CN106711201B - 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法 - Google Patents

一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法 Download PDF

Info

Publication number
CN106711201B
CN106711201B CN201610914169.7A CN201610914169A CN106711201B CN 106711201 B CN106711201 B CN 106711201B CN 201610914169 A CN201610914169 A CN 201610914169A CN 106711201 B CN106711201 B CN 106711201B
Authority
CN
China
Prior art keywords
type
film
crmcuo
oxide semiconductor
crmgcuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610914169.7A
Other languages
English (en)
Other versions
CN106711201A (zh
Inventor
吕建国
岳士录
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610914169.7A priority Critical patent/CN106711201B/zh
Publication of CN106711201A publication Critical patent/CN106711201A/zh
Application granted granted Critical
Publication of CN106711201B publication Critical patent/CN106711201B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种p型非晶氧化物半导体薄膜,所述p型非晶氧化物半导体薄膜为CrMCuO,薄膜为非晶态且具有p型导电性;其中:Cr为+3价;M为Zn、Mg、Mn元素中的一种、且M为+2价,Cr与M共同与O结合形成CrMCuO薄膜的p型导电基体;Cu为+1价,且Cu与Cr和M共同作用形成空间网络结构,在非晶状态下彼此连通,起到空穴传输通道的作用。本发明还提供了其中p型CrMgCuO非晶氧化物半导体薄膜的制备方法,以CrMgCuO陶瓷片为靶材,采用射频磁控溅射方法,以Ar‑O2为工作气体,制得p型CrMgCuO非晶薄膜。本发明所制备的薄膜可以用于P型非晶薄膜晶体管。

