CN117402887B - 一种玉米雄性育性调控基因ZmMS2085及其突变体与应用 - Google Patents

一种玉米雄性育性调控基因ZmMS2085及其突变体与应用 Download PDF

Info

Publication number
CN117402887B
CN117402887B CN202210837250.5A CN202210837250A CN117402887B CN 117402887 B CN117402887 B CN 117402887B CN 202210837250 A CN202210837250 A CN 202210837250A CN 117402887 B CN117402887 B CN 117402887B
Authority
CN
China
Prior art keywords
gene
mutant
zmms
zmms2085
maize
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210837250.5A
Other languages
English (en)
Other versions
CN117402887A (zh
Inventor
李京琳
李新鹏
董叶红
吴群珠
曾翔
吴永忠
黄培劲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Bolian Rice Gene Technology Co ltd
Original Assignee
Hainan Bolian Rice Gene Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Bolian Rice Gene Technology Co ltd filed Critical Hainan Bolian Rice Gene Technology Co ltd
Priority to CN202210837250.5A priority Critical patent/CN117402887B/zh
Publication of CN117402887A publication Critical patent/CN117402887A/zh
Application granted granted Critical
Publication of CN117402887B publication Critical patent/CN117402887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于基因工程技术领域,具体涉及一种玉米雄性育性调控基因ZmMS2085及其突变体与应用。本发明提供了具有调控玉米雄性育性功能的玉米基因ZmMS2085,其CDS序列如SEQ ID NO:2所示,氨基酸序列如SEQ ID NO:3所示。本发明还提供了ZmMS2085基因的辐射诱变突变体和CRISPR敲除突变体,以及ZmMS2085基因、蛋白和突变体在杂交育种中的应用。本发明提供的玉米基因ZmMS2085可用于玉米杂交种的不育化制种和生产,具有巨大的应用价值和经济价值。

Description

一种玉米雄性育性调控基因ZmMS2085及其突变体与应用
技术领域
本发明涉及基因工程领域,具体涉及一种玉米雄性育性调控基因ZmMS2085及其突变体与应用。更具体地,本发明涉及植物雄性育性调控基因ZmMS2085、ZmMS2085编码蛋白、ZmMS2085的辐射诱变和基因敲除突变体,以及ZmMS2085基因、蛋白和突变体在杂交育种中的应用。
背景技术
植物雄性不育突变是自然界中十分普遍的现象,至少己在43个科、162个属的617个物种中发现了雄性不育突变体。在遗传上植物雄性不育分为细胞核雄性不育、细胞质雄性不育和细胞核细胞质互作雄性不育三大类:(1)细胞核雄性不育由细胞核基因突变产生,可分为显性突变和隐性突变,也可分为孢子体基因突变和配子体基因突变。其中,显性突变和配子体基因突变只能通过雌配子遗传;隐性突变既可通过雌配子也可通过雄配子进行遗传,而且遵循孟德尔定律。目前已克隆了一些孢子体隐性核不育基因,如拟南芥的MS2,玉米的MS45和玉米的MIL1等;一些配子体隐性核不育基因也被克隆,如拟南芥的两个小孢子有丝分裂异常的突变体sidecar pollen和gemini pollen;玉米上还克隆了一个孢子体显性核不育基因MS44。(2)细胞质雄性不育则是由细胞质基因控制,并没有相对应的核恢复基因,属于母性遗传。(3)细胞核细胞质互作雄性不育由细胞质基因和细胞核基因共同控制,其实质是细胞质与细胞核的遗传物质不匹配的结果。不育细胞质是由一些线粒体基因突变引起,但有相对应的核恢复基因,能够抑制不育细胞质基因;不育细胞质基因可产生新的蛋白质,能够影响线粒体正常功能。在育恢复基因方面,目前玉米中已经克隆了Rf-1,Rf-2,Rf-4,Rf-5等基因。
