和蒙特卡罗原理,利用上一目标观测时刻的目标状态后验概率密度函数、过程噪声概率密度函数和边界状态获取当前目标观测时刻的目标状态预测概率密度函数。
本步骤和步骤S21共同对应图2中的时间更新部分。
根据贝叶斯定理和高斯-厄米特积分原理,对于第s个子系统,当前目标观测时刻n+1的目标预测概率密度函数可表示为:
假设改变积分变量
应用上述高斯-厄米特积分规则的同时,利用蒙特卡罗近似非线性的状态转移概率密度函数,式(29)的预测概率密度函数可以近似为:
进一步地,重新定义g'=g+(k-1)K,G'=GK,则式(30)可以写为:
其中,表示均值为协方差为的高斯分布概率密度函数,表示从第一积分点概率密度函数中抽取的状态粒子,表示从边界状态概率密度函数中抽取的边界状态粒子,ul.i表示粒子相应的权值,m表示高斯-厄米特积分点ξl的总数,N表示粒子个数。
根据式(28)-(31),如图4所示,本步骤具体包括以下子步骤:
S221:利用上一目标观测时刻的目标状态后验概率密度函数和过程噪声概率密度函数获取第一积分点粒子集,利用边界状态获取边界状态粒子集。
获取第一积分点粒子集具体包括:
利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数p(un)获取上一目标观测时刻n的目标状态后验概率密度函数的每个第一高斯分布函数对应的第一积分点
其中g’=g+(k-1)K,g为第一高斯分布函数的序号,ξl为高斯-厄米特积分点,ξl对应的权系数为l为高斯-厄米特积分点的序号,为过程噪声概率密度函数p(un)的第k个第二高斯分布函数的均值,g=1,2,…,G,k=1,2,…,K,l=1,2,…,m,m为高斯-厄米特积分点的总数。
根据高斯-厄米特积分原理,以第一积分点为均值,以第g个第一高斯分布函数的协方差为协方差,构建上一目标观测时刻n的第一积分点概率密度函数
利用第一积分点概率密度函数获取对应的第一积分点粒子集其中i=1,2,…,N,N为第一积分点粒子集中粒子的总数,第一积分点粒子集
获取边界状态粒子集具体包括:
第s个子系统在上一目标观测时刻n收到m1个子系统的边界状态边界状态概率密度函数为边界状态概率密度函数的均值和协方差分别为:
其中表示第s个子系统在上一目标观测时刻n收到的第i1个子系统的权值,其取值范围为[0,1]且满足
利用边界状态概率密度函数获取边界状态粒子集其中
边界状态粒子集中的粒子总数与第一积分点粒子集的相同。对于不同的l和g’,边界状态粒子集相同。
第一积分点粒子集和边界状态粒子集组成第一近似粒子集。
S222:利用第一近似粒子集和第s个子系统的状态方程获取预测粒子集。
预测粒子集为其中为子系统的状态转移概率密度函数,可由式(7)所示的第s个子系统的状态方程得到。
S223:利用预测粒子集获取当前目标观测时刻的目标状态预测概率密度函数。
利用预测粒子集获取第一积分点对应的当前目标观测时刻n+1的均值和协方差
利用均值和协方差获取当前目标观测时刻n+1的目标状态的共G’个第四高斯分布函数,其中G’=K*G。第g’个第四高斯分布函数的均值和协方差为:
计算第g’个第四高斯分布函数的权值:
其中αk为过程噪声概率密度函数p(un)的第k个第二高斯分布函数的权值。
将G’个第四高斯分布函数的加权和作为当前目标观测时刻n+1的目标状态预测概率密度函数
S23:利用当前目标观测时刻的目标状态预测概率密度函数、观测结果和观测噪声概率密度函数获取多个高斯项及其权值。
本步骤对应图2中的权值计算和观测更新部分。
本步骤具体包括:
利用当前目标观测时刻n+1的目标状态预测概率密度函数获取当前目标观测时刻n+1的目标状态预测概率密度函数的每个第四高斯分布函数对应的第二积分点
其中g’=1,2,…,G’,j=1,2,…,L。
为第二积分点构建其重要性函数
利用重要性函数获取第二积分点的第二近似粒子集其中
基于目标跟踪的特点,为更好地对粒子间的不确定性进行度量,引入信息熵原理,利用最大熵模糊聚类原理计算得到粒子的模糊隶属度,以代替粒子权值。
根据最大熵模糊聚类算法,为当前目标观测时刻n+1的观测结果与第二近似粒子集中的粒子之间的模糊隶属度,且满足如下约束:
根据模糊聚类目标函数以及信息熵原理,在式(32)的约束下,定义如下目标函数:
其中α和λ均为拉格朗日乘子,m2为加权指数,表示第二近似粒子集中的粒子与当前目标观测时刻n+1的观测结果之间的欧氏距离。根据拉格朗日乘子法,最小化目标函数(33),可得:
将上述模糊隶属度作为第二近似粒子集中粒子的权值可得:
由高斯-厄米特积分规则可知,积分点权值通常为常数。在实验中发现,存在大量的实际上远离目标的预测位置的积分点,显然,这些积分点对于目标状态的更新基本上不起任何作用。因此,为了减少无效积分点在滤波过程中的作用,基于粒子权值和模糊加权指数,提出如下自适应的积分点权值计算公式。定义第二积分点的权值为:
其中l1=1,2,…m。
利用第二近似粒子集及其中粒子的权值获取第二积分点对应的均值和协方差
利用第二积分点的权值均值和协方差获取高斯项其中高斯项的均值和协方差分别为:
利用第二近似粒子集及其中粒子的权值和观测噪声概率密度函数p(vn)获取高斯项的权值
其中βj为观测噪声概率密度函数p(vn)的第l个第三高斯分布函数的权值。
S24:利用权值对高斯项进行重采样,获取其中权值最大的G个高斯项。
本步骤对应图2中的高斯项重采样部分。
计算得到的高斯项共有G*K*L个,将这些高斯项按照权值的降序排列并获取前G个高斯项及权值G为正整数,g=1,2,…,G。
对于上述G个高斯项中的第g个,判断其权值是否小于预设阈值若小于,则表示该高斯项的权值过小,修改该高斯项的均值为协方差为其中q为随机提取,且q∈{1,...,G},提取到q的概率正比于标准化权值若不小于,则保留该高斯项
为G个高斯项中的每一个高斯项执行前一步骤,最终得到权值最大的G个高斯项。
S25:利用权值最大的G个高斯项获取第s个子系统当前目标观测时刻的目标状态后验概率密度函数。
当前目标观测时刻n+1的目标状态后验概率密度函数为均值为协方差为的高斯分布,其中均值和协方差分别为:
下面为对本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第二实施例提出的PGSQPF算法进行实验验证的结果。仿真平台为Matlab7.8,操作系统为windows XP。
为了检验PGSQPF算法的可行性,本部分将讨论在下列动态空间模型下PGSQPF的跟踪性能。动态空间模型为如下形式:
其中,目标状态向量为xn、yn分别表示为n时刻目标的位置,分别表示n时刻目标在xn、yn方向上的速度;采样间隔设置为1s;过程噪声un为一个混合高斯模型其中,R11=diag([0.012km2s40.012km2s4]),R12=diag([0.032km2s40.032km2s4]),α=0.8。观测噪声vn为一个零均值协方差为R=diag([0.152km2,0.152km2])的高斯分布。目标初始状态x0的先验密度服从其中,初始状态x0为[104.58km-0.144kms-160.22km 0.066kms-1]T,初始估计和关联协方差分别为 雷达假设设在原点。
实验得到的跟踪效果图如图5所示,图中不带三角的线表示真实运动轨迹,带三角的线表示使用PGSQPF算法的跟踪结果。PGSQPF算法的均方根误差随粒子数变化的情况如表1所示。
表1
实验结果表明,PGSQPF算法能够有效的改善粒子滤波算法在并行和精度之间的矛盾,使之都有所提高。
如图6所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪装置第一实施例包括:
划分模块11,用于将传感器系统划分为多个子系统。
滤波模块12,用于分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享。
综合模块13,用于利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数。
估计模块14,用于利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
如图7所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪装置第二实施例包括:处理器110和传感器系统120。处理器110可以通过总线、局域网或互联网耦接传感器系统120。
处理器110控制基于并行模糊高斯和粒子滤波的目标跟踪装置的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号的处理能力。处理器110还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
基于直觉模糊随机森林的目标跟踪装置可以进一步包括存储器(图中未画出),存储器用于存储处理器110工作所必需的指令及数据,也可以存储传感器系统120观测到的数据。
处理器110用于将传感器系统120划分为多个子系统;分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统120当前目标观测时刻的目标状态后验概率密度函数;利用传感器系统120当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
本发明基于并行模糊高斯和粒子滤波的目标跟踪装置包括的各部分的功能可参考本发明基于并行模糊高斯和粒子滤波的目标跟踪方法各对应实施例中的描述,在此不再赘述。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种基于并行模糊高斯和粒子滤波的目标跟踪方法,其特征在于,包括:
将传感器系统划分为多个子系统;
分别为每个所述子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取所述子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的所述子系统在滤波过程中使用的状态粒子不共享;
利用所有所述子系统当前目标观测时刻的目标状态后验概率密度函数获取所述传感器系统当前目标观测时刻的目标状态后验概率密度函数;
利用所述传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
2.根据权利要求1所述的方法,其特征在于,
所述为所述子系统利用其边界状态对其当前目标观测时刻观测的目标状态使用模糊高斯和粒子滤波方法进行滤波包括:
对于所述子系统,利用高斯和构建上一目标观测时刻的目标状态后验概率密度函数、观测噪声概率密度函数以及过程噪声概率密度函数;
根据高斯-厄米特积分和蒙特卡罗原理,利用所述上一目标观测时刻的目标状态后验概率密度函数、所述过程噪声概率密度函数和所述边界状态获取当前目标观测时刻的目标状态预测概率密度函数;
利用所述当前目标观测时刻的目标状态预测概率密度函数、所述观测结果和所述观测噪声概率密度函数获取多个高斯项及其权值;
利用所述权值对所述高斯项进行重采样,获取其中权值最大的G个高斯项,其中G为正整数;
利用所述权值最大的G个高斯项获取所述子系统当前目标观测时刻的目标状态后验概率密度函数。
3.根据权利要求2所述的方法,其特征在于,
对于第s个所述子系统,利用高斯和构建的所述上一目标观测时刻n的目标状态后验概率密度函数为G个第一高斯分布函数的加权和,具体定义为:
p ( x n s | z 0 : n s ) = Σ g = 1 G ω n g s N ( x n s ; x ^ ( n | n ) g s , P ( n | n ) g s ) - - - ( 1 )
其中s=1,2,…,S,S为所述传感器系统中所述子系统的总数,为第g个所述第一高斯分布函数的均值,为第g个所述第一高斯分布函数的协方差,为第g个所述第一高斯分布函数的权值,g=1,2,…,G,所述均值和所述协方差是利用当前目标观测时刻n+1之前第s个所述子系统对目标状态的观测结果而获得的;
过程噪声概率密度函数p(un)为K个第二高斯分布函数的加权和,具体定义为:
p ( u n ) = Σ k = 1 K α k N ( u n ; μ ~ n k , Σ ~ n k ) - - - ( 2 )
其中αk为第k个所述第二高斯分布函数的权值,且为非负常数同时满足 分别表示第k个所述第二高斯分布函数的均值和协方差,k=1,2,…,K;
观测噪声概率密度函数p(vn)为L个第三高斯分布函数的加权和,具体定义为:
p ( v n ) = Σ j = 1 L β j N ( v n ; μ ~ n j , Σ ~ n j ) - - - ( 3 )
其中βj为第j个所述第三高斯分布函数的权值,且为非负常数同时满足 分别表示第j个所述第三高斯分布函数的均值和协方差,j=1,2,…,L。
4.根据权利要求3所述的方法,其特征在于,
所述根据高斯-厄米特积分和蒙特卡罗原理,利用所述上一目标观测时刻的目标状态后验概率密度函数、所述过程噪声概率密度函数和所述边界状态获取当前目标观测时刻的目标状态预测概率密度函数包括:
利用所述上一目标观测时刻n的目标状态后验概率密度函数和所述过程噪声概率密度函数获取第一积分点粒子集,利用所述边界状态获取边界状态粒子集,所述第一积分点粒子集和所述边界状态粒子集组成第一近似粒子集;
利用所述第一近似粒子集和所述子系统的状态方程获取预测粒子集;
利用所述预测粒子集获取所述当前目标观测时刻n+1的目标状态预测概率密度函数。
5.根据权利要求4所述的方法,其特征在于,
所述利用所述上一目标观测时刻n的目标状态后验概率密度函数和所述过程噪声概率密度函数获取第一积分点粒子集包括:
利用所述上一目标观测时刻n的目标状态后验概率密度函数和所述过程噪声概率密度函数p(un)获取所述上一目标观测时刻n的目标状态后验概率密度函数的每个所述第一高斯分布函数对应的第一积分点
x ( n | n ) g ′ s , l = P ( n | n ) g s · ξ l + x ^ ( n | n ) g s + μ ~ n k - - - ( 4 )
