CN106732343A - 一种改性沸石的制备方法及制备得到的改性沸石 - Google Patents

一种改性沸石的制备方法及制备得到的改性沸石 Download PDF

Info

Publication number
CN106732343A
CN106732343A CN201611047554.2A CN201611047554A CN106732343A CN 106732343 A CN106732343 A CN 106732343A CN 201611047554 A CN201611047554 A CN 201611047554A CN 106732343 A CN106732343 A CN 106732343A
Authority
CN
China
Prior art keywords
zeolite
modified
preparation
modified zeolite
active liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611047554.2A
Other languages
English (en)
Inventor
程海翔
徐天有
舒霖
刘倩赟
徐南豪
李璐瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quzhou University
Original Assignee
Quzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quzhou University filed Critical Quzhou University
Priority to CN201611047554.2A priority Critical patent/CN106732343A/zh
Publication of CN106732343A publication Critical patent/CN106732343A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种改性沸石的制备方法及制备得到的改性沸石,制备方法包括如下步骤:(1)将无机盐试剂烘干至恒重后配制成改性活化液;(2)将沸石按配比投加至所述改性活化液中,移入密闭容器中,50~80℃恒温震荡0.5~3小时;(3)步骤(2)的反应结束后,取出沸石,去离子水洗净后烘干至恒重即得改性沸石。本发明的改性沸石用于低浓度氨氮废水处理,吸附性能优异、制备工艺简便、成本低廉并可再生资源化利用。

Description

一种改性沸石的制备方法及制备得到的改性沸石
技术领域
本发明涉及废水治理技术领域,具体涉及一种改性沸石的制备方法及制备得到的改性沸石。
背景技术
氨氮是水中常见的污染物之一,不仅来源于各类动物的粪便,而且来源于肥料、炼焦、合成氨、染料、制药、炼油和石油产品等工业产生的废水。当水体中含有大量的氨氮时,会毒杀鱼类和其他水生动物,造成自然水体的富营养化,给生活和工业用水的前处理带来很大困难。去除污水中氨氮的方法有生物硝化法、气体吹脱法和离子交换法等。生物法无污染、耗能低、但其转换作用缓慢,去除难于彻底;气体吹脱法工艺简单,投资少,但易造成二次污染;而离子交换法却没有以上不足,且反应过程稳定、易控,吸附剂可再生利用,处理成本较低,特别是使用沸石作为吸附剂时。
沸石具有稳定的[(Si Al)O4]四面体结构、大小均一的宽阔空间和连通孔道,能够吸附大量的氨氮,因此被认为是最有应用前景的去除氨氮吸附剂。多孔的天然沸石广泛存在于自然界中,是价格低廉性能优良的吸附材料。沸石的硅铝比对沸石的吸附性能影响很大,硅铝比高,则Al代替Si少,形成的负电荷少,为平衡这些电荷而进入沸石中的阳离子也少,影响了沸石的交换能力,而且孔穴和孔道内含有水分、有机物和碳酸盐等杂质,同样影响了沸石的吸附和离子交换性能。因此,有必要对天然沸石进行改性,以调整硅铝比、去除杂质、增大比表面积,进而提高沸石的吸附和离子交换性能。
目前已有的改性方法主要有:热改性、盐改性、酸碱改性、有机物改性和稀土改性等。热改性所须温度极高,能耗大,且操作过程中沸石容易坍塌;酸碱改性所需的改性时间较长,且也容易造成费是内部结构的坍塌;有机物改性后的沸石因其存在有表面活性剂,吸附饱和后沸石若处理不当会对环境造成二次污染;稀土改性所需的原料昂贵,改性成本过高。因此,开发常见的无机盐改性沸石,经济效益好、操作便捷也易于环保。
发明内容
为了改进现有沸石改性方式的欠缺,提供一种针对于低浓度氨氮废水,吸附性能优异、制备工艺简便、成本低廉并可再生资源化利用的改性沸石制备方式。
一种改性沸石的制备方法,包括如下步骤:
(1)将无机盐试剂烘干至恒重后配制成改性活化液;
(2)将沸石按配比投加至所述改性活化液中,移入密闭容器中,50~80℃恒温震荡0.5~3小时;
(3)步骤(2)的反应结束后,取出沸石,去离子水洗净后烘干至恒重即得改性沸石。
优选地,所述无机盐试剂为NaCl或NaOH。进一步优选为NaCl。
本发明的改性原理为:NaCl改性可去除沸石表面的杂质,增加沸石比表面积,同时Na+可置换沸石空穴中原有的Ca2+、Mg2+等半径较大的阳离子,空间位阻变小,内扩散加快,交换容量增大,从而提高沸石对氨氮的吸附能力和离子交换能力。
无机盐处理则是用盐溶液浸泡增加沸石的离子交换容量,从而提高天然沸石的吸附性及阳离子交换性能。经过无机盐改性的沸石用于净化废水时,更有利于去除水中的各种污染物(氨氮即NH4 +.为阳离子)。
模拟废水中氨氮起始浓度为300mg/L,沸石投加量为30g/L,选取<60目的沸石在0.4mol/L的HCL、HNO3、NaOH和Nacl溶液中静止活化24h,多次洗涤至中性,过滤后在105℃烘箱中烘2h。通过测定废水中氨氮的去除率确定最佳的改性溶液。不同改性溶液对天然沸石在废水中氨氮去除率的影响见图1。由图1可知,在同一目数下,改性溶液为Nacl效果最好。因此,选定最佳改性溶液为Nacl。
步骤(1)中的烘干温度为100~110℃,优选为105℃。
优选地,所述改性活化液的浓度为0.1mol/L~1mol/L。进一步优选,所述改性活化液的浓度为0.3~0.8mol/L,最优选为0.6mol/L。
无机盐溶液中的阳离子平衡了沸石硅氧四面体上的负电荷,离子交换容量得到了增加。浓度过低则容量增加效果不明显,浓度过高超出其饱和浓度,则使得成本增加。本发明实验选取了0.2mol/L,0.4mol/L,0.6mol/L,0.8mol/L,1.0mol/L,1.2mol/L的NaCl溶液活化。去除率最高的是0.8mol/L,达到89.26%。但根据其实际应用及其性价比的选择(需要符合企业利益和污水处理要求),因此选定浓度为0.6mol/L的NaCl溶液为最适活化浓度。
优选地,步骤(2)中沸石与改性活化液的固液比为1g∶(20~40)毫升。进一步优选为1g∶20毫升。
优选地,步骤(2)中的震荡速率为100~200r·min-1;进一步优选为150r·min-1
本发明中活化反应在50~80℃恒温震荡0.5~3h,进一步优选,50~60℃恒温震荡1.5~2.5;最优选,步骤(2)中反应温度为60℃,应时间为1h。
活化温度很大程度上影响了反应的速率与进程。对于沸石吸附氨氮这一过程,温度升高使得其速率加快,交换更加彻底,但温度过高也存在着成本过高与沸石结构损坏等弊端。本发明实验在活化温度为50℃,60℃,70℃,80℃,90℃下进行活化。活化温度为90℃的去除率有90.01%,60℃的去除率有89.52%。从生产工艺经济方面考虑,选用60℃作为最佳的活化温度。实验在活化时间为1h,2h,5h,7h下进行活化。1h和5h的去除率分别为88.24%和88.21%。因此选定最佳的活化时间为1h。
本发明中,最优选地改性条件为盐试剂为NaCl,改性活化液浓度0.6mol/L、活化时间1.0h、活化温度60℃、活化固液比1:20。
在该最优选的改性条件下制备得到的改性沸石作为吸附剂用于养猪原水及吸收后的沼水处理,氨氮去除率可达90%以上。
优选地,步骤(3)中烘干温度为100~110℃;进一步优选为105℃。
优选地,步骤(2)所用沸石过筛目数大于60目,进一步优选,沸石过筛目数为60~150目。所用沸石产自缙云。
本发明还提供一种如所述方法制备得到的改性沸石。
与现有技术相比,本发明具有如下有益效果:
本发明利用该种改性方式对天然沸石进行改性,其处理低氨氮浓度废水的效果优异。该改性方式的优异之处主要体现在:改性所需材料简便易得,改性条件容易设置,制备周期短,制备操作较为简单,物料成本与人员成本均得到了降低;原材料环保,吸附饱和后沸石进行资源化利用可成为氮肥;改性后效果优异,同产地沸石,在同等条件下进行吸附测试,改性后沸石吸附性能有10-15%的提升。
本发明对焙烧改性、盐改性、焙烧-盐溶液联合改性均作了实验。仅焙烧改性组最佳改性条件下沸石,其对氨氮的去除率达到85.39%;焙烧-盐溶液联合改性组最佳改性条件沸石,其对氨氮的去除率达到86.52%;本发明仅盐改性组最佳改性条件沸石,其对氨氮的去除率达到89.27%。由此可见,本发明的方法仅采用NaCl改性,改性后去除氨氮效果好,且不用经过焙烧过程,方法简便、经济。
附图说明
图1是不同盐试剂的改性结果图。
图2是天然沸石的SEM图。
图3是实施例制备得到的改性沸石的SEM图。
图4是不同改性剂浓度和改性时间下改性沸石的氨氮除去结果图。
具体实施方式
以下实施例中所用沸石购买自浙江省丽水市缙云县某沸石厂。
氨氮含量检测方法:
用分析天平称取7g改性后沸石放置于锥形瓶中,再加入100mL稀释后废水并移入数显恒温水浴振荡锅里,调节温度为25℃,在150r·min-1的速率下振荡,2h后取出,静置使沸石颗粒自由沉降,用移液枪缓慢抽取上清液水样,避免搅动底层沸石使得水样浑浊,测定水样的NH4 +-N浓度,并计算去除率。
去除率η如下式计算。
η=(C0-Ci)/C0×100%
式中:C0为原废水氨氮浓度(mg·L-1);Ci为吸附平衡后废水中的氨氮浓度(mg·L-1)。
实施例1
称取若干克NaCl于表面皿中,置于干燥箱中,设置温度105℃,烘干至恒重。用干燥完的上述晶体分别配制0.1mol/L与1mol/L两种浓度的溶液各500mL。
将沸石与上述配制好的无机盐溶液,按照1∶30(克/毫升)的固液比,移入250mL锥形瓶中,盖上瓶塞,移至恒温振荡锅里,设置温度为60℃,以150r·min-1的速率振荡。在1h时取出锥形瓶,用去离子水反复冲洗,冲洗完毕后置于烘箱中,调节干燥温度105℃,烘干直至恒重。将沸石干样小心取出,装入塑封袋,贴以标签,以此只做得到无机盐改性沸石样品。
天然沸石和本实施例制备得到的沸石的SEM图片如图2和图3所示,由电镜图可知,改性沸石的表面明显比天然沸石的粗糙。通过BET分析结果可知,改性后的沸石比表面积比天然沸石显著增加,孔容也显著增加,而且X射线能谱分析仪对改性前后材料无机元素组成和含量变化分析,结果表明,盐改性后沸石并没有改变沸石的整体骨架结构,主要成分都是Si、Al和O,改性后沸石较改性前沸石所含杂质成分减少,而Na+置换了沸石空穴中原有的Ca2 +、Mg2+等半径较大的阳离子,空间位阻变小,内扩散加快,交换容量增大,从而提高了沸石对氨氮的吸附能力和离子交换能力,使其氨氮吸附性能大为改善。
天然沸石和本实施例制备得到的沸石BET分析结果如表1所示。
表1
沸石类型 比表面积(m2/g) 总孔容(cm3/g)
天然沸石 19.3458 0.03258
改性沸石 24.7431 0.04211
将本实施例改性得到的改性沸石应用于养猪原水、沼水处理,应用结果如表2所示:
表2
表中所示数据为氨氮去除率。
本实施例还研究了不同活化液浓度及不同反应时间对改性沸石去除氨氮能力的影响,结果如图4所示,由图4可知,在NaCl改性组中,吸附去除效果最好的振荡时间为2h,溶液浓度为0.1mol/L,其去除率达到了83%。
对比例1焙烧方法改性
模拟废水氨氮起始浓度为300mg/L,沸石投加量为70g/L,选取不同粒径的沸石分别为<60目,60-150目,>150目在不同温度(100℃,200℃,300℃,400℃)下焙烧0.5h,通过测定废水中氨氮的去除率确定最佳焙烧温度。不同焙烧温度对天然沸石在废水中氨氮的去除率的影响见表3。由表31可知,在同一目数下,焙烧温度为300℃效果最好;在同一温度不同目数下,>60目(60-150目,>150目)时效果最好。因此,选定最佳焙烧温度300℃,最佳目数>60目。
表3不同焙烧温度对天然沸石在废水中氨氮去除率的影响
由表3结果可知,即是选择最佳焙烧条件下制备得到的沸石降解效果不如本发明方法制备得到的沸石,而且焙烧方法能耗大,不利于环保节能。
实施例2
参照实施例1的步骤对沸石目数、盐试剂、改性活化液浓度、活化时间、活化温度和活化固液比进行正交试验,改性沸石的测量方法采用实施例1相同方法。
运用L9(34)正交表,选择以上四个改性条件,并分别设出三个梯度,由表4可得:改性时间(0.5h,1h,1.5h)、NaCl浓度(0.2mol/L,0.4mol/L,0.6mol/L)、沸石与NaCl溶液的固液比(1:10,1:20,1:30)、改性温度(60℃,70℃,80℃)。根据正交表活化相应沸石,并且相应沸石活化三份(降低活化操作失误对实验结果的影响)。
表4正交优化改性条件的梯度分类
然后,进行模拟氨氮废水(氨氮起始浓度为300mg/L)的处理(处理条件为:常温震荡1h、废水pH处中性、沸石投加量70g/L),将得到数据进行去除率的换算。接着根据以上去除率进行计算,得出k值、K值、极差R的值,从而确定活化条件的主次顺序。进而可得到正交实验中的最佳活化条件。
正交优化实验结果见表5。由表5可知,正交优化最佳活化条件为:NaCl活化液浓度为0.6mol/L,活化时间为1.0h,活化温度为60℃,活化固液比为1:30,其去除率达到95.04%,大于其他活化条件时的去除率。
而对于上述活化条件对活化过程的影响程度见表6,由表6可知,根据R值对比,活化条件的主次影响顺序为NaCl溶液浓度>活化固液比>活化温度>活化时间,接着以此数据进行下一步的单因子优化实验。
表5 L9(34)正交实验结果记录表
由以上实验结果可知,正交优化条件为:沸石目数为>60目,盐试剂为NaCl,改性活化液浓度0.6mol/L、活化时间1.0h、活化温度60℃、活化固液比1:30。活化条件的主次影响顺序为NaCl溶液浓度>活化固液比>活化温度>活化时间。
以上所述仅为本发明专利的具体实施案例,但本发明专利的技术特征并不局限于此,任何相关领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。