玉米是杂种优势利用的典范,其中杂交育种和制种技术的关键均在于母本的去雄。人工去雄相对容易,可以使用机械去雄、化学杀雄等方法,但是这些策略也存在一些问题:一方面使用这些方法大大增加了制种的成本,另一方面因人工去雄的不彻底或不及时,会降低杂交种的纯度,造成生产上的大面积减产,最终造成经济损失。因此,提高杂交种种子纯度是当前玉米生产上急待解决的问题,而利用雄性不育系制种是提高杂交种质量最为有效的途径之一。
玉米核雄性不育材料是一种宝贵的种质资源,对玉米杂交种生产具有极其重要的意义,但长期以来,由于纯合核雄性不育系无法繁殖保持等问题,这类材料在实际生产上一直没有得到有效的利用。随着新的核雄性不育材料的不断发现,玉米育种家对其进行了多方面的研究和应用方面的尝试,如利用标记性状与不育性的紧密连锁关系,开发了粒色标记系统法、黄绿苗连锁标记法和多花丝连锁标记体系等,但是由于标记性状与不育性连锁不完全、标记性状鉴定困难、鉴定时期滞后等问题,这些方法和尝试核不育材料在玉米生产中的应用并没有得到推广。
发明内容
为了克服目前杂交玉米育制种技术中存在的关键性缺陷,创造和利用新类型的不育系将是重要的突破口。本发明提供了一种作物育性基因及基于该基因突变所产生的隐性核不育类型的雄性不育系。
该不育系育性稳定,只受核编码的单基因调控,不受光温环境的影响。该不育系的育性恢复基因广泛存在于玉米种质资源中,也可以通过转野生型基因恢复育性。该基因和该基因突变产生的不育系为研发玉米新型杂交育制种技术提供了元件,为解决现有技术存在的问题奠定了基础。下文描述的任何方法都可与本发明所提供的相应核苷酸序列一起使用,例如,将所述雄性育性基因的突变体序列引入植株以导致植株雄性不育、使植株内源序列突变、向植株中引入该序列的反义序列、使用发卡形式、或将其与其它核苷酸序列连接起来调控植株的表型,或者是本领域技术人员已知的可用于影响植株的雄性生育力的多种方法中的任一方法。
具体的,本发明通过对玉米突变株的大量筛选和分析后,发现了花粉败育调控基因ZmMS2085,其位于玉米第6号染色体上,其在B73中的基因组核苷酸序列如SEQ ID NO:1所示,CDS序列如SEQ ID NO:2所示,氨基酸序列如SEQ ID NO:3所示。上述所提到的雄性育性基因可从种植物中分离获得。本领域技术人员应该知晓,本发明所述的雄性育性恢复基因包括与ZmMS2085基因高度同源,并且具有同样的雄性育性调控功能的高度同源的功能等价序列。所述高度同源的功能等价序列包括在严谨条件下能够与本发明所公开的ZmMS2085基因的核苷酸序列杂交的DNA序列。
本发明中所使用的“严谨条件”是公知的,包括诸如在含400mM NaCl、40mM PIPES(pH6.4)和l mM EDTA的杂交液中于60℃杂交12-16小时,然后在65℃下用含0.1%SDS、和0.1×SSC的洗涤液洗涤15-60分钟。
功能等价序列还包括与本发明所公开的ZmMS2085基因所示的序列有至少85%、90%、95%、96%、97%、98%、或99%序列相似性,且具有雄性育性调控功能的DNA序列,可以从任何植物中分离获得。其中,序列相似性的百分比可以通过公知的生物信息学算法来获得,包括Myers和Miller算法(Bioinformatics,4(1):1117,1988)、Needleman-Wunsch全局比对法(J Mol Biol,48(3):443-453,1970)、Smith-Waterman局部比对法(J Mol Biol,147:195-197,1981)、Pearson和Lipman相似性搜索法(PNAS,85(8):2444-2448,1988)、Karlin和Altschul的算法(Altschul等,J Mol Biol,215(3):403-410,1990;PNAS,90:5873-5877,1993)。这对于本领域技术人员来说是熟悉的。
基于上述发现,第一方面,本发明提供用于调控植物雄性育性的核苷酸片段,所述核苷酸片段为以下任一:
(1)具有SEQ ID NO:1所示的核苷酸序列;
(2)具有SEQ ID NO:2所示的核苷酸序列;
(3)在严格条件下能够与(1)-(2)中任一核苷酸序列杂交的核苷酸序列;或
(4)与(1)-(3)之任一所述核苷酸序列互补的片段;或
(5)在(1)-(3)之任一所述核苷酸序列的基础之上,经过一至数个碱基替换和/或一至数个碱基的插入和/或缺失以及大片段的核苷酸序列插入/缺失/易位/倒位所形成能够影响植物雄性器官生育能力的片段;或
(6)与(1)-(3)之任一所述核苷酸序列具有85%以上的同一性且编码玉米雄性育性相关蛋白的片段。
本发明提供上述核苷酸片段编码的蛋白,所述蛋白为以下任一:
1)所述蛋白的氨基酸序列如SEQ ID NO:3所示;
2)所述蛋白为:将SEQ ID NO:3经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有调控植物雄性育性活性的蛋白。