Description

一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法
技术领域
本发明涉及一种非晶氧化物半导体薄膜,尤其涉及一种p型非晶氧化物半导体薄膜及其制备方法。
背景技术
薄膜晶体管(TFT)是微电子特别是显示工程领域的核心技术之一。目前,TFT主要是基于非晶硅(a-Si)技术,但是a-Si TFT是不透光的,光敏性强,需要加掩膜层,显示屏的像素开口率低,限制了显示性能,而且a-Si迁移率较低(~2 cm2/Vs),不能满足一些应用需求。基于多晶硅(p-Si)技术的TFT虽然迁移率高,但是器件均匀性较差,而且制作成本高,这限制了它的应用。此外,有机半导体薄膜晶体管(OTFT)也有较多的研究,但是OTFT的稳定性不高,迁移率也比较低(~1 cm2/Vs),这对其实际应用是一个较大制约。
为解决上述问题,人们近年来开始致力于非晶氧化物半导体(AOS)TFT的研究,其中最具代表性的是InGaZnO。与Si基TFT不同,AOS TFT具有如下优点:可见光透明,光敏退化性小,不用加掩膜层,提高了开口率,可解决开口率低对高分辨率、超精细显示屏的限制;易于室温沉积,适用于有机柔性基板;迁移率较高,可实现高的开/关电流比,较快的器件响应速度,应用于高驱动电流和高速器件;特性不均较小,电流的时间变化也较小,可抑制面板的显示不均现象,适于大面积化用途。
由于金属氧化物特殊的电子结构,氧原子的2p能级一般都远低于金属原子的价带电子能级,不利于轨道杂化,因而O 2p轨道所形成的价带顶很深,局域化作用很强,因而空穴被严重束缚,表现为深受主能级,故此,绝大多数的氧化物本征均为n型导电,具有p型导电特性的氧化物屈指可数。目前报道的p型导电氧化物半导体主要为SnO、NiO、Cu2O、CuAlO2等为数不多的几种,但这些氧化物均为晶态结构,不是非晶形态。目前人们正在研究的AOS如InGaZnO等均为n型半导体,具有p型导电的非晶态氧化物半导体几乎没有。因而,目前报道的AOS TFT均为n型沟道,缺少p型沟道的AOS TFT,这对AOS TFT在新一代显示、透明电子学等诸多领域的应用产生了很大的制约。因而,设计寻找并制备出p型导电的非晶氧化物半导体薄膜是人们亟需解决的一个难题。
发明内容
本发明针对实际应用需求,拟提供一种非晶氧化物半导体薄膜及其制备方法,为此,本发明的技术方案如下。
本发明提供了一种p型CrMCuO非晶氧化物半导体薄膜,M为Zn、Mg、Mn。在p型CrMCuO体系中:Cr为+3价,M为Zn、Mg、Mn,且M为+2价,Cr与M共同与O结合形成材料的p型导电基体;Cu为+1价,也能同时形成p型导电,且Cu与Cr和M共同作用形成空间网络结构,在非晶状态下彼此连通,因而起到空穴传输通道的作用。
本发明所提供的p型CrMCuO非晶氧化物半导体薄膜,其特征在于:在CrMCuO中, Cr为+3价,M元素为Zn、Mg、Mn中的一种,且M为+2价,Cu为+1价;CrMCuO薄膜为非晶态,具有p型导电特性。
本发明所提供的p型CrMCuO非晶氧化物半导体薄膜,更进一步的,如各实施例,当M为Mg,此时CrMCuO即为CrMgCuO,p型CrMgCuO薄膜化学式为Cr2MgCuxO4+0.5x,其中0.8≦x≦1.2。
本发明还提供了制备上述p型CrMgCuO非晶氧化物半导体薄膜的制备方法,具体步骤如下:
(1)以高纯Cr2O3、MgO和Cu2O粉末为原材料,混合,研磨,在1150℃的Ar气氛下烧结,制成CrMgCuO陶瓷片为靶材,其中Cr、Mg、Cu三组分的原子比为2:1:(0.8~1.2);
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至真空度不高于1×10-3Pa;
(3)通入Ar-O2为工作气体,气体压强2~4Pa,Ar-O2流量体积比为10:1~10:2,溅射功率140~150W,衬底温度为200~400℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,在不高于100Pa的O2气氛下自然冷却到室温,得到p型CrMgCuO非晶薄膜。
采用上述方法生长的p型CrMgCuO非晶氧化物半导体薄膜,其性能指标为:CrMgCuO非晶薄膜具有p型导电特性,空穴浓度1012~1013cm-3,可见光透过率≧89%。
上述材料参数和工艺参数为发明人经多次实验确立的,需要严格控制,在发明人的实验中若超出上述参数的范围,则无法实现设计的p型CrMgCuO材料,也无法获得具有p型导电且为非晶态的CrMgCuO薄膜。
在p型CrMCuO体系中:Cr为+3价,M为Zn、Mg、Mn,且M为+2价,Cr与M共同与O结合形成材料的p型导电基体;Cu为+1价,也可形成p型导电,同时起到空穴传输通道的作用。除M=Mg外,当M为上述所述的其它元素时,也具有同样的机理,因而也具有类似的性质,除CrMgCuO之外,本发明提供的其它的p型CrMCuO非晶氧化物半导体薄膜也能用上述类似的方法与步骤进行制备,所得的材料和器件具有与CrMgCuO类似的性能。
本发明的有益效果在于:
1)本发明所述的p型CrMCuO非晶氧化物半导体薄膜,其中Cr与M共同与O结合形成材料的p型导电基体,Cu起到空穴传输通道的作用,基于上述原理,CrMCuO是一种较好的p型AOS材料。
2)本发明所述的p型CrMCuO非晶氧化物半导体薄膜,具有良好的材料特性,其p型导电性能可通过组分比例实现调控。
3)本发明所述的p型CrMCuO非晶氧化物半导体薄膜,可以作为沟道层制备的p型AOS TFT,从而为p型AOS TFT的应用提供材料与技术。
4)本发明所述的p型CrMCuO非晶氧化物半导体薄膜,与已存在的n型InGaZnO非晶氧化物半导体薄膜组合,可形成一个完整的AOS的p-n体系,且p型CrMCuO与n型InGaZnO均为透明半导体材料,因而可制作透明光电器件和透明逻辑电路,开拓AOS在透明电子产品中应用,促进透明电子学的发展。
5)本发明所述的p型CrMCuO非晶氧化物半导体薄膜,在生长过程中存在较宽的参数窗口,可实现大面积沉积,能耗低,制备工艺简单、成本低,可实现工业化生产。
具体实施例
以下结合具体实施例进一步说明本发明。
实施例1
(1)以高纯Cr2O3、MgO和Cu2O粉末为原材料,混合,研磨,在1150℃的Ar气氛下烧结,制成CrMgCuO陶瓷片为靶材,其中Cr、Mg、Cu三组分的原子比为2:1:0.8;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至真空度为9×10-4Pa;
(3)通入Ar-O2为工作气体,气体压强2Pa,Ar-O2流量体积比为10:2,溅射功率140W,衬底温度为200℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,在70Pa的O2气氛下自然冷却到室温,得到p型Cr2MgCu0.8O4.4非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型Cr2MgCu0.8O4.4薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度62nm;具有p型导电特性,空穴浓度1012cm-3;可见光透过率89%。
实施例2
(1)以高纯Cr2O3、MgO和Cu2O粉末为原材料,混合,研磨,在1150℃的Ar气氛下烧结,制成CrMgCuO陶瓷片为靶材,其中Cr、Mg、Cu三组分的原子比为2:1:1;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至真空度为9×10-4Pa;
(3)通入Ar-O2为工作气体,气体压强3Pa,Ar-O2流量体积比为10:1,溅射功率140W,衬底温度为300℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,在90Pa的O2气氛下自然冷却到室温,得到p型Cr2MgCuO4.5非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型Cr2MgCuO4.5薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度64nm;具有p型导电特性,空穴浓度1013cm-3;可见光透过率91%。
实施例3
(1)以高纯Cr2O3、MgO和Cu2O粉末为原材料,混合,研磨,在1150℃的Ar气氛下烧结,制成CrMgCuO陶瓷片为靶材,其中Cr、Mg、Cu三组分的原子比为2:1:1.2;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至真空度为9×10-4Pa;
(3)通入Ar-O2为工作气体,气体压强4Pa,Ar-O2流量体积比为10:2,溅射功率150W,衬底温度为400℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,在100Pa的O2气氛下自然冷却到室温,得到p型Cr2MgCu1.2O4.6非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型Cr2MgCu1.2O4.6薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度69nm;具有p型导电特性,空穴浓度1013cm-3;可见光透过率92%。
上述各实施例中,使用的原料Cr2O3粉末、MgO粉末和Cu2O粉末的纯度均在99.99%以上。
本发明p型CrMgCuO非晶氧化物半导体薄膜制备所使用的衬底,并不局限于实施例中的石英片,其它各种类型的衬底均可使用。
在p型CrMCuO体系中,M为Zn、Mg、Mn中的一种。除M为Mg外,当M为Zn或Mn元素时,具有同样的机理、具有类似的性质,除CrMgCuO之外的其它的p型CrMCuO非晶氧化物半导体薄膜也能用上述类似的方法与步骤进行制备,所得的材料和器件具有类似的性能。

Claims (3)

1.一种p型CrMCuO非晶氧化物半导体薄膜,其特征在于:所述CrMCuO中Cr为+3价;M为Mg元素、且M为+2价,Cr与M共同与O结合形成所述CrMCuO非晶薄膜的p型导电基体;Cu为+1价,也形成p型导电,且Cu与Cr和M共同作用形成空间网络结构,在非晶状态下彼此连通,起到空穴传输通道的作用;所述CrMCuO为CrMgCuO时;CrMgCuO非晶氧化物半导体薄膜化学式为Cr2MgCuxO4+0.5x,其中0.8≦x≦1.2。
2.如权利要求1所述的一种p型CrMCuO非晶氧化物半导体薄膜,其特征在于:所述CrMgCuO非晶氧化物半导体薄膜的空穴浓度1012~1013cm-3
3.如权利要求1或2所述的一种p型CrMCuO非晶氧化物半导体薄膜的制备方法,其特征在于,制备所述CrMgCuO非晶氧化物半导体薄膜包括步骤:
1)以高纯Cr2O3、MgO和Cu2O粉末为原材料,混合,研磨,在1150℃的Ar气氛下烧结,制成CrMgCuO陶瓷片为靶材,其中Cr、Mg、Cu三组分的原子比为2:1:0.8~1.2;
2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至真空度不高于1×10-3Pa;
3)通入Ar-O2为工作气体,气体压强2~4Pa,Ar-O2流量体积比为10:1~10:2,溅射功率140~150W,衬底温度为200~400℃,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,在不高于100Pa的O2气氛下自然冷却到室温,得到p型CrMgCuO非晶薄膜。
CN201610914169.7A 2016-10-20 2016-10-20 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法 Expired - Fee Related CN106711201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610914169.7A CN106711201B (zh) 2016-10-20 2016-10-20 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610914169.7A CN106711201B (zh) 2016-10-20 2016-10-20 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106711201A CN106711201A (zh) 2017-05-24
CN106711201B true CN106711201B (zh) 2020-01-17

Family

ID=58940667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610914169.7A Expired - Fee Related CN106711201B (zh) 2016-10-20 2016-10-20 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106711201B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066826A1 (ja) * 2018-09-28 2020-04-02 宇部マテリアルズ株式会社 スパッタリングターゲット及び磁気記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577109B2 (en) * 2012-09-18 2017-02-21 Lg Chem, Ltd. Transparent conducting film and preparation method thereof
CN103173732B (zh) * 2013-03-08 2014-12-03 北京航空航天大学 一种p型透明导电氧化物及其掺杂非晶薄膜的制备方法

Also Published As

Publication number Publication date
CN106711201A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
TWI434420B (zh) 使用薄膜半導體材料的薄膜式電晶體
Noh et al. Indium oxide thin-film transistors fabricated by RF sputtering at room temperature
KR20130092628A (ko) 반도체 박막, 그의 제조 방법 및 박막 트랜지스터
CN103710675A (zh) 一种ZnO基薄膜及其制备方法
CN106711201B (zh) 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法
CN106711195B (zh) 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法
CN1328418C (zh) Li掺杂生长p型ZnO晶体薄膜的方法
CN106711197B (zh) 一种p型CuNiSnO非晶氧化物半导体薄膜及其制备方法
CN106711199B (zh) 一种p型CuNSnO非晶氧化物半导体薄膜及其制备方法
CN106711228B (zh) 一种p型LaMSnO非晶氧化物半导体薄膜及其制备方法
CN106298953B (zh) 一种高性能氧化镍基p型薄膜晶体管及其制备方法
KR20230078575A (ko) 산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자
CN106711200B (zh) 一种p型ZnRhMO非晶氧化物半导体薄膜及其制备方法
CN106711193B (zh) 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法
Li et al. High-performance transparent Li-doped indium-tin-zinc-oxide thin film transistor fabricated by radio frequency magnetron sputtering method
CN106702326B (zh) 一种p型NiMSnO非晶氧化物半导体薄膜及其制备方法
CN106711198B (zh) 一种p型CuMInO非晶氧化物半导体薄膜及其制备方法
CN106711196B (zh) 一种p型ZnGeSnO非晶氧化物半导体薄膜及其制备方法
Park et al. Achieving High Field-effect Mobility Exceeding 90 cm 2/Vs in a-IGZTO Transistors with Excellent Reliability
CN109037315B (zh) 一种用于薄膜晶体管的沟道层材料及其制备方法与应用
CN106711192B (zh) 一种p型CuMSnO非晶氧化物半导体薄膜及其制备方法
CN110459601B (zh) 一种二维非晶氧化物半导体与薄膜晶体管及其制备方法
Chou et al. Effect of oxygen amount on electrical and transparency characteristics of amorphous IGZO thin film fabricated by sputtering
CN108987464B (zh) 一种非晶金属vi族化合物半导体薄膜与薄膜晶体管
CN106711202A (zh) 一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200117