其中g’=g+(k-1)K,g为所述第一高斯分布函数的序号,ξl为高斯-厄米特积分点,ξl对应的权系数为l为所述高斯-厄米特积分点的序号,为所述过程噪声概率密度函数p(un)的第k个所述第二高斯分布函数的均值,g=1,2,…,G,k=1,2,…,K,l=1,2,…,m,m为所述高斯-厄米特积分点的总数;
根据高斯-厄米特积分原理,以所述第一积分点为均值,以第g个所述第一高斯分布函数的协方差为协方差,构建所述上一目标观测时刻n的第一积分点概率密度函数
利用所述第一积分点概率密度函数获取对应的第一积分点粒子集其中i=1,2,…,N,N为所述第一积分点粒子集中粒子的总数,所述第一积分点粒子集
所述利用所述边界状态获取边界状态粒子集包括:
第s个所述子系统在所述上一目标观测时刻n收到m1个子系统的边界状态i1=1,2,…,m1,边界状态概率密度函数为其中所述边界状态概率密度函数的均值和协方差分别为:
其中πi1表示第s个所述子系统在所述上一目标观测时刻n收到的第i1个子系统的权值,其取值范围为[0,1]且满足
利用所述边界状态概率密度函数获取边界状态粒子集其中
所述利用所述第一近似粒子集和所述子系统的状态方程获取预测粒子集包括:
所述预测粒子集为其中为所述子系统的状态转移概率密度函数,可由所述子系统的状态方程得到,所述子系统的状态方程为:
其中为第s个所述子系统在所述上一目标观测时刻n收到的所有邻近子系统的状态矢量;
所述利用所述预测粒子集获取所述当前目标观测时刻n+1的目标状态预测概率密度函数包括:
利用所述预测粒子集获取所述第一积分点对应的所述当前目标观测时刻n+1的均值和协方差
x ^ ( n + 1 | n ) g ′ s , l = 1 N Σ i = 1 N x ( n + 1 | n ) g ′ s , l , i - - - ( 8 )
P ( n + 1 | n ) g ′ s , l = 1 N Σ i = 1 N ( x ( n + 1 | n ) g ′ s , l , i - x ^ ( n + 1 | n ) g ′ s , l ) ( x ( n + 1 | n ) g ′ s , l , i - x ^ ( n + 1 | n ) g ′ s , l ) T - - - ( 9 )
利用所述均值和协方差获取所述当前目标观测时刻n+1的目标状态的共G’个第四高斯分布函数,其中G’=K*G,第g’个所述第四高斯分布函数的均值和协方差为:
x ^ ( n + 1 | n ) g ′ s = Σ l = 1 m ω l s x ^ ( n + 1 | n ) g ′ s , l - - - ( 10 )
P ( n + 1 | n ) g ′ s = Σ l = 1 m ω l s P ( n + 1 | n ) g ′ s , l - - - ( 11 )
计算第g’个所述第四高斯分布函数的权值:
将G’个所述第四高斯分布函数的加权和作为当前目标观测时刻n+1的目标状态预测概率密度函数
6.根据权利要求5所述的方法,其特征在于,
所述利用所述当前目标观测时刻的目标状态预测概率密度函数、所述观测结果和所述观测噪声概率密度函数获取多个高斯项及其权值包括:
利用所述当前目标观测时刻n+1的目标状态预测概率密度函数获取所述当前目标观测时刻n+1的目标状态预测概率密度函数的每个所述第四高斯分布函数对应的第二积分点
x ( n + 1 | n ) g ′ , j s , l = P ( n + 1 | n ) g ′ s · ξ l + x ^ ( n + 1 | n ) g ′ s - - - ( 14 )
其中g’=1,2,…,G’,j=1,2,…,L;
为所述第二积分点构建其重要性函数
利用所述重要性函数获取所述第二积分点的第二近似粒子集其中
利用最大熵模糊聚类原理计算所述第二近似粒子集中粒子的权值
μ g ′ , j s , l , i = e - αd i j 2 / Σ k = 1 N e - αd k j 2 - - - ( 15 )
其中α为拉格朗日乘子,为所述当前目标观测时刻n+1的观测结果zn+1与所述第二近似粒子集中的粒子之间的模糊隶属度,表示所述第二近似粒子集中的粒子与所述当前目标观测时刻n+1的观测结果zn+1之间的欧氏距离;
利用所述第二近似粒子集中的粒子权值计算其对应的所述第二积分点的权值
其中m2为加权指数,l1=1,2,…m;
利用所述第二近似粒子集及其中粒子的权值获取所述第二积分点对应的均值和协方差
利用所述第二积分点的权值均值和协方差获取高斯项其中所述高斯项的均值和协方差分别为:
x ^ ( n + 1 | n + 1 ) g ′ , j s = Σ l = 1 m ω g ′ , j s , l x ^ ( n + 1 | n + 1 ) g ′ , j s , l - - - ( 20 )
P ( n + 1 | n + 1 ) g ′ , j s = Σ l = 1 m ω g ′ , j s , l P ( n + 1 | n + 1 ) g ′ , j s , l - - - ( 21 )
利用所述第二近似粒子集及其中粒子的权值和所述观测噪声概率密度函数p(vn)获取所述高斯项的权值
其中
所述利用所述权值对所述高斯项进行重采样,获取其中权值最大的G个高斯项包括:
将计算得到的G*K*L个所述高斯项按照权值的降序排列并获取前G个所述高斯项及权值g=1,2,…,G;
判断所述权值是否小于预设阈值
若小于,则修改所述高斯项的均值为协方差为其中q为随机提取,且q∈{1,...,G},提取到q的概率正比于标准化权值若不小于,则保留所述高斯项
为每个所述高斯项执行前一步骤以获取所述权值最大的G个高斯项;
所述利用所述权值最大的G个高斯项获取所述子系统当前目标观测时刻n+1的目标状态后验概率密度函数包括:
所述当前目标观测时刻n+1的目标状态后验概率密度函数为均值为协方差为的高斯分布,其中所述均值和协方差分别为:
7.根据权利要求6所述的方法,其特征在于,
所述利用所有所述子系统当前目标观测时刻的目标状态后验概率密度函数获取所述传感器系统当前目标观测时刻的目标状态后验概率密度函数包括:
所述传感器系统当前目标观测时刻n+1的目标状态后验概率密度函数p(xn+1|z0:n+1)为均值为协方差为Pn+1|n+1的高斯分布,其中所述均值和协方差Pn+1|n+1分别为:
x ^ n + 1 | n + 1 = Σ s = 1 S β s · x ^ n + 1 | n + 1 s - - - ( 25 )
P n + 1 | n + 1 = Σ s = 1 S β s · P n + 1 | n + 1 s - - - ( 26 )
其中
8.根据权利要求1-7中任一项所述的方法,其特征在于,
所述利用所述传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值包括:
根据最大后验准则或最小均方误差准则,利用所述传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
9.一种基于并行模糊高斯和粒子滤波的目标跟踪装置,其特征在于,包括:
划分模块,用于将传感器系统划分为多个子系统;
滤波模块,用于分别为每个所述子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取所述子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的所述子系统在滤波过程中使用的状态粒子不共享;
综合模块,用于利用所有所述子系统当前目标观测时刻的目标状态后验概率密度函数获取所述传感器系统当前目标观测时刻的目标状态后验概率密度函数;
估计模块,用于利用所述传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
10.一种基于并行模糊高斯和粒子滤波的目标跟踪装置,其特征在于,包括:处理器和传感器系统,所述处理器耦接所述传感器系统;
所述处理器用于将所述传感器系统划分为多个子系统;分别为每个所述子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取所述子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的所述子系统在滤波过程中使用的状态粒子不共享;利用所有所述子系统当前目标观测时刻的目标状态后验概率密度函数获取所述传感器系统当前目标观测时刻的目标状态后验概率密度函数;利用所述传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
CN201611249493.8A 2016-12-29 2016-12-29 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置 Active CN106772354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611249493.8A CN106772354B (zh) 2016-12-29 2016-12-29 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611249493.8A CN106772354B (zh) 2016-12-29 2016-12-29 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置

Publications (2)

Publication Number Publication Date
CN106772354A true CN106772354A (zh) 2017-05-31
CN106772354B CN106772354B (zh) 2019-06-11

Family

ID=58927694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611249493.8A Active CN106772354B (zh) 2016-12-29 2016-12-29 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置

Country Status (1)

Country Link
CN (1) CN106772354B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109002835A (zh) * 2018-06-19 2018-12-14 西安电子科技大学 一种基于最大熵模糊聚类的粒子滤波数据关联方法
CN110647723A (zh) * 2019-08-14 2020-01-03 中国科学院计算机网络信息中心 基于原位可视化的粒子数据处理方法、装置和系统
CN110942474A (zh) * 2019-11-27 2020-03-31 炬星科技(深圳)有限公司 机器人目标跟踪方法、设备及存储介质
CN115308704A (zh) * 2022-07-17 2022-11-08 西北工业大学 基于交互式多模型和最大熵模糊聚类的多机动目标跟踪方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902812A (zh) * 2014-03-05 2014-07-02 深圳大学 一种粒子滤波方法、装置及目标跟踪方法、装置
CN103955600A (zh) * 2014-04-03 2014-07-30 深圳大学 一种目标跟踪方法及截断积分卡尔曼滤波方法、装置
CN104318059A (zh) * 2014-09-24 2015-01-28 深圳大学 用于非线性高斯系统的目标跟踪方法和跟踪系统
CN105205313A (zh) * 2015-09-07 2015-12-30 深圳大学 模糊高斯和粒子滤波方法、装置及目标跟踪方法、装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902812A (zh) * 2014-03-05 2014-07-02 深圳大学 一种粒子滤波方法、装置及目标跟踪方法、装置
CN103955600A (zh) * 2014-04-03 2014-07-30 深圳大学 一种目标跟踪方法及截断积分卡尔曼滤波方法、装置
CN104318059A (zh) * 2014-09-24 2015-01-28 深圳大学 用于非线性高斯系统的目标跟踪方法和跟踪系统
CN105205313A (zh) * 2015-09-07 2015-12-30 深圳大学 模糊高斯和粒子滤波方法、装置及目标跟踪方法、装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIA LI ET AL.: "Research of maneuvering target tracking based on particle filter", 《2013 CHINESE AUTOMATION CONGRESS》 *
江宝安 等: "粒子滤波器及其在目标跟踪中的应用", 《雷达科学与技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109002835A (zh) * 2018-06-19 2018-12-14 西安电子科技大学 一种基于最大熵模糊聚类的粒子滤波数据关联方法
CN109002835B (zh) * 2018-06-19 2021-08-31 西安电子科技大学 一种基于最大熵模糊聚类的粒子滤波数据关联方法
CN110647723A (zh) * 2019-08-14 2020-01-03 中国科学院计算机网络信息中心 基于原位可视化的粒子数据处理方法、装置和系统
CN110647723B (zh) * 2019-08-14 2023-12-26 中国科学院计算机网络信息中心 基于原位可视化的粒子数据处理方法、装置和系统
CN110942474A (zh) * 2019-11-27 2020-03-31 炬星科技(深圳)有限公司 机器人目标跟踪方法、设备及存储介质
CN110942474B (zh) * 2019-11-27 2023-06-13 炬星科技(深圳)有限公司 机器人目标跟踪方法、设备及存储介质
CN115308704A (zh) * 2022-07-17 2022-11-08 西北工业大学 基于交互式多模型和最大熵模糊聚类的多机动目标跟踪方法
CN115308704B (zh) * 2022-07-17 2024-04-26 西北工业大学 基于交互式多模型和最大熵模糊聚类的多机动目标跟踪方法

Also Published As

Publication number Publication date
CN106772354B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
Wang et al. LSTM based long-term energy consumption prediction with periodicity
WO2018119912A1 (zh) 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置
Qadir et al. Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids
CN109902801B (zh) 一种基于变分推理贝叶斯神经网络的洪水集合预报方法
Li et al. Urban traffic flow forecasting using Gauss–SVR with cat mapping, cloud model and PSO hybrid algorithm
Wang et al. Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting
Mirrashid Earthquake magnitude prediction by adaptive neuro-fuzzy inference system (ANFIS) based on fuzzy C-means algorithm
CN105205313B (zh) 模糊高斯和粒子滤波方法、装置及目标跟踪方法、装置
CN106772354B (zh) 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置
Liang-Qun et al. Intuitionistic fuzzy joint probabilistic data association filter and its application to multitarget tracking
CN111711432B (zh) 一种基于ukf和pf混合滤波的目标跟踪算法
Wu et al. A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization
CN112613542B (zh) 一种基于双向lstm的企业除污设备负荷辨识方法
Zideh et al. Physics-informed machine learning for data anomaly detection, classification, localization, and mitigation: A review, challenges, and path forward
CN116169670A (zh) 一种基于改进神经网络的短期非居民负荷预测方法及系统
CN116485031A (zh) 短期电力负荷的预测方法、装置、设备及存储介质
Sheng et al. Network traffic anomaly detection method based on chaotic neural network
Jiang et al. Adaptive gaussian process for short-term wind speed forecasting
Liu et al. Soil water content forecasting by ANN and SVM hybrid architecture
Yin et al. Nonlinear analysis and prediction of soybean futures.
Zhang et al. A network traffic prediction model based on quantum inspired PSO and neural network
Yu et al. A novel discussion on two long-term forecast mechanisms for hydro-meteorological signals using hybrid wavelet-NN model
Buchnik et al. GSP-KalmanNet: Tracking Graph Signals via Neural-Aided Kalman Filtering
Shaikh et al. Wavelet decomposition impacts on traditional forecasting time series models
Sharma et al. Deep learning approaches to time series forecasting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210707

Address after: 215300 no.1689-5 Zizhu Road, Yushan Town, Kunshan City, Suzhou City, Jiangsu Province

Patentee after: KUNSHAN RUIXIANG XUNTONG COMMUNICATION TECHNOLOGY Co.,Ltd.

Address before: 518060 No. 3688 Nanhai Road, Shenzhen, Guangdong, Nanshan District

Patentee before: SHENZHEN University

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 215300 Room 009, No. 55, Shengchuang Road, Yushan Town, Kunshan, Suzhou, Jiangsu Province

Patentee after: KUNSHAN RUIXIANG XUNTONG COMMUNICATION TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 215300 no.1689-5 Zizhu Road, Yushan Town, Kunshan City, Suzhou City, Jiangsu Province

Patentee before: KUNSHAN RUIXIANG XUNTONG COMMUNICATION TECHNOLOGY Co.,Ltd.

Country or region before: China