本发明提供一种生物材料,含有上述的核苷酸片段;所述生物材料为表达盒,表达载体、工程菌、或转基因细胞系,所述转基因细胞系不能繁殖为植物。
本发明的第二方面是提供通过影响ZmMS2085的核苷酸序列或者通过调控ZmMS2085基因的转录表达从而影响植株雄性育性的方法。所述影响植株雄性育性是指通过调控ZmMS2085基因的表达,从而使所述植株的雄性育性发生改变,如导致植株雄性不育。具体地,取决于实际应用需求,可以通过多种方法来影响ZmMS2085基因在植物体内的表达,从而达到调控植株雄性育性的效果。更具体地,调控ZmMS2085基因的表达可以使用许多本领域普通技术人员可获得的工具进行,例如,通过理化诱变、插入突变、基因打靶敲除、反义基因的转入、共抑制或发夹结构的引入等,都可以用于破坏ZmMS2085基因的正常表达,从而获得雄性不育的植株。另一方面,本发明还包括通过将野生型ZmMS2085的核苷酸序列引入植株来恢复ZmMS2085表达被破坏的植株的雄性生育力。
本发明提供一种突变体,含有所述突变体的植株表现为雄性不育,所述突变体的核苷酸序列为:以如SEQ ID NO:1或2任一所示的核苷酸序列进行突变获得;
获得所述突变体的突变方式为点突变、DNA缺失、插入或取代突变、反义基因的转入、共抑制或发夹结构的引入或通过基因沉默手段产生的突变。
具体地,所述突变体是通过突变玉米内源的ZmMS2085基因,或突变与其高度同源的基因的核苷酸序列,使该植物体丧失雄性育性的过程。所述“突变”包括但不限于以下方法,如用物理或化学的方法导致的基因突变,所述突变可以是点突变,也可以是DNA缺失或插入突变。突变还可以是通过RNAi、CRSPR-Cas9、人工核酸酶、定点突变等基因沉默手段产生。
作为优选,所述的突变体材料通过CRISPR-Cas9方法制得,在所述CRISPR-Cas9方法中,根据所述核苷酸序列如SEQ ID NO:1或2的CDS序列选择靶标序列;靶标序列的反向互补链具有5’-(N)X-NGG-3’结构,所述N表示A,T,C和G中的任意一个,所述X为19或20。
更具体地,制备本发明所提供的突变体的方法包括:采用CRISPR-Cas9方法,以靶位点1的序列:TCGATGTCCCTATGAAGCTC和/或靶位点2的序列:AGGAGCTAGCTTCTGGTCGG为靶位点,造成靶位点或靶位点及相邻核苷酸序列突变,得到所述突变体;
优选地,在所述的靶位点1和靶位点2或靶位点及相邻区域内具有以下1)和/或2)中的1种或多种突变:
1)在靶位点1或靶位点1及相邻序列内发生了G、GAAG碱基缺失突变,或T碱基插入突变,或从CTCAGGA到TTCGGAA或从CTCAGGAGTCACTTGACAATATTCTTCTAGATCTATA到CTCGGAAGCCCCTGGCCATTTTCCTCCAAAAACCTTTC序列替换突变;
2)在靶位点2或靶位点2及相邻序列内发生了G或T碱基插入突变,或A碱基缺失突变,或从AGCTTCTGGTCGGTGGAAAACAA AACTGTCTAAATCT到CTATTATG或从AGCTTCTGGTCGGTGG到AACCTCTCGGGGCG序列替换突变。
更具体地,本发明所提供的突变体为在玉米基因组版本Zm-B73-REFERENCE-NAM-5.0第6号染色体第14747788位碱基后插入了GA两个碱基;优选地,所述突变体生物核苷酸序列如SEQ ID NO:4所示,CDS序列如SEQ ID NO:5所示,氨基酸序列如SEQ ID NO:6所示。
本发明还请求保护,使靶位点或靶位点及相邻核苷酸序列突变后得到的植物。
所述植物包括但不限于芸苔属、玉米、小麦、高梁、短药野生稻、非洲栽培稻、短柄草属、两节荠属、白芥、草麻子、芝麻、棉籽、亚麻子、大豆、拟南芥属、菜豆属、花生、苜蓿、燕麦、油菜籽、大麦、燕麦、黑麦(Rye)、小米、蜀黍、小黑麦、单粒小麦、斯卑尔脱小麦(Spelt)、二粒小麦、亚麻、格兰马草(Gramma grass)、摩擦禾、假蜀黍、羊茅、多年生麦草、甘廉、红莓苔子、番木瓜、香蕉、红花、油棕、香瓜、苹果、黄瓜、石角斗、剑兰、菊花、百合科、棉花、校、向日葵、芸苔、甜菜、咖啡、观赏植物和松类等。优选地,所述植物包括玉米、小米、拟南芥、二穗短柄草、大豆、红花、芥菜、小麦、大麦、黑麦、短药野生稻、非洲栽培稻、棉花和高粱。
第三方面,本发明还提供一种适用于CRISPR/Cas9系统对植物ZmMS2085基因进行定向敲除的靶位点,所述靶位点包括:靶位点1:TCGATGTCCCTATGAAGCTC和/或靶位点2的序列:AGGAGCTAGCTTCTGGTCGG。
本发明提供特异性靶向上述靶位点的sgRNA。
本发明还提供含有上述sgRNA的DNA序列的CRISPR/Cas9打靶载体。
根据本领域技术人员的理解,本发明请求保护上述的核苷酸片段或其编码蛋白或含有其的生物材料或上述的突变体或上述的靶位点或上述的sgRNA或上述的CRISPR/Cas9打靶载体在以下任一项中的应用:
(1)在调控植物雄性育性性状中的应用;
其中所述ZmMS2085基因用于恢复作物植株雄性不育,以便导入外源基因以获得优质的转基因作物。
(2)在作物种质资源改良中的应用,所述改良包括研发新杂交育制种技术,提高作物产量、提高作物品质、提高作物抗病虫害、抗逆、抗倒伏能力;
(3)在转育带有纯合zmms2085突变基因的隐性核雄性不育系中的应用。
与现有技术相比,本发明具有如下的有益效果:本发明提供的玉米花粉发育调控基因ZmMS2085直接参与花粉发育调控,该基因被敲除或表达受到抑制后,花粉完全不育。Zmms2085不育突变体与现有三系和两系不育系相比不育性状稳定,不受环境条件影响。通过植物生物技术途径,本发明在农作物的杂种优势利用和不育化杂交种制种生产中都将发挥重要作用。
附图说明
图1为灌浆期野生型(左)和zmms2085突变体(右)的植株形态。
图2为野生型(左)和zmms2085突变体(右)的小穗形态。
图3为野生型(左)和zmms2085突变体(右)的花药形态。
图4为野生型和zmms2085突变体花粉碘染。
图5为ZmMS2085基因图位克隆图。
图6为zmms2085突变体碱基插入示意图。
图7为ZmMS2085在玉米不同组织中的相对表达量。
图8为ZmMS2085敲除载体示意图。T1代表靶位点1,T2代表靶位点2。
图9为ZmMS2085敲除植株和阴性对照株的表型对比。
图10为pC3300-ZmMS2085载体示意图。
图11为zmms2085突变体和互补植株的表型对比。
图12为pC3301-MS2085-CDS载体示意图。
图13为ZmMS2085在超表达植株中的相对定量分析。
具体实施方式
以下的实施例便于更好地理解本发明,但并不限定本发明的应用范围。下述实施例中的所有技术和科学术语,如无特殊说明,均为本发明所属领域普通技术人员通常所理解的相同含义。除非有相反指明,本发明所使用或提及的技术均为本领域普通技术人员公认的标准技术。所述试验材料,如无特别注明,均为本发明领域通用的试验材料。下述实施例中所用的试验试剂,如无特殊说明,均为自常规生化试剂商店购买得到的。
本发明所述的雄性不育,特指由植物细胞核基因发生功能变化导致植物雄性生殖器官发育出现异常(无法产生正常雄蕊、花药或者正常的雄性配子体)并出现育性的丧失,即通常所说的雄性核不育(Genic male sterility)而非细胞质核不育(Cytoplasmic malesterility)。雄性生殖器官育性的异常和恢复均由细胞核内的基因加以控制。
因此,本发明也包括利用序列表所述序列调控植株的雄配子的生育能力,即利用本发明提供的基因序列在基因组、和/或转录组、和/或蛋白质组水平影响其它植物中相同或同源基因的功能从而达到控制雄性生殖器官育性的目的。例如,下述方法但不限于下述方法:通过天然序列的变异导致基因表达抑制或蛋白质功能的丧失、通过向植物中转入所述基因的反义序列或引入发卡结构、或将所述基因与其它序列(DNA或RNA)相结合产生新的具有功能活性的DNA或RNA链,来影响或改变植物基因的功能。或其它本领域技术人员己知的可用于影响植物雄性育性的技术方法中的任何一种技术方法。
本发明包括玉米ZmMS2085基因,其显性等位基因对植物雄花育性具有关键作用,功能缺失性的隐性等位基因会导致雄性不育。该基因位于玉米6号染色体,其基因具体位置如图6所示。
下文通过说明和阐述提供了更为详细的描述,但这并非意欲对本发明的范围加以限制。
实施例1玉米雄性不育突变体zmms2085的筛选
本实施例提供玉米雄性不育突变体zmms2085的筛选过程:
将3千克玉米京科糯2000干种子送至湖南省农业科学院用钴60进行辐射,辐射总剂量为250伦琴(Gy),得到M0代并种植于海南省三亚市育种基地,成熟后分单株收种,共获得M1代材料约5493份。将种子数超过100粒的M1代材料种植成株系,共计4678份,每个株系种50个单株。分别在分蘖期、孕穗期、抽穗期、开花期、灌浆期筛选株型、穗型、育性、产量等各种类型突变体,并收种保存。其中一个突变体2085表现为雄性不育,被命名为zmms2085。
实施例2玉米雄性不育突变体zmms2085的表型分析
本实施例提供玉米雄性不育突变体zmms2085的表型分析,表型分析结果显示:
与野生型相比,zmms2085突变体植株(图1)和小穗(图2)形态正常,花期稍迟。体式显微镜下观察突变体雄小花形态,发现zmms2085的花药比野生型瘦小,颜色较浅(图3)。用碘-碘化钾溶液(0.6%KI,0.3%I2,w/w)溶液对花粉进行染色,突变体花粉粒小、少、不规则并且不能被染色(图4的B),而野生型花粉粒大而圆并且被染成蓝黑色(图4的A)。同一家系野生型植株套袋自交后正常结实,而zmms2085突变体不结实。而以野生型京科糯2000为父本给zmms2085突变体授粉则可以结实。这表明该突变体为雄性不育突变体。
实施例3玉米雄性不育突变体zmms2085的遗传分析
本实施例提供玉米雄性不育突变体zmms2085的遗传分析,遗传分析结果显示:
在M3代种植zmms2085的分离群体368株,其中277株育性正常,91株不育。可育与不育株分离比符合3:1(χ2=0.08,P<0.05)。用zmms2085与野生型京科糯2000杂交,F1代植株全部可育。在F2代种植zmms2085的分离群体511株,其中383株育性正常,128株不育,可育与不育株分离比符合3:1(χ2=1.06,P<0.05)。上述结果表明zmms2085的不育性状是由隐性单基因控制。
实施例4玉米雄性不育基因ZmMS2085的定位
本实施例使用图位克隆的方法对ZmMS2085基因进行定位。以2085的M3分离群体为定位群体,将ZmMS2085定位于6号染色体的两个In/Del标记6.006和6.092之间(图5)。ZmMS2085基因与上述两个标记之间的交换单株分别为3个,25个。选取M3的杂合单株发展形成一个包含561株雄性不育单株的M4群体,使用位于标记6.006与6.092间的标记6.032检测该M4群体,检测到11个交换单株;推测目标基因位于标记6.006与6.032间。通过大量筛选获得4个位于目标区段的多态标记6.008、6.011、6.018、6.025并检测M4群体,分别检测到1株、0株、1株和5株交换单株,其中6.008与6.018物理距离为10Mbp(图5)。在maizeGDB数据库(https://www.maizegdb.org/)中分析候选基因,选取5个在花中高表达的基因作为候选基因(Zm00001eb260590、Zm00001eb261270、Zm00001eb261430、Zm00001eb261800、Zm00001eb261840),分别扩增突变体和京科糯2000。其中一个候选基因Zm00001eb261800的测序结果与对照有差异,将其作为重点进行分析。用于扩增Zm00001eb261800基因的引物序列见下表1:
表1用于扩增Zm00001eb261800基因的引物序列
引物对名称 引物序列
2085_F1 TTGGCTAGGCTTCAAGTCCTC(SEQ ID NO:7)
2085_R1 GCAGGCTACGACTAATTGCT(SEQ ID NO:8)
2085_F2 TGAAGTTGTCAATCGCCTCC(SEQ ID NO:9)
2085_R2 ACATGCCATTTGAGAAAACTCG(SEQ ID NO:10)
2085_F3 ATGGACCTATAATCCCTCCGTA(SEQ ID NO:11)
2085_R3 CAATTGCTGGTCATCCTTCGC(SEQ ID NO:12)
2085_F4 CTCCAACTGAAAGCTTGCCAA(SEQ ID NO:13)
2085_R4 ACAGAAGCAACTGAAGCGAAA(SEQ ID NO:14)
PCR反应体系为:1μL 10×反应缓冲液,0.25μL dNTP,0.25μL正向引物和0.25μL反向引物,0.5U Taq酶,1μL 10ng/μL模板DNA,加超纯水将总体积补至10μL。
将回收所得的PCR产物DNA采用ABI3730测序仪进行测序,测序引物分别使用正向引物与反向引物。使用常见DNA序列分析软件DNAman6.0对双向测序结果进行拼接,用DNAman6.0分别比对各基因在突变体和京科糯2000间的序列,结果如图6所示。在突变体中,Zm00001eb261800基因的编码区第5外显子的第1890位碱基后插入了GA两个碱基,造成其后的碱基移码突变,因此将Zm00001eb261800作为候选基因,并命名为ZmMS2085。
实施例5 ZmMS2085基因的表达分析
根据ZmMS2085的基因组和编码区核苷酸序列设计跨内含子的引物2085_RTF:CCATGGATTCGCCCTACGTG(SEQ ID NO:23)和2085_RTR:GCCATATCCTTCAATGCGCTCT(SEQ IDNO:24),同时以玉米Actin 1基因作为内参对照设计引物ACT-ACF1:CATGGAGAACTGGCATCACACCTT(SEQ ID NO:25)和ACT-ACR1:CTGCGTCATTTTCTCTCTGTTGGC(SEQID NO:26)。采取实时定量PCR方法进行表达量分析。
cDNA合成:取B104的茎、叶、雄小花和雌小花,液氮运输,-80℃保存;用TRI zolRNA提取试剂盒(Invitrogen,美国)分别提取上述组织RNA,立即用PrimeScript RT reagent试剂盒(TaKaRa,大连),按照操作说明将RNA反转录为cDNA。
荧光定量PCR:采用MonAmpTM Green Master Mix(莫纳生物,苏州)试剂盒,用PikoReal 96荧光定量PCR仪(Thermo Fisher,美国)扩增和检测荧光。以叶片为对照组,用2-ΔΔCT方法计算各样品中ZmMS2085的相对表达量。荧光定量PCR反应体系如下:SYBRGreen Mix 5μL,Forward Primer 0.5μL,Reverse Primer 0.5μL,cDNA 1μL,超纯水3μL。PCR反应程序为:95℃变性5min;95℃变性15s,60℃退火-延伸1min,循环40次。60℃保持30s;溶解曲线起始温度60℃;最终温度95℃;保持时间1s;温度增量0.2℃/次。
结果如图7所示,ZmMS2085基因在玉米的茎和叶中的相对表达量较低,而在雄小花和雌小花中较高,其中在雌小花的表达量最高。
实施例6 ZmMS2085基因敲除株系的获得及表型分析
利用CRISPR/Cas9系统对ZmMS2085基因进行定向敲除。为了提高敲除效率,选择两个靶位点同时进行敲除。靶位点1位于第二外显子的正链上,序列为TCGATGTCCCTATGAAGCTC(SEQ ID NO:15序列的第1947位至第1967位),靶位点2位于第三外显子的正链上,序列为AGGAGCTAGCTTCTGGTCGG(SEQ ID NO:16序列的第2504位至第2523位)。根据Ma等(Ma X,etal.A Robust CRISPR/Cas9 System for Convenient,High-Efficiency MultiplexGenome Editing in Monocot and Dicot Plants.Mol Plant,2015,8:1274-84)的方法将靶位点1和靶位点2连入载体pC9M-B中,获得载体pC9M-B-ZmMS2085(图8)。有pC9M-B-ZmMS2085的大肠杆菌被命名为E.coli-pC9M-B-ZmMS2085。将pC9M-B-ZmMS2085通过电击转人农杆菌菌株EH105中,得到的菌株命名为Ab-pC9M-B-ZmMS2085。
利用重组农杆菌Ab-pC9M-B-ZmMS2085侵染B104愈伤组织,经草甘膦抗性筛选、分化、生根获得再生转基因株系18株。提取上述植株叶片的总DNA,利用引物SP1:TGCACCATCGTCAACCACTACAT(SEQ ID NO:17)和SP2:AGAAACCCACGTCATGCCAGT(SEQ ID NO:18)做阳性检测,共鉴定出转基因阳性植株12株。随机选取5株阳性株,用靶位点1两侧的引物靶1-F:ACCGGATAGAGAGCGCATTG(SEQ ID NO:19)和靶1-R:TCCCTCAAACCAAACAGCCT(SEQ IDNO:20)以及靶位点2两侧的引物靶2-F:TGTGGTAGGACAGATGAGCAG(SEQ ID NO:21)和靶2-R:GGTCCATCTGCAACATGCCA(SEQ ID NO:22)。扩增基因组DNA,扩增产物测序后与基因组进行比对。结果显示7株阳性株的基因组DNA至少在靶位点1和靶位点2中的一处两条等位染色体均发生了突变。例如植株PC9M-B-ZmMS2085-5在靶位点1处发生了G碱基插入突变。植株PC9M-B-ZmMS2085-2在靶位点2处发生了A碱基缺失突变。发生在靶位点1或靶位点1及相邻序列内的突变还包括GAAG碱基缺失突变,或T碱基插入突变,或从CTCAGGA到TTCGGAA或从CTCAGGAGTCACTTGACAATATTCTTCTAGATCTATA到CTCGGAAGCCCCTGGCCATTTTCCTCCAAAAACCTTTC序列替换突变。发生在靶位点2或靶位点2及相邻序列内的突变还包括G或T碱基插入突变,或从AGCTTCTGGTCGGTGGAAAACAAAACTGTCTAAATCT到CTATTATG或从AGCTTCTGGTCGGTGG到AACCTCTCGGGGCG序列替换突变。
开花后对上述8株阳性株进行表型分析。与野生型B104相比,ZmMS2085敲除植株PC9M-B-ZmMS2085-3在株叶和小穗形态(图9的A、B)上并无明显差别。但ZmMS2085敲除植株的花药明显更加瘦小(图9的C)。花粉碘染结果表明,野生型B104的花粉大而圆,可以被染色(图9的D),而ZmMS2085敲除植株的花粉小而皱缩,不能被染色(图9的E)。ZmMS2085敲除植株的表型与zmms2085突变体的表型一致。
实施例7 zmms2085突变体转基因互补株系的获得及表型分析
本实施例以B73的基因组DNA为模板,用引物2085HB-F:aggaaacagctatgaccatgattacgCCTAGGGAGCCCATTTCCACACGACT(SEQ ID NO:27)和2085HB-R:acgttgtaaaacgacggccagtgccaATTTAAATCCAGCTGCAGTAATGGAATCCG(SEQ ID NO:28)扩增获得带有ZmMS2085起始密码子ATG上游1504bp和终止密码子TAG下游639bp的基因全长片段。将该片连入pC3300获得质粒pC3300-ZmMS2085(图10)。有pC3300-ZmMS2085的大肠杆菌被命名为E.coli-pC3300-ZmMS2085-genome。
将pC3300-ZmMS2085通过电击转人农杆菌菌株EH105中,得到的菌株命名为Ab-pC3300-ZmMS2085。利用重组农杆菌Ab-pC3300-ZmMS2085侵染无T-DNA的ZmMS2085敲除杂合体愈伤组织,经抗性筛选、分化、生根共获得转基因阳性植株26株,自交并种植T1植株,鉴定得到同时含有纯合突变位点和互补插入片段的植株20株,其中有11株的雄性育性恢复正常(图11)。这进一步证明ZmMS2085基因调控花粉发育,该基因突变会导致花粉败育。
实施例8 ZmMS2085基因超表达植株获得及其表型分析
以B73的RNA反转录产物为模板,用引物2085OE_F:CACGGGGGACTCTTGACTCGTACTCGTACTGGTGCAG(SEQ ID NO:29)和2085OE_R:CGGGGAAATTCGAGCTGTTACACAACATTTTGGTTGATC(SEQ ID NO:30)扩增获得带有ZmMS2085完整编码核苷酸序列(SEQ ID NO:2)的DNA片段。将该片段用Gibson Assembly法连入pC3301获得质粒pC3301-MS2085-CDS(图12)。有pC3301-MS2085-CDS的大肠杆菌被命名为E.coli-pC3301-MS2085-CDS。将pC3301-MS2085-CDS通过电击转人农杆菌菌株EH105中,得到的菌株命名为Ab-pC3301-MS2085-CDS。
利用重组农杆菌Ab-pC3301-MS2085-CDS侵染B104幼胚愈伤组织,经Bar抗性筛选、分化、生根获得转基因阳性植株18株。使用实时定量PCR方法,利用实施例5中的引物2085_RTF和2085_RTR,ACT-ACF1和ACT-ACR1对转基因阳性植株中ZmMS2085的表达量进行分析。如图13所示,和转基因阴性单株相比,超表达植株中ZmMS2085的表达量普遍上升了3倍以上,但超表达植株表型与野生型无明显差异MS2085。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (4)

1.一种蛋白突变体,含有所述蛋白突变体的植株表现为雄性不育,其特征在于,所述蛋白突变体的氨基酸序列如SEQ ID NO: 6所示。
2.一种分离的核酸分子,其为编码权利要求1的突变体的核苷酸序列。
3.权利要求2所述的核酸分子,所述突变体的核苷酸序列如SEQ ID NO: 4所示,CDS序列如SEQ ID NO: 5所示,氨基酸序列如SEQ ID NO: 6所示。
4.权利要求1所述蛋白突变体或者权利要求2或3所述核酸分子在调控植物雄性育性性状中的应用,所述植物为玉米。
CN202210837250.5A 2022-07-15 2022-07-15 一种玉米雄性育性调控基因ZmMS2085及其突变体与应用 Active CN117402887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210837250.5A CN117402887B (zh) 2022-07-15 2022-07-15 一种玉米雄性育性调控基因ZmMS2085及其突变体与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210837250.5A CN117402887B (zh) 2022-07-15 2022-07-15 一种玉米雄性育性调控基因ZmMS2085及其突变体与应用

Publications (2)

Publication Number Publication Date
CN117402887A CN117402887A (zh) 2024-01-16
CN117402887B true CN117402887B (zh) 2024-07-30

Family

ID=89498755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210837250.5A Active CN117402887B (zh) 2022-07-15 2022-07-15 一种玉米雄性育性调控基因ZmMS2085及其突变体与应用

Country Status (1)

Country Link
CN (1) CN117402887B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150191743A1 (en) * 2013-03-15 2015-07-09 E I Du Pont De Nemours And Company Cloning and use of the ms9 gene from maize
US10674686B2 (en) * 2014-06-02 2020-06-09 Institut National De La Recherche Agronomique Dominant mutation in the TDM gene leading to diplogametes production in plants
WO2016100309A1 (en) * 2014-12-16 2016-06-23 Pioneer Hi-Bred International, Inc. Restoration of male fertility in wheat
CN110386967B (zh) * 2018-03-26 2021-04-06 中国农业科学院作物科学研究所 与植物雄性育性相关的蛋白SiMS1及其编码基因与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PREDICTED: Zea mays Tetratricopeptide repeat (TPR)-like superfamily protein (LOC103629021), mRNA.Genebank:XM_020539694.3.2020,1-3. *
Zea mays cultivar B73 chromosome 6, Zm-B73-REFERENCE-NAM-5.0, whole genome shotgun sequence.Genebank:NC_050101.1.2020,1-2. *

Also Published As

Publication number Publication date
CN117402887A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2018019195A1 (zh) 雄性育性的保持方法及其应用
US20220186238A1 (en) Diplospory gene
US20200140874A1 (en) Genome Editing-Based Crop Engineering and Production of Brachytic Plants
CN105746362B (zh) 一种育性基因及其应用
CN110511945B (zh) 一种水稻育性调控基因及其突变体与应用
JP2018501821A (ja) 性決定遺伝子及び育種におけるその使用
WO2015035951A1 (zh) 雄性核不育基因及其突变体在杂交育种上的应用
US20230220413A1 (en) Rice male fertility regulatory gene, mutant of rice male fertility regulatory gene, use thereof and a method for regulating rice fertility
US20230383308A1 (en) Modified promoter of a parthenogenesis gene
WO2022109764A1 (zh) 一种育性相关基因及其在杂交育种中的应用
EP3752622A1 (en) Methods and compositions for increasing harvestable yield via editing ga20 oxidase genes to generate short stature plants
US20220275383A1 (en) Sterile genes and related constructs and applications thereof
CN113754746B (zh) 水稻雄性育性调控基因、其应用以及利用CRISPR-Cas9调控水稻育性的方法
CN117402887B (zh) 一种玉米雄性育性调控基因ZmMS2085及其突变体与应用
CN113429468B (zh) 大麦雄性不育基因msg3002及其应用
US20120331579A1 (en) Transgenic plant male sterility
Liu et al. Functional diversifications of GhERF1 duplicate genes after the formation of allotetraploid cotton
CN113151295A (zh) 水稻温敏雄性不育基因OsFMS1及其应用
CN111575313A (zh) 利用CRISPR\Cas9系统对水稻TDR基因进行定点突变及检测的方法
CN113754747B (zh) 一种水稻雄性育性调控基因突变体及其分子标记和应用
CN114644692B (zh) 一种定点突变创制旱敏感玉米种质的方法及其应用
US11753650B2 (en) Wheat fertility-related gene TaMS7 and application method thereof
CN117512170A (zh) 水稻雄性不育基因OsGSL2的分子标记及其应用
CN117802108A (zh) 水稻雄性育性控制基因gms5、其突变体及分子鉴定方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant