CN106754975A - 一种玉米silky1基因突变体及其分子鉴定方法和应用 - Google Patents

一种玉米silky1基因突变体及其分子鉴定方法和应用 Download PDF

Info

Publication number
CN106754975A
CN106754975A CN201710199138.2A CN201710199138A CN106754975A CN 106754975 A CN106754975 A CN 106754975A CN 201710199138 A CN201710199138 A CN 201710199138A CN 106754975 A CN106754975 A CN 106754975A
Authority
CN
China
Prior art keywords
silky1
corn
gene mutation
gene
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710199138.2A
Other languages
English (en)
Other versions
CN106754975B (zh
Inventor
黄培劲
李新鹏
李京琳
张维
安保光
龙湍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Bolian Rice Gene Science & Technology Co Ltd
Original Assignee
Hainan Bolian Rice Gene Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Bolian Rice Gene Science & Technology Co Ltd filed Critical Hainan Bolian Rice Gene Science & Technology Co Ltd
Priority to CN201710199138.2A priority Critical patent/CN106754975B/zh
Publication of CN106754975A publication Critical patent/CN106754975A/zh
Application granted granted Critical
Publication of CN106754975B publication Critical patent/CN106754975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种玉米SILKY1基因突变体及其应用,属于基因工程技术领域。本发明将杂交玉米品种京科糯2000经钴60辐射诱变引起玉米SILKY1基因编码区第239个碱基后插入两个碱基GA,将该SILKY1基因突变体命名为silky1‑3552,其核苷酸序列如SEQ ID No.1所示,进一步证实该突变体引起玉米隐性雄性核不育,可用于制备玉米隐性雄性核不育系,在玉米种质资源的遗传改良育种中作用重大。本发明还提供了该突变体的分子标记鉴定方法及其在育种制种中的应用。

Description

一种玉米SILKY1基因突变体及其分子鉴定方法和应用
技术领域
本发明属于植物分子生物学领域,具体涉及一种玉米SILKY1基因突变体silky1-3552及其分子鉴定方法和应用。
背景技术
植物雄性不育突变是自然界中十分普遍的现象,至少己在43个科、162个属的617个物种中发现了雄性不育突变体。在遗传上植物雄性不育分为细胞核雄性不育,细胞质雄性不育和细胞核细胞质互作雄性不育三大类:1)细胞核雄性不育由细胞核基因突变产生,有显性突变和隐性突变,有孢子体基因突变和配子体基因突变。显性突变和配子体基因突变只能通过雌配子遗传,隐性突变既可通过雌配子也可通过雄配子进行遗传,而且遵循孟德尔定律。目前已克隆了一些孢子体隐性核不育基因,如拟南芥的MS2,玉米的MS45和水稻的MIL1等(Aarts等,1997,The Arabidopsis MALE STERILITY 2protein sharessimilarity with reductases in elongation/condensation complexes,PlantJournal,12:615-623;Albertsen,2006,Male tissue-preferred regulatory sequencesof MS45gene and method of using same,专利号:US7154024B2;Hong等,2012,Somaticand reproductive cell development in rice anther is regulated by a putativeglutaredoxin,Plant Cell,24:577-588);一些配子体隐性核不育基因也被克隆,如拟南芥的两个小孢子有丝分裂异常的突变体sidecar pollen和gemini pollen(Oh等,2010,TheSIDECAR POLLEN gene encodes a microspore-specific LOB/AS2domain proteinrequired for the correct timing and orientation of asymmetric cell division,Plant Journal,64:839-50;Park等,1998,The Arabidopsis thalianagametophyticmutation gemini pollen1disrupts microspore polarity,divisionasymmetry and pollen cell fate,Development,125:3789-99);玉米上还克隆了一个孢子体显性核不育基因MS44(Cigan and Albertsen,1998,Reversible nuclear geneticsystem for male sterility in transgenic plants,US5750868);2)细胞质雄性不育则是由细胞质基因控制,并没有相对应的核恢复基因,属母性遗传;3)细胞核细胞质互作雄性不育由细胞质基因和细胞核基因共同控制,其实质是细胞质与细胞核遗传物质不和的结果。不育细胞质是一些由突变线粒体基因引起,但有相对应的核恢复基因,能抑制不育细胞质基因。不育细胞质基因可产生一种新的蛋白质,够影响线粒体正常功能(Chen and Liu,2014,Male sterility and fertility restoration in crops,Annu Rev Plant Biol,65:5.1-5.28)。在育恢复基因方面,目前水稻中已经克隆了Rf-1,Rf-2,Rf-4,Rf-5等基因(Komori等,2004,Map-based cloning of a fertility restorer gene,Rf-1,in rice(Oryza sativa L.),Plant Journal,37:315-325;Itabashi等,2011,The fertilityrestorer gene,Rf2,for Lead Rice-type cytoplasmic male sterility of riceencodes a mitochondrial glycine-rich protein,Plant Journal,65:359-367;Tang等,2014,The rice restorer Rf4for wild-abortive cytoplasmic male sterilityencodes a PPR protein that functions in reduction of WA352transcripts,Molecular Plant,7:1497-500;Hu等,2012,The rice pentatricopeptide repeatprotein RF5restorers fertility in Hong-Lian Cytoplasmic male-sterile linesvia a complex with the glycine-rich protein GRP162,Plant Cell,24:109-22)。
玉米在我国乃至全世界的粮食的粮食生产中有着举足轻重的地位,到2013年,我国玉米的总产量达到2.15亿吨,占据粮食总产量的35%,首次超过水稻成为第一大粮食作物;玉米是杂种优势利用的典范,其中杂交育种和制种技术的关键均在于母本的去雄。人工去雄相对容易,还可以通过机械去雄、化学杀雄等途径,但是这些策略也存在一些问题:一方面,这些技术大大增加了制种的成本,另一方面,因人工去雄的不彻底或不及时,会降低杂交种的纯度,造成生产上大面积减产,最终导致很大的经济损失。因此,提高杂交种种子纯度是当前玉米生产上急待解决的问题,而利用雄性不育系制种是提高杂交种质量最为有效的途径之一。玉米核雄性不育材料是一种宝贵的种质资源,对玉米杂交种生产具有极其重要的意义,但长期以来,由于纯合核雄性不育系无法繁殖保持等问题,这类材料在实际生产上几乎没有被有效地利用起来。随着新的核雄性不育材料的不断发现,玉米育种家对其进行了多方面的研究和利用尝试,如利用标记性状与不育性的紧密连锁关系,开发了粒色标记系统法、黄绿苗连锁标记法和多花丝连锁标记体系等,但是由于标记性状与不育性连锁不完全、标记性状鉴定困难、鉴定时期滞后等问题,这些方法和尝试在玉米生产上并没有得到推广应用。随着现代生物技术的迅速发展,部分玉米核雄性不育材料的不育机理逐渐明确,为分子设计创制稳定的玉米不育系奠定了理论基础。
利用人工诱变比如物理辐射,化学处理,组织培养等方法,人们在玉米上获得了多种新的不育突变体。silky1突变体是其中之一,其雄小花不产生雄蕊,但形成丝状物,雌花花丝大量增多。SILKY1基因有7个外显子,编码一个227个氨基酸的蛋白;SILKY1在雄花花原基初期的雄蕊原基和浆片原基中特异表达,决定着雄蕊的分化和浆片的形成;SILKY1在雌花中表达量较低,突变引起雄蕊转化成心皮样器官,在每个雌小花中同时出现4条花丝,其中仅有原雌花的花丝能正常授粉结实(Ambrose BA,Lerner DR,Ciceri P,Padilla CM,Yanofsky MF,Schmidt RJ.Molecular and genetic analyses of the Silky1genereveal conservation in floral organ specification between eudicots andmonocots.Molecular cell,2000;5:569-79)。SILKY1与拟南芥AP3蛋白同源,属于MIKC类型的MADS家族蛋白,含有M(MADS)、I(intervening)、K(keratin)和C(C-terminal)四个结构域,其中M可与特异DNA序列结合,K结构域是SILKY1中最为保守的结构域,为DNA结合二聚体和蛋白复合体的形成所必需(Kaufmann K1,Melzer R,Theissen G.MIKC-type MADS-domain proteins:structural modularity,protein interactions and networkevolution in land plants.Gene.2005Mar 14;347(2):183-98.)。
然而,上述文献中报道的4个silky1突变体中,si1-R是自发突变,具体突变序列不详,是非完全敲除,仍然有少量基因表达水平;此外,该突变体报道于1933年的美国玉米(Fraser AC.Heritable characters of maize.XLIV-silky ears.Journal of Heredity,1933,11:41-46),可能存在于突变基因连锁的不适于当代玉米品种或中国生态环境的不利基因。其余三个silky1突变体(si1-mum2,si1-mum3,si1-mum4)为人工创制的Mutator转座子插入突变体,这种类型突变体非常有利于分离突变基因,但其中插入的转座子在后代中仍然具有继续诱导新的突变的能力,也有一定概率发生回复突变,因而在遗传上不够稳定(Robertson DS.Characterization of a mutator system in maize.MutationResearch/Fundamental and Molecular Mechanisms of Mutagenesis.1978,51(1):21-28),不利于生产应用。
发明内容
本发明的目的是提供一种玉米SILKY1基因突变体silky1-3552及其分子鉴定方法和应用。
本发明首先对杂交种京科糯2000种子(M0代)进行钴60辐射诱变处理,种植处理的种子获M1代植株;M1代植株自交产生种子(为M2代),种植M2代植株,对M2代植株进行形态学,组织学和遗传学鉴定,筛选不育植株;然后对不育植株进行基因测序和DNA序列分析,在分子水平上进行验证。最后获得纯合不育单株,并用于杂交育种和生物技术研究。
本发明提供的玉米SILKY1基因突变体silky1-3552,其为玉米SILKY1基因起始密码子起基因组序列第373个碱基,即编码区第239个碱基之后插入两个碱基GA,该突变位点位于第二外显子上。
进一步地,玉米SILKY1基因突变体silky1-3552,其核苷酸序列如SEQ ID No.1所示。
本发明提供了含有本发明所述玉米SILKY1基因突变体silky1-3552的表达载体。
本发明提供了含有上述表达载体的宿主细胞。
本发明提供了玉米SILKY1基因突变体silky1-3552在制备转基因植物中的应用。
本发明提供了玉米SILKY1基因突变体silky1-3552在制备隐性雄性核不育的转基因水稻中的应用。
本发明提供了玉米SILKY1基因突变体silky1-3552在玉米改良育种、制种中的应用。
本发明还提供了检测玉米SILKY1基因突变体silky1-3552的分子标记,该分子标记是由以下引物对扩增得到,所述引物对的核苷酸序列为:
上游引物3552_F:CGTGTGTGTTGGTTGGTTGGT(如SEQ ID NO.2所示);
下游引物3552_R:GACGGACCTCATACTGCTCGAT(如SEQ ID NO.3所示)。
本发明提供了上述分子标记在制备隐性雄性核不育的转基因玉米中的应用。
本发明提供了上述分子标记在玉米种质资源改良中的应用。
一种玉米SILKY1基因突变体silky1-3552的分子标记的方法,通过下述引物对扩增待检植物基因组DNA,并检测酶切产物:
所述引物对的核苷酸序列为:
上游引物3552_F:CGTGTGTGTTGGTTGGTTGGT(如SEQ ID NO.2所示);
下游引物3552_R:GACGGACCTCATACTGCTCGAT(如SEQ ID NO.3所示);
如果用上述引物对能够扩增出比野生型京科糯2000扩增产物长2bp的片段,则标志着该待检植物存在玉米SILKY1基因突变体silky1-3552。
本发明的有益效果在于:
1)本发明获得的突变体silky1-3552雄蕊完全消失,不存在雄性败育不彻底的缺点。
2)本发明使用的被诱变材料是优良杂交糯玉米品种京科糯2000,突变体可直接用于普通玉米和糯玉米的不育系选育。
3)文献“Ambrose BA,Lerner DR,Ciceri P,Padilla CM,Yanofsky MF,SchmidtRJ.Molecular and genetic analyses of the Silky1gene reveal conservation infloral organ specification between eudicots and monocots.Molecular cell,2000,5:569-79”中报道了4个silky1突变体,其中1个si1-R为自然突变,其余3个为Mutator转座子插入突变。自发突变体si1-R并不是完全敲除突变体,仍然有一定的表达水平,因此该突变基因功能可能丧失不完全;其次,si1-R最早报道于1933年(Fraser AC.Heritablecharacters of maize.XLIV-silky ears.Journal of Heredity,1933,11:41-46),突变品种为老品种,可能携带不适于现代品种、或不适于中国特殊生态环境的连锁基因。与si1-R相比,本发明的突变体基因组背景是国内广泛应用的当代杂交玉米品种,其携带不良连锁基因的概率很小;本发明突变体使SILKY1蛋白完全失去K和C结构域,生理功能完全丧失,不存在表型部分恢复的可能。
Ambrose等人创制的其余3个silky1突变体,是利用玉米Mutator转座子插入获得的,该类型突变,存在体细胞回复突变的情况;Mutator插入突变体的另一个缺陷是该转座子可能仍然具有活性,导致突变体后代频繁产生新的突变表型。以上特点都使Mutator插入突变体遗传难以完全稳定,不利于生产应用。而本发明突变基因是两个碱基的简单缺失,不存在表型回复的可能,也不会引发新的突变,遗传稳定,完全适合生产应用。
附图说明
图1是实施例2中野生型京科糯2000和3552突变体的雄穗、雌穗和小花照片。
图2是实施例6中3552突变体SILKY1基因的突变位点及氨基酸残基改变示意图。
图3是实施例7中野生型HiIIB、3552突变体、“3552×HiIIB”F2群体中可育株和不育株SILKY1基因突变位点的PCR产物的电泳照片。
图4是实施例8的杂交转育的技术路线图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。
若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1:钴60辐射诱变突变体库
2015年秋,于长沙钴60(Co60)辐射京科糯2000种子(M0代)3公斤,10月种植于海南三亚田间,分单株收获M1代种子,共收获约5495份种子。
选取M1代种子4678个株系,每个株系种植50棵单株。2016年春季,种植于海南临高田间。在孕穗期、抽穗期、开花期、灌浆期等经过仔细观察田间性状,筛查株型、穗型、育性、产量等各种类型突变体,对各类型突变体单株收种保存作为特殊突变体。
实施例2:M2代种植与性状观察
在M2代抽穗、开花期间,在田间对花药的形态进行观察,选取颜色浅白、形态小、花粉量小等表现异常的花药在显微镜下进行进一步镜检。在编号为3552的家系中发现1株育性异常的植株,该突变体在营养生长、抽穗期、穗型均与野生型没有明显区别,雄花中没有花药(图1E),部分雄穗小花有丝状结构长出(图1A,1F),与野生型相比,雌穗花丝非常浓密(图1C,1D),每个雌穗小花长出多个花丝(图1G)。开放授粉下,雌穗结实正常。该突变体与已报道silky1突变体表型一致(Ambrose BA,Lerner DR,Ciceri P,Padilla CM,YanofskyMF,Schmidt RJ.Molecular and genetic analyses of the Silky1gene revealconservation in floral organ specification between eudicots andmonocots.Molecular cell 2000;5:569-79)。
实施例3:自交和异交
开放授粉以及以玉米自交系HiIIB为父本授粉,3552突变体均可正常结实。表明该突变体为雄性不育突变体。
“3552×HiIIB”F1代自交得到F2代种子,种植F2代植株314株,将雄小花解剖后观察,其中232株雄花正常,82株无雄蕊,符合3:1分离,表明该不育性状由单个隐性基因控制。
实施例4:叶片采样与DNA提取
本项研究采用CTAB法提取水稻叶片DNA,具体方法如下:称取约0.1g叶片,放入离心管,加入600μL CTAB提取缓冲液,5μL RNase A,震荡分散,65℃水浴0.5hr,其间轻摇2-3次;加入等体积氯仿/Tris-饱和酚(1:1,v/v),混匀,轻摇10min;4℃10000rpm离心20min;转移上清至新管,加入1/10体积的3M乙酸钠(pH值5.2)、0.6-1倍体积的冷异丙醇;轻摇混匀,至絮状沉淀出现;4℃10000rpm离心10min;弃去上清,用体积百分含量70%乙醇洗沉淀2次;风干,加入50μL 1×TE溶解沉淀,-20℃保存。用Nanodrop2000检测DNA浓度,稀释至10ng/L用作PCR模板。
实施例5:PCR反应与产物回收
根据玉米SILKY1基因序列合成特异引物扩增野生型京科糯2000和突变体DNA。
用于扩增SILKY1的引物对序列见表1:
表1用于扩增MSP1的引物对序列
引物对名称 正向引物 反向引物
Silky1_1 ACGGCACCCACAATACGG GCCTCCAGCGTCTCGAT
Silky1_2 TTGGTTCAATCGCAGCAT AATTCATGTAAACTCGCGGAT
Silky1_3 TGGATCCGCGAGTTTACATGA ATTAGATGCATTGACACTGGG
Silky1_4 AAACCCTAATCTCTTGCG CATAAGATACGGTCTCTAGCC
Silky1_5 TTTTCAGTACCATGTGATCAGC ACATAAAACTATGCATTGGCT
Silky1_6 GGTAAGAAAATCTAGCATTATCGG CACACTACAGAGTCCTTGC
Silky1_7 ATGCAAAGCGCTAGCTGT TCAGCAACAATGCAAGGTC
Silky1_8 TTACATACTGATGATAGATCTCCG GGTTAAGTCTCACGAATGTAG
Silky1_9 AGTAATAACCGAATAAGGCCTCATG TGCATTGCATTGCTTACTTGCT
PCR反应体系为:1μL 10×反应缓冲液,0.25μL dNTP,0.25μL正向引物和0.25μL反向引物,0.5U Taq酶,1μL 10ng/μL模板DNA,加超纯水将总体积补至10μL。PCR反应程序为:94-98℃变性1-3min,然后执行以下循环:95℃变性20s,53-58℃复性20s,72℃延伸30s,30-40个循环。循环结束后72℃补充延伸3-10min,结束反应。配置1.5%琼脂糖凝胶,在5V/cm电场下电泳30min;采用市面DNA凝胶回收试剂盒回收PCR产物。
实施例6:DNA序列分析
将回收所得野生型与突变体的PCR产物DNA采用ABI3730测序仪进行测序,测序引物分别使用正向引物与反向引物。使用常见DNA序列分析软件DNAman6.0对双向测序结果进行拼接;将3552突变体的SILKY1等位基因记为silky1-3552。对野生型和突变体序列进行比对发现,在玉米SILKY1基因的编码区第239位碱基,即基因组序列中起始密码子起第373位碱基后插入2个碱基GA(参见图2三角形号处);蛋白序列分析比对显示,该突变引起了SILKY1蛋白从第81位氨基酸残基起发生移码突变,并在第91个氨基酸残基之后形成终止密码子而提前终止蛋白翻译(参见图2星号位置)。这一移码和删除突变,导致SILKY1中的K结构域(第89-154氨基酸,Ambrose BA,Lerner DR,Ciceri P,Padilla CM,Yanofsky MF,Schmidt RJ.Molecular and genetic analyses of the Silky1gene revealconservation in floral organ specification between eudicots andmonocots.Molecular cell,2000,5:569-79)以及之后的序列完全删除。
实施例7:突变位点分子标记设计与基因型-表型共分离鉴定
根据实施例6中得到的突变位点两侧的序列设计基因特异引物:正向引物3552_F,其核苷酸序列如SEQ ID NO.2所示;反向引物3552_R,其核苷酸序列如SEQ ID NO.3所示。
在实施例5中所述PCR反应条件下,用上述引物对扩增HiIIB、突变体3552、“3552×HiIIB”F2群体中不育株和可育株的DNA。
扩增产物在6%聚丙烯酰胺凝胶上进行电泳分离。聚丙烯酰胺凝胶电泳方法如下:(1)聚丙烯酰胺胶的配制:6%PA胶80mL,10%过硫酸胺250μL(冬天)/125μL(夏天),四甲基乙二胺(TEMED)80μL。摇匀后灌胶。用洗涤剂把玻璃板反复擦洗干净,用酒精擦净、晾干。在通风橱中将凹板涂上2%的Repel Silane后,再用酒精擦净、干燥,将另一块平板涂上0.5%的Bingding Silane 1.5mL(在1.5ml离心管中加入7.5μL Binding Silane和7.5μL冰醋酸,补足95%乙醇至1.5mL)。操作过程中,防止两块玻璃板相互污染,彻底干燥后再进行玻璃板组装、灌胶。(2)预电泳:待胶凝固后,取出梳子,洗掉上边凝胶尤其注意接缝处定要洗净。先在电泳槽下槽(阴极)装入1×TBE的电极缓冲液,将聚合的凝胶板装在电泳槽内,在上槽中注入0.5×TBE的电极缓冲液。恒定功率40W-65W,预电泳约30min。用吸管清除胶面上沉淀的尿素和气泡,插入梳子。(3)电泳:扩增产物中加入5μl 5×Loading Buffer混合后95℃变性5分钟,立刻转移到冰上冷却,吸取1.5-3μl加入上样孔;恒定功率40W-65W进行电泳,至溴酚蓝到达电泳槽底部结束。视SSR扩增产物分子量大小及差异带型的可辨程度调整电泳时间。(4)银染显色,将带胶的一块玻璃板放入10%的冰乙酸固定液中,65r/min振荡约30min,直至二甲苯腈全部脱色;蒸馏水冲洗2次,每次5min;将冲洗后的胶板放入新配制的染色液(2L水中加入2g硝酸银、3mL 37%甲醛)中65r/min摇动30min;将染色后的胶板放入蒸馏水冲洗5s,立即拿出进行显影;将胶板快速转移到4℃预冷的显影液(2L水中加入30g氢氧化钠,10ml 37%甲醛)轻轻摇动至带纹出现;将胶板置于10%的冰乙酸固定液中至无气泡产生为止;用蒸馏水冲洗2次,每次2min;室温下自然干燥后,拍照保存图像(图3)。
表型为野生型植株扩增产物的电泳带型全部为野生型京科糯2000或杂合型带型,突变体扩增产物的电泳带型全部与3552的带型相同。这一结果表明实施例6中所述突变位点与隐性核雄性不育基因是共分离的。这一结果结合该突变体的突变表型、突变位点,以及已发表文献中的表型描述,可推断3552突变体的雄性不育表型是由实施例6中所述的突变造成的。我们将3552突变体中SILKY1突变基因命名为silky1-3552。
实施例8:突变基因的杂交转育
可按图4的步骤将3552的不育等位基因silky1-3552通过杂交转育到其它玉米遗传背景中:
①杂交:
以3552为母本,与受体玉米材料为父本杂交获得F1种子;
②第一轮回交:
F1播种后获得F1植株,将F1植株与轮回亲本进行杂交,获得BC1种子;
②BC1不育基因选择(前景选择):
播种BC1种子,获得不少于500株幼苗,在幼苗期采集各单株叶片,以实施例4中所述方法提取DNA,以实施例7中所列的引物对(3552_F和3552_R)进行扩增,选取基因型为杂合的单株继续种植,弃去纯合野生型的单株;
③BC1背景选择:
采用一组(例如100个,或200个等)在3552和轮回亲本之间存在多态的,且在基因组上均匀分布的分子标记(可以是但不限于SSR、SNP、INDEL、EST、RFLP、AFLP、RAPD、SCAR等类型标记),对步骤③中选出的单株进行鉴定,选取与轮回亲本相似度高(例如大于88%相似度,或2%中选率等)的材料;
⑤第二轮回交:用步骤④中选出的单株为父本,为轮回亲本授粉,获得BC2种子;
⑥BC2的前景与背景选择:对选出的材料重复步骤③至步骤④的操作,选出与轮回亲本相似度高于选择标准(如相似度大于98%,或2%中选率等)的BC2代植株;
⑦自交获得BC2F2种子:对步骤⑥中选出的BC2植株进行自交,获得BC2F2种子;
⑧BC2F2的前景选择:将步骤⑦中获得的BC2F2种子播种,获得500株以上幼苗,在幼苗期采集叶片,以实施例4中所述方法提取DNA,以实施例7中所列的引物对(3552_F和3552_R)进行扩增、酶切和电泳,选出带型为纯合突变体和杂合型的单株继续栽培,丢弃纯合野生型的单株;
⑨BC2F2的背景选择及应用:将步骤⑧中选出的单株按照步骤④的方法进行背景筛选,选出100%背景纯合的单株。如果中选单株的3552_F/3552_R引物对扩增后酶切带型为纯合突变体,则该单株为最终目标材料,可进一步与轮回亲本杂交保存材料,或与其它玉米材料进行杂交。如果中选单株是杂合带型,可直接用于保存种质,或通过自交获得不育株用于杂交育种或制种。
SEQUENCE LISTING
<110> 海南波莲水稻基因科技有限公司
<120> 一种玉米SILKY1基因突变体及其分子鉴定方法和应用
<130> KHP171111643.5TQ
<160> 22
<170> PatentIn version 3.5
<210> 1
<211> 3926
<212> DNA
<213> 玉米
<400> 1
atggggcgcg gcaagatcga gatcaagcgg atcgagaacg ccaccaaccg ccaggtgacc 60
tactccaagc gccggacggg gatcatgaag aaggcgcgcg agctcaccgt gctctgcgac 120
gcccaggtcg ccatcatcat gttctcctcc accggcaagt accacgagtt ctgcagcccc 180
ggaaccgagt cagtactcta ctcagtagtg tactagtgcc tgctcttcct cttccatctc 240
ccctccctcc tccctgcctc cgctgcttca actcgctggc tgatcgatct gcgtgtgtgt 300
tggttggttg gttcaatcgc agcatcaaga ccatctttga ccggtaccag caggccatcg 360
ggaccagcct atggagatcg agcagtatga ggtccgtcag tgatattcgt ttccccggcc 420
ccttgcgtct ttcctttcct ttccttgctt gctgctggcc gccgcctcct ctcttttgct 480
tcgctcgctg ctttatccac atgtccatga gatgatgaga tctaaagttc taaacgattt 540
tccatgcttt attggttttg atctctctgc agaatatgca gcgcacgctg agccatctca 600
aggacatcaa tcgtggtctg cgcacagaga ttaggtcaac acagcacgga cgaacaaccg 660
ccactttcct cttcctgtga ttattcctca tatgcatgtg gattttctga gcgagatgtc 720
cccgtatact acgagggatg gatccgcgag tttacatgaa ttagctccga cctccgagca 780
cacaggcttg ctgatttgtg tgctgctgtg ctcatcaatc aggcaaagga tgggcgagga 840
tctggacagt ctggacttcg acgagctgcg tggcctcgag caaaacgtcg acgcggctct 900
caaggaggtt cgccatagga aggcacgtac aaaccctaat ctcttgcgtt ttttttctga 960
ctcccctagt cctagctggc taggtagatc tgtcatatct cttctgcggg ctgatgatgc 1020
gctcttcaga tctgttcata tttcatgctc cttgctgctg gtagatcttt gctcatgcct 1080
tctgattcgg ctttgaatct tgtttttgaa gccatcatta gatagatctc tctggcgtgt 1140
tgttcgcagt taaaaaaaaa ggagatttag gattctttac tgggagagag atatatattc 1200
atctcttgta cacaaattca gtcccagact tcccagtgtc catgcatcta attaagtcct 1260
gtcaaataaa agtttctttc tttctttacc tacctcaaac aaaaacattt agccctgatt 1320
caatattttt ctattggttt actagaattg gatggatctt gttctcaaaa gaaaaggtgg 1380
ggtaaaagaa aattgttgct tgtaattttt tttagaatct tgaataattt catctcatca 1440
tgtccatgtt ttagtcttac ctacctcttt tgctgatccc ttctctcgtt tgatttttca 1500
gtaccatgtg atcagcacgc agactgatac ctacaagaaa aaggtaagaa aatctagcat 1560
tatcggctaa gtacatagat tttcttatac gtcaattggg caagagtttg agagctagct 1620
tagctgcccc caatttggta cagaacagaa atttatttac ctgcatatcg atctatatat 1680
aataatgggt ttaataatac tatacctagt tcctccttta gttctttacc tttcacatgt 1740
gaccagtttc ttgatttgat atgttggtca tagaaacgtt tccaaaacag ctctcacaac 1800
actagccaat gcatagtttt atgttcatca tccttttctc tctcttttta agctactaca 1860
tccagctttt cttatgtctt atttaagcat ggattctttt aaataagata gaaacagctg 1920
ataatttgct tacaaataaa taaatatccc ctgccaacac ttgtcttaac acaatatata 1980
ccaacagaac cgagcagaca cttgaaaatt tgtccttgca cgtttgttga ctcttcaagt 2040
agtgatgaaa gcaaatatcc gacaggcacc accacgcctc aaaccgaaaa tcagcaacct 2100
atctagctgt tgtccagtgt acattaccat gcatgtctgt gcatttccac actcaactac 2160
tcctttcccc catgtcaatc agcatctgag gcgctctact gaaggtagct ccacgttgta 2220
gtagagaacc ggccgctaga tctcttggcc catctcatgt gctcgatcgc actcgtccac 2280
acatgtatat atgcaaagcg ctagctgtat ccaatcagta ggcgcattgg cctctgtctt 2340
ttagaagcta ggatgaattg agcacgagca aggactctgt agtgtgttgg agcatccatg 2400
catacgacgc atgcgtcgtc gtctgcatgc gtgtctctct cgtcaagcct gtggtggcta 2460
gctagctagc taaggctgca tgccgcctac agatcatgac atgctagcta gcttatttgg 2520
tccccgtgct actagctatc agctgggagt agcatgttaa gcgctgattt ttatggtgtt 2580
gcaccgtggc atgatatgca cccacagatg aggaccgagg gtgtaggctt tatgatttgc 2640
agaggtatgg aaatgggact cattagtgtg gaagtacttt tgcttgattg tcattactga 2700
atgtatgtag tctgtcaata cgtacacagc gccatgtact gtgtatattg actgaaacgt 2760
acgttgcatc atatccagct catctccaaa tcagccaaat atttctttct ctctctatat 2820
atatatcact gaaatgttgt ccatgagata catgcaaata gctagcttac cctttctttt 2880
gagctatcag tttcatagta tgcatgcctg ttcttccact cccgcaatca taaatagtat 2940
gtaatataca ttgcagctat atatgtttgt tcaaaaacaa aatgcggtaa gaatgactga 3000
gttattttcg ttggcggaaa gaaagcattt atgtttctta acttcgtaca gaaactccaa 3060
tggggtatca gactatatat ttaccaaacg ttagtgtaca gaaactatct taggccttgt 3120
ttggatactc tcaaattcac ctcaatctat gtgtactgat gtggattaga gtgtaaatta 3180
gtttaagtta tatctcaata cacgtcgatt ggggtgaaca tgaaagtatc taaataaggc 3240
cttagtggca gtaggacgta ggttctgagc aaacgaagaa gacctttttt aatctatttc 3300
tcatgaattg aaccacttca gtgcctgtta cttatggatt aggtaagttt aaatccataa 3360
caagttaaaa tctctactgt tttgttttca atttcatcct atctatgtgg tgtagtaata 3420
accgaataag gcctcatgca tggtttattt gttgtgttag aatttataat atacatttat 3480
tctatagagc ggctttttcc tttgatacga ttcaatcgat cgaccttgca ttgttgctga 3540
attacactgc tcgtatgtgc tgtgcgcata cgtacgtaca ttgcaggtga agcactcgca 3600
cgaggcgtac aagaacctgc agcaggagct agtgcgtttt tcattacact aactatactg 3660
atgatagata tctccgctaa taagcttagc gctggtcgat cgatgtgtac gtctaattaa 3720
tccacgagct tcttggactc ctttagggca tgcgggagga cccggcgttc gggtacgtgg 3780
acaacacggg cgccggcgtc gcctgggacg gcgcggcggc ggcgctgggc ggcgccccgc 3840
cggacatgta cgccttccgc gtggtgccca gccagcccaa cctgcacggc atggcctacg 3900
gcttccacga cctccgcctg ggctag 3926
<210> 2
<211> 21
<212> DNA
<213> 人工序列
<400> 2
cgtgtgtgtt ggttggttgg t 21
<210> 3
<211> 22
<212> DNA
<213> 人工序列
<400> 3
gacggacctc atactgctcg at 22
<210> 4
<211> 91
<212> PRT
<213> 玉米
<400> 4
Met Gly Arg Gly Lys Ile Glu Ile Lys Arg Ile Glu Asn Ala Thr Asn
1 5 10 15
Arg Gln Val Thr Tyr Ser Lys Arg Arg Thr Gly Ile Met Lys Lys Ala
20 25 30
Arg Glu Leu Thr Val Leu Cys Asp Ala Gln Val Ala Ile Ile Met Phe
35 40 45
Ser Ser Thr Gly Lys Tyr His Glu Phe Cys Ser Pro Gly Thr Asp Ile
50 55 60
Lys Thr Ile Phe Asp Arg Tyr Gln Gln Ala Ile Gly Thr Ser Leu Trp
65 70 75 80
Arg Ser Ser Ser Met Arg Ile Cys Ser Ala Arg
85 90
<210> 5
<211> 18
<212> DNA
<213> 人工序列
<400> 5
acggcaccca caatacgg 18
<210> 6
<211> 17
<212> DNA
<213> 人工序列
<400> 6
gcctccagcg tctcgat 17
<210> 7
<211> 18
<212> DNA
<213> 人工序列
<400> 7
ttggttcaat cgcagcat 18
<210> 8
<211> 21
<212> DNA
<213> 人工序列
<400> 8
aattcatgta aactcgcgga t 21
<210> 9
<211> 21
<212> DNA
<213> 人工序列
<400> 9
tggatccgcg agtttacatg a 21
<210> 10
<211> 21
<212> DNA
<213> 人工序列
<400> 10
attagatgca ttgacactgg g 21
<210> 11
<211> 18
<212> DNA
<213> 人工序列
<400> 11
aaaccctaat ctcttgcg 18
<210> 12
<211> 21
<212> DNA
<213> 人工序列
<400> 12
cataagatac ggtctctagc c 21
<210> 13
<211> 22
<212> DNA
<213> 人工序列
<400> 13
ttttcagtac catgtgatca gc 22
<210> 14
<211> 21
<212> DNA
<213> 人工序列
<400> 14
acataaaact atgcattggc t 21
<210> 15
<211> 24
<212> DNA
<213> 人工序列
<400> 15
ggtaagaaaa tctagcatta tcgg 24
<210> 16
<211> 19
<212> DNA
<213> 人工序列
<400> 16
cacactacag agtccttgc 19
<210> 17
<211> 18
<212> DNA
<213> 人工序列
<400> 17
atgcaaagcg ctagctgt 18
<210> 18
<211> 19
<212> DNA
<213> 人工序列
<400> 18
tcagcaacaa tgcaaggtc 19
<210> 19
<211> 24
<212> DNA
<213> 人工序列
<400> 19
ttacatactg atgatagatc tccg 24
<210> 20
<211> 21
<212> DNA
<213> 人工序列
<400> 20
ggttaagtct cacgaatgta g 21
<210> 21
<211> 25
<212> DNA
<213> 人工序列
<400> 21
agtaataacc gaataaggcc tcatg 25
<210> 22
<211> 22
<212> DNA
<213> 人工序列
<400> 22
tgcattgcat tgcttacttg ct 22

Claims (10)

1.一种玉米SILKY1基因突变体silky1-3552,其为玉米SILKY1基因在编码区第239个碱基后插入两个碱基GA,该突变位点位于第二外显子上。
2.如权利要求1所述玉米SILKY1基因突变体silky1-3552,其核苷酸序列如SEQ IDNo.1所示。
3.含有权利要求1或2所述SILKY1基因突变体silky1-3552的表达载体。
4.含有权利要求3所述表达载体的宿主细胞。
5.权利要求1或2所述的玉米SILKY1基因突变体silky1-3552在制备转基因植物中的应用。
6.权利要求1或2所述的玉米SILKY1基因突变体silky1-3552在制备隐性雄性核不育的转基因水稻中的应用。
7.权利要求1或2所述的玉米SILKY1基因突变体silky1-3552在玉米改良育种、制种中的应用。
8.检测权利要求1或2所述的玉米SILKY1基因突变体silky1-3552的分子标记,其特征在于,该分子标记是由以下引物对扩增得到,所述引物对的核苷酸序列为:
上游引物3552_F:CGTGTGTGTTGGTTGGTTGGT(如SEQ ID NO.2所示);
下游引物3552_R:GACGGACCTCATACTGCTCGAT(如SEQ ID NO.3所示)。
9.权利要求8所述的分子标记在制备隐性雄性核不育的转基因玉米中的应用。
10.权利要求1或2所述的玉米SILKY1基因突变体silky1-3552的分子标记的方法,其特征在于,通过下述引物对扩增待检植物基因组DNA,并检测扩增产物:
所述引物对的核苷酸序列为:
上游引物3552_F:CGTGTGTGTTGGTTGGTTGGT(如SEQ ID NO.2所示);
下游引物3552_R:GACGGACCTCATACTGCTCGAT(如SEQ ID NO.3所示);
如果用上述引物对能够扩增出比野生型京科糯2000扩增产物长2bp的片段,则标志着该待检植物存在玉米SILKY1基因突变体silky1-3552。
CN201710199138.2A 2017-03-29 2017-03-29 一种玉米silky1基因突变体及其分子鉴定方法和应用 Active CN106754975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710199138.2A CN106754975B (zh) 2017-03-29 2017-03-29 一种玉米silky1基因突变体及其分子鉴定方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710199138.2A CN106754975B (zh) 2017-03-29 2017-03-29 一种玉米silky1基因突变体及其分子鉴定方法和应用

Publications (2)

Publication Number Publication Date
CN106754975A true CN106754975A (zh) 2017-05-31
CN106754975B CN106754975B (zh) 2017-11-03

Family

ID=58966688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710199138.2A Active CN106754975B (zh) 2017-03-29 2017-03-29 一种玉米silky1基因突变体及其分子鉴定方法和应用

Country Status (1)

Country Link
CN (1) CN106754975B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148896A1 (en) * 2007-06-07 2008-12-11 Cropdesign N.V. Yield enhancement in plants by modulation of maize mads box transcription factor silky1

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148896A1 (en) * 2007-06-07 2008-12-11 Cropdesign N.V. Yield enhancement in plants by modulation of maize mads box transcription factor silky1

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMBROSE, BA等: "Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots", 《MOLECULAR CELL》 *
申晓蒙等: "玉米花序建成相关基因及其调控网络", 《中国科学:生命科学》 *

Also Published As

Publication number Publication date
CN106754975B (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN104894144B (zh) 一种水稻cyp704b2基因突变体及其分子鉴定方法和应用
CN105002191B (zh) 一种水稻cyp704b2基因突变体及其分子鉴定方法和应用
WO2019062895A1 (zh) 玉米基因ZmABCG20在调控作物雄性育性中的应用以及与玉米雄性生育力相关的DNA分子标记及其应用
CN106434708A (zh) 一种水稻msp1基因突变体及其分子鉴定方法和应用
CN106754954B (zh) 一种玉米ms8基因突变体及其分子鉴定方法和应用
CN109439667A (zh) 玉米基因ZmABCG20在调控作物雄性育性中的应用
CN109295246B (zh) 与玉米雄性生育力相关的dna分子标记及其应用
CA2274870C (en) Control of microsporogenesis by externally inducible promoter sequences
CN102634522A (zh) 控制水稻育性的基因及其编码蛋白和应用
CN111926097A (zh) 抗虫抗除草剂玉米转化事件及其创制方法和检测方法
CN111549055A (zh) 玉米ms2基因的应用
CN114480419A (zh) 一种植物温敏不育突变体tms15及其应用
CN111676229B (zh) 一种玉米雄性核不育基因ms40及其分子标记和应用
CN108243963A (zh) 一种水稻ptc1基因缺失突变体及其分子鉴定方法和应用
CN108277211B (zh) 一种玉米ms30基因突变体及其分子鉴定方法和应用
CN109554373B (zh) 一种水稻fon2基因突变体及其分子鉴定方法和应用
US11761017B2 (en) Rice thermo-sensitive male sterile gene mutant tms18 and uses thereof
CN106754975B (zh) 一种玉米silky1基因突变体及其分子鉴定方法和应用
CN109852590B (zh) 玉米ipe1突变体及其检测方法与应用
CN115369120B (zh) 水稻温敏两用不育系育性转育起点温度调控基因及其应用
CN103704124B (zh) 非洲栽培稻细胞质雄性不育系的选育方法
CN107937363B (zh) 一种水稻穗顶退化相关蛋白激酶及其编码基因
CN112521472B (zh) 一种与水稻育性及花器官数目相关的分子标记及其应用
CN117402887B (zh) 一种玉米雄性育性调控基因ZmMS2085及其突变体与应用
WO2023016097A1 (zh) 水稻细胞质雄性不育恢复基因osrf19及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant