发明内容
本发明主要解决的技术问题是提供一种基于并行模糊高斯和粒子滤波的目标跟踪方法及装置,能够解决现有技术中的粒子滤波方法处理非周期、稀疏性大规模观测数据时性能下降的问题。
为了解决上述技术问题,本发明采用的一个技术方案是:提供一种基于并行模糊高斯和粒子滤波的目标跟踪方法,包括:将传感器系统划分为多个子系统;分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数;利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
其中,为子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波包括:对于子系统,利用高斯和构建上一目标观测时刻的目标状态后验概率密度函数、观测噪声概率密度函数以及过程噪声概率密度函数;根据高斯-厄米特积分和蒙特卡罗原理,利用上一目标观测时刻的目标状态后验概率密度函数、过程噪声概率密度函数和边界状态获取当前目标观测时刻的目标状态预测概率密度函数;利用当前目标观测时刻的目标状态预测概率密度函数、观测结果和观测噪声概率密度函数获取多个高斯项及其权值;利用权值对高斯项进行重采样,获取其中权值最大的G个高斯项,其中G为正整数;利用权值最大的G个高斯项获取子系统当前目标观测时刻的目标状态后验概率密度函数。
其中,对于第s个子系统,利用高斯和构建的上一目标观测时刻n的目标状态后验概率密度函数为G个第一高斯分布函数的加权和,具体定义为:
其中s=1,2,…,S,S为传感器系统中子系统的总数,为第g个第一高斯分布函数的均值,为第g个第一高斯分布函数的协方差,为第g个第一高斯分布函数的权值,g=1,2,…,G,均值和协方差是利用当前目标观测时刻n+1之前第s个子系统对目标状态的观测结果而获得的;
过程噪声概率密度函数p(un)为K个第二高斯分布函数的加权和,具体定义为:
其中αk为第k个第二高斯分布函数的权值,且为非负常数同时满足 和分别表示第k个第二高斯分布函数的均值和协方差,k=1,2,…,K;
观测噪声概率密度函数p(vn)为L个第三高斯分布函数的加权和,具体定义为:
其中βj为第j个第三高斯分布函数的权值,且为非负常数同时满足 和分别表示第j个第三高斯分布函数的均值和协方差,j=1,2,…,L。
其中,根据高斯-厄米特积分和蒙特卡罗原理,利用上一目标观测时刻的目标状态后验概率密度函数、过程噪声概率密度函数和边界状态获取当前目标观测时刻的目标状态预测概率密度函数包括:利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数获取第一积分点粒子集,利用边界状态获取边界状态粒子集,第一积分点粒子集和边界状态粒子集组成第一近似粒子集;利用第一近似粒子集和子系统的状态方程获取预测粒子集;利用预测粒子集获取当前目标观测时刻n+1的目标状态预测概率密度函数。
其中,利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数获取第一积分点粒子集包括:利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数p(un)获取上一目标观测时刻n的目标状态后验概率密度函数的每个第一高斯分布函数对应的第一积分点
其中g’=g+(k-1)K,g为第一高斯分布函数的序号,ξl为高斯-厄米特积分点,ξl对应的权系数为l为高斯-厄米特积分点的序号,为过程噪声概率密度函数p(un)的第k个第二高斯分布函数的均值,g=1,2,…,G,k=1,2,…,K,l=1,2,…,m,m为高斯-厄米特积分点的总数;
根据高斯-厄米特积分原理,以第一积分点为均值,以第g个第一高斯分布函数的协方差为协方差,构建上一目标观测时刻n的第一积分点概率密度函数
利用第一积分点概率密度函数获取对应的第一积分点粒子集其中i=1,2,…,N,N为第一积分点粒子集中粒子的总数,第一积分点粒子集
利用边界状态获取边界状态粒子集包括:
第s个子系统在上一目标观测时刻n收到m1个子系统的边界状态边界状态概率密度函数为其中边界状态概率密度函数的均值和协方差分别为:
其中表示第s个子系统在上一目标观测时刻n收到的第i1个子系统的权值,其取值范围为[0,1]且满足
利用边界状态概率密度函数获取边界状态粒子集其中
利用第一近似粒子集和子系统的状态方程获取预测粒子集包括:
预测粒子集为其中为子系统的状态转移概率密度函数,可由子系统的状态方程得到,子系统的状态方程为:
其中为第s个子系统在上一目标观测时刻n收到的所有邻近子系统的状态矢量;
利用预测粒子集获取当前目标观测时刻n+1的目标状态预测概率密度函数包括:
利用预测粒子集获取第一积分点对应的当前目标观测时刻n+1的均值和协方差
利用均值和协方差获取当前目标观测时刻n+1的目标状态的共G’个第四高斯分布函数,其中G’=K*G,第g’个第四高斯分布函数的均值和协方差为:
计算第g’个第四高斯分布函数的权值:
将G’个第四高斯分布函数的加权和作为当前目标观测时刻n+1的目标状态预测概率密度函数
其中,利用当前目标观测时刻的目标状态预测概率密度函数、观测结果和观测噪声概率密度函数获取多个高斯项及其权值包括:利用当前目标观测时刻n+1的目标状态预测概率密度函数获取当前目标观测时刻n+1的目标状态预测概率密度函数的每个第四高斯分布函数对应的第二积分点
其中g’=1,2,…,G’,j=1,2,…,L;
为第二积分点构建其重要性函数
利用重要性函数获取第二积分点的第二近似粒子集其中
利用最大熵模糊聚类原理计算第二近似粒子集中粒子的权值
其中α为拉格朗日乘子,为当前目标观测时刻n+1的观测结果zn+1与第二近似粒子集中的粒子之间的模糊隶属度,表示第二近似粒子集中的粒子与当前目标观测时刻n+1的观测结果zn+1之间的欧氏距离;
利用第二近似粒子集中的粒子权值计算其对应的第二积分点的权值
其中m2为加权指数,l1=1,2,…m;
利用第二近似粒子集及其中粒子的权值获取第二积分点对应的均值和协方差
利用第二积分点的权值均值和协方差获取高斯项其中高斯项的均值和协方差分别为:
利用第二近似粒子集及其中粒子的权值和观测噪声概率密度函数p(vn)获取高斯项的权值
其中
利用权值对高斯项进行重采样,获取其中权值最大的G个高斯项包括:
将计算得到的G*K*L个高斯项按照权值的降序排列并获取前G个高斯项及权值
判断权值是否小于预设阈值
若小于,则修改高斯项的均值为协方差为其中q为随机提取,且q∈{1,...,G},提取到q的概率正比于标准化权值若不小于,则保留高斯项
为每个高斯项执行前一步骤以获取权值最大的G个高斯项;
利用权值最大的G个高斯项获取子系统当前目标观测时刻n+1的目标状态后验概率密度函数包括:当前目标观测时刻n+1的目标状态后验概率密度函数为均值为协方差为的高斯分布,其中均值和协方差分别为:
其中,利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数包括:传感器系统当前目标观测时刻n+1的目标状态后验概率密度函数p(xn+1|z0:n+1)为均值为协方差为Pn+1|n+1的高斯分布,其中均值和协方差Pn+1|n+1分别为:
其中
其中,利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值包括:根据最大后验准则或最小均方误差准则,利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
为了解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于并行模糊高斯和粒子滤波的目标跟踪装置,包括:划分模块,用于将传感器系统划分为多个子系统;滤波模块,用于分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;综合模块,用于利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数;估计模块,用于利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
为了解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于并行模糊高斯和粒子滤波的目标跟踪装置,包括:处理器和传感器系统,处理器耦接传感器系统;处理器用于将传感器系统划分为多个子系统;分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数;利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
本发明的有益效果是:通过将传感器系统被划分为多个子系统,使得状态空间的维数减少了,减少滤波所需要的粒子数量;子系统在滤波过程中利用了其边界状态,保证跟踪结果的准确性;不同的子系统在滤波过程中使用的状态粒子不共享,可以选择并行处理,保证目标跟踪实时性。
具体实施方式
如图1所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第一实施例包括:
S1:将传感器系统划分为多个子系统。
将传感器系统划分为S个子系统,相邻的子系统之间可以不重叠,也可以部分重叠。在当前目标观测时刻n+1,整个传感器系统的目标状态为其中为第s个子系统的目标状态,整个传感器系统对目标状态的观测结果为其中为第s个子系统的观测结果,s=1,2,…,S。
第s个子系统的状态方程和观测方程为:
其中,n为上一目标观测时刻,为状态转移函数,为上一目标观测时刻n第s个子系统的目标状态,为第s个子系统在上一目标观测时刻n收到的所有邻近子系统的状态矢量,为当前目标观测时刻n+1的过程噪声,h(·)为观测函数,为当前目标观测时刻n+1的观测噪声。每个子系统的观测结果只依靠本子系统的目标状态,各子系统的过程噪声和观测噪声是相互独立的。
S2:分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取该子系统当前目标观测时刻的目标状态后验概率密度函数。
并行模糊高斯和粒子滤波算法主要包括三大步骤:1)时间更新,获取当前目标观测时刻的目标状态预测概率密度函数;2)权值计算和观测更新,获取多个高斯项及其权值;3)高斯项重采样,获取当前目标观测时刻的目标状态后验概率密度函数。
不同的子系统在滤波过程中使用的状态粒子不共享。不同子系统的滤波过程可以是并行的,如图2所示,以缩短处理时间,改善目标跟踪的实时性,在其他实施例中,不同的子系统的滤波过程也可以是依次进行的。
S3:利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数。
传感器系统当前目标观测时刻n+1的目标状态后验概率密度函数p(xn+1|z0:n+1)为均值为协方差为Pn+1|n+1的高斯分布,其中均值和协方差Pn+1|n+1分别为:
其中和分别为第s个子系统在当前目标观测时刻n+1的目标状态后验概率密度函数的均值和协方差,
S4:利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
可以根据最大后验准则或最小均方误差准则来计算当前目标观测时刻的目标状态估计值作为跟踪结果,实现目标跟踪。
通过上述实施例的实施,将传感器系统被划分为多个子系统,使得状态空间的维数也减少了,减少滤波所需要的粒子数量;子系统在滤波过程中利用了其边界状态,保证跟踪结果的准确性;不同的子系统在滤波过程中使用的状态粒子不共享,可以选择并行处理,保证目标跟踪实时性。
如图3所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第二实施例,是在本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第一实施例的基础上,步骤S2中为第s个子系统进行粒子滤波具体包括:
S21:对于第s个子系统,利用高斯和构建上一目标观测时刻的目标状态后验概率密度函数、观测噪声概率密度函数以及过程噪声概率密度函数。
上一目标观测时刻n的目标状态后验概率密度函数为G个第一高斯分布函数的加权和,具体定义为:
其中s=1,2,…,S,S为传感器系统中子系统的总数,为第g个第一高斯分布函数的均值,为第g个第一高斯分布函数的协方差,为第g个第一高斯分布函数的权值,g=1,2,…,G。均值和协方差是利用当前目标观测时刻n+1之前第s个子系统对目标状态的观测结果而获得的。
过程噪声概率密度函数p(un)为K个第二高斯分布函数的加权和,具体定义为:
其中αk为第k个第二高斯分布函数的权值,且为非负常数,同时满足 和分别表示第k个第二高斯分布函数的均值和协方差,k=1,2,…,K;
观测噪声概率密度函数p(vn)为L个第三高斯分布函数的加权和,具体定义为:
其中βj为第j个第三高斯分布函数的权值,且为非负常数,同时满足 和分别表示第j个第三高斯分布函数的均值和协方差,j=1,2,…,L。
S22:根据高斯-厄米特积分和蒙特卡罗原理,利用上一目标观测时刻的目标状态后验概率密度函数、过程噪声概率密度函数和边界状态获取当前目标观测时刻的目标状态预测概率密度函数。
本步骤和步骤S21共同对应图2中的时间更新部分。
根据贝叶斯定理和高斯-厄米特积分原理,对于第s个子系统,当前目标观测时刻n+1的目标预测概率密度函数可表示为:
假设改变积分变量则
应用上述高斯-厄米特积分规则的同时,利用蒙特卡罗近似非线性的状态转移概率密度函数,式(29)的预测概率密度函数可以近似为:
进一步地,重新定义g'=g+(k-1)K,G'=GK,则式(30)可以写为:
其中,表示均值为协方差为的高斯分布概率密度函数,表示从第一积分点概率密度函数中抽取的状态粒子,表示从边界状态概率密度函数中抽取的边界状态粒子,ul.i表示粒子相应的权值,m表示高斯-厄米特积分点ξl的总数,N表示粒子个数。
根据式(28)-(31),如图4所示,本步骤具体包括以下子步骤:
S221:利用上一目标观测时刻的目标状态后验概率密度函数和过程噪声概率密度函数获取第一积分点粒子集,利用边界状态获取边界状态粒子集。
获取第一积分点粒子集具体包括:
利用上一目标观测时刻n的目标状态后验概率密度函数和过程噪声概率密度函数p(un)获取上一目标观测时刻n的目标状态后验概率密度函数的每个第一高斯分布函数对应的第一积分点
其中g’=g+(k-1)K,g为第一高斯分布函数的序号,ξl为高斯-厄米特积分点,ξl对应的权系数为l为高斯-厄米特积分点的序号,为过程噪声概率密度函数p(un)的第k个第二高斯分布函数的均值,g=1,2,…,G,k=1,2,…,K,l=1,2,…,m,m为高斯-厄米特积分点的总数。
根据高斯-厄米特积分原理,以第一积分点为均值,以第g个第一高斯分布函数的协方差为协方差,构建上一目标观测时刻n的第一积分点概率密度函数
利用第一积分点概率密度函数获取对应的第一积分点粒子集其中i=1,2,…,N,N为第一积分点粒子集中粒子的总数,第一积分点粒子集
获取边界状态粒子集具体包括:
第s个子系统在上一目标观测时刻n收到m1个子系统的边界状态边界状态概率密度函数为边界状态概率密度函数的均值和协方差分别为:
其中表示第s个子系统在上一目标观测时刻n收到的第i1个子系统的权值,其取值范围为[0,1]且满足
利用边界状态概率密度函数获取边界状态粒子集其中
边界状态粒子集中的粒子总数与第一积分点粒子集的相同。对于不同的l和g’,边界状态粒子集相同。
第一积分点粒子集和边界状态粒子集组成第一近似粒子集。
S222:利用第一近似粒子集和第s个子系统的状态方程获取预测粒子集。
预测粒子集为其中为子系统的状态转移概率密度函数,可由式(7)所示的第s个子系统的状态方程得到。
S223:利用预测粒子集获取当前目标观测时刻的目标状态预测概率密度函数。
利用预测粒子集获取第一积分点对应的当前目标观测时刻n+1的均值和协方差
利用均值和协方差获取当前目标观测时刻n+1的目标状态的共G’个第四高斯分布函数,其中G’=K*G。第g’个第四高斯分布函数的均值和协方差为:
计算第g’个第四高斯分布函数的权值:
其中αk为过程噪声概率密度函数p(un)的第k个第二高斯分布函数的权值。
将G’个第四高斯分布函数的加权和作为当前目标观测时刻n+1的目标状态预测概率密度函数
S23:利用当前目标观测时刻的目标状态预测概率密度函数、观测结果和观测噪声概率密度函数获取多个高斯项及其权值。
本步骤对应图2中的权值计算和观测更新部分。
本步骤具体包括:
利用当前目标观测时刻n+1的目标状态预测概率密度函数获取当前目标观测时刻n+1的目标状态预测概率密度函数的每个第四高斯分布函数对应的第二积分点
其中g’=1,2,…,G’,j=1,2,…,L。
为第二积分点构建其重要性函数
利用重要性函数获取第二积分点的第二近似粒子集其中
基于目标跟踪的特点,为更好地对粒子间的不确定性进行度量,引入信息熵原理,利用最大熵模糊聚类原理计算得到粒子的模糊隶属度,以代替粒子权值。
根据最大熵模糊聚类算法,为当前目标观测时刻n+1的观测结果与第二近似粒子集中的粒子之间的模糊隶属度,且满足如下约束:
根据模糊聚类目标函数以及信息熵原理,在式(32)的约束下,定义如下目标函数:
其中α和λ均为拉格朗日乘子,m2为加权指数,表示第二近似粒子集中的粒子与当前目标观测时刻n+1的观测结果之间的欧氏距离。根据拉格朗日乘子法,最小化目标函数(33),可得:
将上述模糊隶属度作为第二近似粒子集中粒子的权值可得:
由高斯-厄米特积分规则可知,积分点权值通常为常数。在实验中发现,存在大量的实际上远离目标的预测位置的积分点,显然,这些积分点对于目标状态的更新基本上不起任何作用。因此,为了减少无效积分点在滤波过程中的作用,基于粒子权值和模糊加权指数,提出如下自适应的积分点权值计算公式。定义第二积分点的权值为:
其中l1=1,2,…m。
利用第二近似粒子集及其中粒子的权值获取第二积分点对应的均值和协方差
利用第二积分点的权值均值和协方差获取高斯项其中高斯项的均值和协方差分别为:
利用第二近似粒子集及其中粒子的权值和观测噪声概率密度函数p(vn)获取高斯项的权值
其中βj为观测噪声概率密度函数p(vn)的第l个第三高斯分布函数的权值。
S24:利用权值对高斯项进行重采样,获取其中权值最大的G个高斯项。
本步骤对应图2中的高斯项重采样部分。
计算得到的高斯项共有G*K*L个,将这些高斯项按照权值的降序排列并获取前G个高斯项及权值G为正整数,g=1,2,…,G。
对于上述G个高斯项中的第g个,判断其权值是否小于预设阈值若小于,则表示该高斯项的权值过小,修改该高斯项的均值为协方差为其中q为随机提取,且q∈{1,...,G},提取到q的概率正比于标准化权值若不小于,则保留该高斯项
为G个高斯项中的每一个高斯项执行前一步骤,最终得到权值最大的G个高斯项。
S25:利用权值最大的G个高斯项获取第s个子系统当前目标观测时刻的目标状态后验概率密度函数。
当前目标观测时刻n+1的目标状态后验概率密度函数为均值为协方差为的高斯分布,其中均值和协方差分别为:
下面为对本发明基于并行模糊高斯和粒子滤波的目标跟踪方法第二实施例提出的PGSQPF算法进行实验验证的结果。仿真平台为Matlab7.8,操作系统为windows XP。
为了检验PGSQPF算法的可行性,本部分将讨论在下列动态空间模型下PGSQPF的跟踪性能。动态空间模型为如下形式:
其中,目标状态向量为xn、yn分别表示为n时刻目标的位置,分别表示n时刻目标在xn、yn方向上的速度;采样间隔设置为1s;过程噪声un为一个混合高斯模型其中,R11=diag([0.012km2s40.012km2s4]),R12=diag([0.032km2s40.032km2s4]),α=0.8。观测噪声vn为一个零均值协方差为R=diag([0.152km2,0.152km2])的高斯分布。目标初始状态x0的先验密度服从其中,初始状态x0为[104.58km-0.144kms-160.22km 0.066kms-1]T,初始估计和关联协方差分别为 雷达假设设在原点。
实验得到的跟踪效果图如图5所示,图中不带三角的线表示真实运动轨迹,带三角的线表示使用PGSQPF算法的跟踪结果。PGSQPF算法的均方根误差随粒子数变化的情况如表1所示。
表1
实验结果表明,PGSQPF算法能够有效的改善粒子滤波算法在并行和精度之间的矛盾,使之都有所提高。
如图6所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪装置第一实施例包括:
划分模块11,用于将传感器系统划分为多个子系统。
滤波模块12,用于分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享。
综合模块13,用于利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统当前目标观测时刻的目标状态后验概率密度函数。
估计模块14,用于利用传感器系统当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
如图7所示,本发明基于并行模糊高斯和粒子滤波的目标跟踪装置第二实施例包括:处理器110和传感器系统120。处理器110可以通过总线、局域网或互联网耦接传感器系统120。
处理器110控制基于并行模糊高斯和粒子滤波的目标跟踪装置的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号的处理能力。处理器110还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
基于直觉模糊随机森林的目标跟踪装置可以进一步包括存储器(图中未画出),存储器用于存储处理器110工作所必需的指令及数据,也可以存储传感器系统120观测到的数据。
处理器110用于将传感器系统120划分为多个子系统;分别为每个子系统利用其边界状态对其在当前目标观测时刻对目标状态的观测结果使用模糊高斯和粒子滤波方法进行滤波,以获取子系统当前目标观测时刻的目标状态后验概率密度函数,其中不同的子系统在滤波过程中使用的状态粒子不共享;利用所有子系统当前目标观测时刻的目标状态后验概率密度函数获取传感器系统120当前目标观测时刻的目标状态后验概率密度函数;利用传感器系统120当前目标观测时刻的目标状态后验概率密度函数获取当前目标观测时刻的目标状态估计值。
本发明基于并行模糊高斯和粒子滤波的目标跟踪装置包括的各部分的功能可参考本发明基于并行模糊高斯和粒子滤波的目标跟踪方法各对应实施例中的描述,在此不再赘述。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。