Claims (9)

1.一种改性沸石的制备方法,其特征在于,包括如下步骤:
(1)将无机盐试剂烘干至恒重后配制成改性活化液;
(2)将沸石按配比投加至所述改性活化液中,50~80℃恒温震荡0.5~3小时;
(3)步骤(2)的反应结束后,取出沸石,去离子水洗净后烘干至恒重即得改性沸石。
2.根据权利要求1所述制备方法,其特征在于,所述无机盐试剂为NaCl或NaOH。
3.根据权利要求1所述制备方法,其特征在于,所述改性活化液的浓度为0.1mol/L~1mol/L。
4.根据权利要求1所述制备方法,其特征在于,步骤(2)中沸石与改性活化液的固液比为1g∶(20~40)毫升。
5.根据权利要求1所述制备方法,其特征在于,步骤(2)中的震荡速率为100~200r·min-1
6.根据权利要求1所述制备方法,其特征在于,步骤(2)中反应温度为60℃,应时间为1h。
7.根据权利要求1所述制备方法,其特征在于,步骤(3)中烘干温度为100~110℃。
8.根据权利要求1所述制备方法,其特征在于,步骤(2)所用沸石过筛目数为60~150目。
9.一种如权利要求1~8任一权利要求所述方法制备得到的改性沸石。
CN201611047554.2A 2016-11-22 2016-11-22 一种改性沸石的制备方法及制备得到的改性沸石 Pending CN106732343A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611047554.2A CN106732343A (zh) 2016-11-22 2016-11-22 一种改性沸石的制备方法及制备得到的改性沸石

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611047554.2A CN106732343A (zh) 2016-11-22 2016-11-22 一种改性沸石的制备方法及制备得到的改性沸石

Publications (1)

Publication Number Publication Date
CN106732343A true CN106732343A (zh) 2017-05-31

Family

ID=58975334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611047554.2A Pending CN106732343A (zh) 2016-11-22 2016-11-22 一种改性沸石的制备方法及制备得到的改性沸石

Country Status (1)

Country Link
CN (1) CN106732343A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107364992A (zh) * 2017-08-25 2017-11-21 南京工业大学 一种改性分子筛及改性分子筛去除废水中三氯化磷的方法
CN108329181A (zh) * 2018-03-20 2018-07-27 中国水稻研究所 一种缓释氮肥的制备方法
CN108794824A (zh) * 2018-07-02 2018-11-13 芜湖航天特种电缆厂股份有限公司 航空航天用耐低温电缆及其制备方法
CN108976491A (zh) * 2018-07-02 2018-12-11 芜湖航天特种电缆厂股份有限公司 耐低温高韧性电缆胶套及其制备方法
CN109970133A (zh) * 2019-01-24 2019-07-05 玉溪师范学院 污水厂一级a尾水深度处理的多孔生态组合装置及其工艺
CN110711552A (zh) * 2019-11-14 2020-01-21 中国科学院北京综合研究中心 一种同步脱氮除磷增氧复合材料及其制备方法和应用
CN110813243A (zh) * 2019-10-18 2020-02-21 浙江理工大学 一种用于钙离子吸附的乙酸钠改性天然沸石的制备方法
CN111330536A (zh) * 2020-03-11 2020-06-26 江苏长三角环境科学技术研究院有限公司 用于修复治理重金属污染场地废水的阴阳离子复配改性活化矿石的制备及使用方法
CN111530410A (zh) * 2020-04-28 2020-08-14 北京工业大学 一种基于天然沸石合成分子筛废料制备除磷吸附剂的方法
CN111729641A (zh) * 2020-06-23 2020-10-02 内蒙古工业大学 一种磁性沸石材料及其制备方法和应用
CN113336600A (zh) * 2021-07-14 2021-09-03 中诚国联(河南)生物科技有限公司 一种生物有机无机复合微生物肥料及其制备方法
CN113998787A (zh) * 2020-07-28 2022-02-01 松山湖材料实验室 一种微生物复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1865160A (zh) * 2005-05-20 2006-11-22 中国科学院大连化学物理研究所 一种改性沸石在处理养虾废水中的应用
CN103084142A (zh) * 2013-01-23 2013-05-08 西南交通大学 用于去除水中氨氮和重金属的改性沸石吸附剂的制备方法
CN105381782A (zh) * 2015-12-10 2016-03-09 复旦大学 一种去除水中氨氮和磷酸盐的改性沸石吸附剂及其制备和再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1865160A (zh) * 2005-05-20 2006-11-22 中国科学院大连化学物理研究所 一种改性沸石在处理养虾废水中的应用
CN103084142A (zh) * 2013-01-23 2013-05-08 西南交通大学 用于去除水中氨氮和重金属的改性沸石吸附剂的制备方法
CN105381782A (zh) * 2015-12-10 2016-03-09 复旦大学 一种去除水中氨氮和磷酸盐的改性沸石吸附剂及其制备和再生方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冯炘等: ""改性沸石吸附生活污水中氮磷效果的研究"", 《天津理工大学学报》 *
谢红刚等: ""沸石改性及其去除城市污水中氨氮研究"", 《铁路劳动安全卫生与环保》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107364992A (zh) * 2017-08-25 2017-11-21 南京工业大学 一种改性分子筛及改性分子筛去除废水中三氯化磷的方法
CN107364992B (zh) * 2017-08-25 2020-09-11 南京工业大学 一种改性分子筛及改性分子筛去除废水中三氯化磷的方法
CN108329181A (zh) * 2018-03-20 2018-07-27 中国水稻研究所 一种缓释氮肥的制备方法
CN108976491A (zh) * 2018-07-02 2018-12-11 芜湖航天特种电缆厂股份有限公司 耐低温高韧性电缆胶套及其制备方法
CN108794824A (zh) * 2018-07-02 2018-11-13 芜湖航天特种电缆厂股份有限公司 航空航天用耐低温电缆及其制备方法
CN109970133A (zh) * 2019-01-24 2019-07-05 玉溪师范学院 污水厂一级a尾水深度处理的多孔生态组合装置及其工艺
CN110813243A (zh) * 2019-10-18 2020-02-21 浙江理工大学 一种用于钙离子吸附的乙酸钠改性天然沸石的制备方法
CN110711552A (zh) * 2019-11-14 2020-01-21 中国科学院北京综合研究中心 一种同步脱氮除磷增氧复合材料及其制备方法和应用
CN111330536A (zh) * 2020-03-11 2020-06-26 江苏长三角环境科学技术研究院有限公司 用于修复治理重金属污染场地废水的阴阳离子复配改性活化矿石的制备及使用方法
CN111330536B (zh) * 2020-03-11 2023-03-28 江苏长三角环境科学技术研究院有限公司 用于修复治理重金属污染场地废水的阴阳离子复配改性活化矿石的制备及使用方法
CN111530410A (zh) * 2020-04-28 2020-08-14 北京工业大学 一种基于天然沸石合成分子筛废料制备除磷吸附剂的方法
CN111729641A (zh) * 2020-06-23 2020-10-02 内蒙古工业大学 一种磁性沸石材料及其制备方法和应用
CN113998787A (zh) * 2020-07-28 2022-02-01 松山湖材料实验室 一种微生物复合材料及其制备方法和应用
CN113336600A (zh) * 2021-07-14 2021-09-03 中诚国联(河南)生物科技有限公司 一种生物有机无机复合微生物肥料及其制备方法

Similar Documents

Publication Publication Date Title
CN106732343A (zh) 一种改性沸石的制备方法及制备得到的改性沸石
CN102151546B (zh) 一种改性沸石及其制备方法和应用
CN110694583B (zh) 一种磁性可回收碳酸氧镧除磷吸附剂的制备方法及其应用
CN110813244B (zh) 一种吸附铅离子的改性锆基有机金属框架吸附剂及其制备方法与应用
CN110227416A (zh) 一种铁锌和磷酸改性污泥生物炭的制备及其在水中氟喹诺酮类抗生素去除中的应用
CN104941574B (zh) 一种无机离子改性沸石复合材料及其应用
CN107638868B (zh) 一种多孔碳吸附剂及其制备方法和应用
CN107308922A (zh) 一种水处理用镍基自生长三维材料及其制备方法
CN109529756A (zh) 一种污泥基除磷材料及其制备方法和含磷污水的处理方法
CN112275788A (zh) 利用污泥基生物炭固化稳定化土壤中重金属离子的方法
CN102583893A (zh) 改性沸石吸附去除畜禽废水微量抗生素的方法
CN104289180B (zh) 一种好氧硝化颗粒污泥活性炭吸附剂的制备及应用
CN107362776B (zh) 一种磺基甜菜碱及无机盐复合改性黏土、制备方法及其应用
CN106824240B (zh) 一种土壤原位修复光催化材料及其制备方法
CN108996807A (zh) 一种用改性钢渣-沸石吸附降解生活污水中氮磷的方法
CN105688828A (zh) 一种采用磷酸改性铁树叶制备海水提铀植物-无机复合吸附剂的方法
CN108940203A (zh) 一种三峡适生植被生物炭制备方法及其应用
Mokhtari-Hosseini et al. Optimization of ammonia removal by natural zeolite from aqueous solution using response surface methodology
CN106268980A (zh) 一种用于选择性交换水体中NH4+的Fe3+掺杂铵离子筛的制备方法
CN108355657A (zh) 一种原位合成具有高效催化降解亚甲基蓝的金属掺杂介孔氧化硅的方法
CN110975837A (zh) 一种改性牡蛎壳、制备方法及其应用
CN110327887A (zh) 一种Al-MOFS/木炭复合材料及其制备方法与应用
CN102167319B (zh) 一种醋糟制备活性炭的方法
CN103521168A (zh) 磁性矿物复合材料的制备方法和应用
CN107051386A (zh) 一种能吸附水溶液中铬离子的碳材料及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication