CN106711193B - 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法 - Google Patents

一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法 Download PDF

Info

Publication number
CN106711193B
CN106711193B CN201610914166.3A CN201610914166A CN106711193B CN 106711193 B CN106711193 B CN 106711193B CN 201610914166 A CN201610914166 A CN 201610914166A CN 106711193 B CN106711193 B CN 106711193B
Authority
CN
China
Prior art keywords
type
oxide semiconductor
camsno
amorphous oxide
cacosno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610914166.3A
Other languages
English (en)
Other versions
CN106711193A (zh
Inventor
吕建国
程晓涵
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610914166.3A priority Critical patent/CN106711193B/zh
Publication of CN106711193A publication Critical patent/CN106711193A/zh
Application granted granted Critical
Publication of CN106711193B publication Critical patent/CN106711193B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L21/203
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种一种p型CaMSnO非晶氧化物半导体薄膜,其中Ca为+2价,M为VIIIB族过渡金属Fe、Co、Ni中的一种,且为+3价,Ca与M共同与O结合形成材料的p型导电基体;Sn为+2价,在基体中也同时形成p型导电,且具有球形电子轨道,在非晶状态下电子云高度重合,起到空穴传输通道的作用。本发明还提供了制备制备p型CaCoSnO非晶氧化物半导体薄膜的方法,首先通过烧结方法制得CaCoSnO陶瓷片,以此为靶材,通过脉冲激光沉积法,制得p型CaCoSnO非晶薄膜,其空穴浓度1012~1014cm‑3。本发明所制备的薄膜可以用于P型非晶薄膜晶体管。

Description

一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法
技术领域
本发明涉及一种非晶氧化物半导体薄膜,尤其涉及一种p型非晶氧化物半导体薄膜及其制备方法。
背景技术
薄膜晶体管(TFT)是微电子特别是显示工程领域的核心技术之一。目前,TFT主要是基于非晶硅(a-Si)技术,但是a-Si TFT是不透光的,光敏性强,需要加掩膜层,显示屏的像素开口率低,限制了显示性能,而且a-Si迁移率较低(~2 cm2/Vs),不能满足一些应用需求。基于多晶硅(p-Si)技术的TFT虽然迁移率高,但是器件均匀性较差,而且制作成本高,这限制了它的应用。此外,有机半导体薄膜晶体管(OTFT)也有较多的研究,但是OTFT的稳定性不高,迁移率也比较低(~1 cm2/Vs),这对其实际应用是一个较大制约。
为解决上述问题,人们近年来开始致力于非晶氧化物半导体(AOS)TFT的研究,其中最具代表性的是InGaZnO。与Si基TFT不同,AOS TFT具有如下优点:可见光透明,光敏退化性小,不用加掩膜层,提高了开口率,可解决开口率低对高分辨率、超精细显示屏的限制;易于室温沉积,适用于有机柔性基板;迁移率较高,可实现高的开/关电流比,较快的器件响应速度,应用于高驱动电流和高速器件;特性不均较小,电流的时间变化也较小,可抑制面板的显示不均现象,适于大面积化用途。
由于金属氧化物特殊的电子结构,氧原子的2p能级一般都远低于金属原子的价带电子能级,不利于轨道杂化,因而O 2p轨道所形成的价带顶很深,局域化作用很强,因而空穴被严重束缚,表现为深受主能级,故此,绝大多数的氧化物本征均为n型导电,具有p型导电特性的氧化物屈指可数。目前报道的p型导电氧化物半导体主要为SnO、NiO、Cu2O、CuAlO2等为数不多的几种,但这些氧化物均为晶态结构,不是非晶形态。目前人们正在研究的AOS如InGaZnO等均为n型半导体,具有p型导电的非晶态氧化物半导体几乎没有。因而,目前报道的AOS TFT均为n型沟道,缺少p型沟道的AOS TFT,这对AOS TFT在新一代显示、透明电子学等诸多领域的应用产生了很大的制约。因而,设计和寻找并制备出p型导电的非晶氧化物半导体薄膜是人们亟需解决的一个难题。
发明内容
本发明针对实际应用需求,拟提供一种p型非晶氧化物半导体薄膜及其制备方法。
本发明提供了一种p型CaMSnO非晶氧化物半导体薄膜,M为VIIIB族过渡金属,包括Fe、Co、Ni元素,M为三种元素中的任一种。在p型CaMSnO体系中:Ca为+2价,M为VIIIB族过渡金属Fe、Co、Ni,均为+3价,Ca与M共同与O结合形成材料的p型导电基体;Sn为+2价,在基体中也同时能形成p型导电,且具有球形电子轨道,在非晶状态下电子云高度重合,因而起到空穴传输通道的作用。
本发明所提供的p型CaMSnO非晶氧化物半导体薄膜,在CaMSnO中,Ca为+2价,M元素为Fe、Co、Ni中的一种,且为+3价,Sn为+2价;CaMSnO薄膜为非晶态,具有p型导电特性。
本发明所提供的p型CaMSnO非晶氧化物半导体薄膜,进一步地,当M为Co,此时CaMSnO即为CaCoSnO,如各实施例,p型CaCoSnO薄膜化学式为Ca3Co4SnxO9+x,其中1≦x≦2。
本发明还提供了制备上述p型CaCoSnO非晶氧化物半导体薄膜的制备方法,具体步骤如下:
(1)以高纯CaO、Co2O3和SnO粉末为原材料,混合,研磨,在950~1050℃的Ar气氛下烧结,制成CaCoSnO陶瓷片为靶材,其中Ca、Co、Sn三组分的原子比为3:4:(1~2);
(2)采用脉冲激光沉积(PLD)方法,将衬底和靶材安装在PLD反应室中,抽真空至真空度低于1×10-3Pa;
(3)通入O2为工作气体,气体压强6~8Pa,衬底温度为300~500℃,以脉冲激光轰击靶材,靶材表面原子和分子熔蒸后在衬底上沉积,形成一层薄膜,在不高于100Pa的O2气氛中自然冷却到室温,得到p型CaCoSnO非晶薄膜。
采用上述方法生长的p型CaCoSnO非晶氧化物半导体薄膜,其性能指标为:CaCoSnO非晶薄膜具有p型导电特性,空穴浓度1012~1014cm-3,可见光透过率≧78%。
上述材料参数和工艺参数为发明人经多次实验确立的,需要严格控制,在发明人的实验中若超出上述参数的范围,则无法实现设计的p型CaCoSnO材料,也无法获得具有p型导电且为非晶态的CaCoSnO薄膜。
在p型CaMSnO体系中:Ca为+2价,M为VIIIB族过渡金属Fe、Co、Ni,均为+3价,Ca与M共同与O结合形成材料的p型导电基体;Sn为+2价,起到空穴传输通道的作用。除M为Co外,当M为Fe或Ni时,也具有同样的机理,具有类似的性质,除CaCoSnO之外的其它的p型CaMSnO非晶氧化物半导体薄膜能用上述类似的方法与步骤进行制备,所得的材料和器件具有类似的性能。
本发明的有益效果在于:
1)本发明所述的p型CaMSnO非晶氧化物半导体薄膜,其中La与M共同与O结合形成材料的p型导电基体,Sn起到空穴传输通道的作用,基于上述原理,CaMSnO是一种较好的p型AOS材料。
2)本发明所述的p型CaMSnO非晶氧化物半导体薄膜,具有良好的材料特性,其p型导电性能可通过组分比例实现调控。
3)本发明所述的p型CaMSnO非晶氧化物半导体薄膜,可以作为沟道层制备的p型AOS TFT,从而为p型AOS TFT的应用提供关键材料。
4)本发明所述的p型CaMSnO非晶氧化物半导体薄膜,与已存在的n型InGaZnO非晶氧化物半导体薄膜组合,可形成一个完整的AOS的p-n体系,且p型CaMSnO与n型InGaZnO均为透明半导体材料,因而可制作透明光电器件和透明逻辑电路,开拓AOS在透明电子产品中应用,促进透明电子学的发展。
5)本发明所述的p型CaMSnO非晶氧化物半导体薄膜,在生长过程中存在较宽的参数窗口,可实现大面积沉积,能耗低,制备工艺简单、成本低,可实现工业化生产。
具体实施例
以下结合具体实施例进一步说明本发明。
实施例1
(1)以高纯CaO、Co2O3和SnO粉末为原材料,混合,研磨,在950℃的Ar气氛下烧结,制成CaCoSnO陶瓷片为靶材,其中Ca、Co、Sn三组分的原子比为3:4:1;
(2)采用脉冲激光沉积(PLD)方法,将衬底和靶材安装在PLD反应室中,抽真空至真空度为9×10-4Pa;
(3)通入O2为工作气体,气体压强6Pa,衬底温度为500℃,以脉冲激光轰击靶材,靶材表面原子和分子熔蒸后在衬底上沉积,形成一层薄膜,在70Pa的O2气氛中自然冷却到室温,得到p型Ca3Co4SnO10非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型Ca3Co4SnO10薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度77nm;具有p型导电特性,空穴浓度1014cm-3;可见光透过率82%。
实施例2
(1)以高纯CaO、Co2O3和SnO粉末为原材料,混合,研磨,在1050℃的Ar气氛下烧结,制成CaCoSnO陶瓷片为靶材,其中Ca、Co、Sn三组分的原子比为3:4:1.5;
(2)采用脉冲激光沉积(PLD)方法,将衬底和靶材安装在PLD反应室中,抽真空至真空度为9×10-4Pa;
(3)通入O2为工作气体,气体压强7Pa,衬底温度为400℃,以脉冲激光轰击靶材,靶材表面原子和分子熔蒸后在衬底上沉积,形成一层薄膜,在90Pa的O2气氛中自然冷却到室温,得到p型Ca3Co4Sn1.5O10.5非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型Ca3Co4Sn1.5O10.5薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度79nm;具有p型导电特性,空穴浓度1013cm-3;可见光透过率81%。
实施例3
(1)以高纯CaO、Co2O3和SnO粉末为原材料,混合,研磨,在1050℃的Ar气氛下烧结,制成CaCoSnO陶瓷片为靶材,其中Ca、Co、Sn三组分的原子比为3:4:2;
(2)采用脉冲激光沉积(PLD)方法,将衬底和靶材安装在PLD反应室中,抽真空至真空度为9×10-4Pa;
(3)通入O2为工作气体,气体压强8Pa,衬底温度为300℃,以脉冲激光轰击靶材,靶材表面原子和分子熔蒸后在衬底上沉积,形成一层薄膜,在100Pa的O2气氛中自然冷却到室温,得到p型Ca3Co4Sn2O11非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型Ca3Co4Sn2O11薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度70nm;具有p型导电特性,空穴浓度1012cm-3;可见光透过率78%。
上述各实施例中,使用的原料CaO粉末、Co2O3粉末和SnO粉末的纯度均在99.99%以上。
本发明p型CaCoSnO非晶氧化物半导体薄膜制备所使用的衬底,并不局限于实施例中的石英片,其它各种类型的衬底均可使用。
在p型CaMSnO体系中:M为Fe、Co、Ni中的一种。除M为Co外,当M为上述所述的其它元素时,也具有同样的机理,具有类似的性质,除CaCoSnO之外的其它的p型CaMSnO非晶氧化物半导体薄膜能用上述类似的方法与步骤进行制备,所得的材料和器件具有类似的性能。

Claims (3)

1.一种p型CaMSnO非晶氧化物半导体薄膜,其特征在于:所述CaMSnO非晶氧化物半导体薄膜中Ca为+2价,M为VIIIB族过渡金属Co,且为+3价,Ca与M共同与O结合形成材料的p型导电基体;Sn为+2价,在基体中也同时形成p型导电,且具有球形电子轨道,在非晶状态下电子云高度重合,起到空穴传输通道的作用;且CaMSnO为CaCoSnO时,所述p型CaMSnO非晶氧化物半导体薄膜化学式为Ca3Co4SnxO9+x,其中1≦x≦2。
2.根据权利要求1所述的一种p型CaMSnO非晶氧化物半导体薄膜,其特征在于:所述p型CaMSnO非晶氧化物半导体薄膜的空穴浓度1012~1014cm-3
3.如权利要求1或2所述的一种p型CaMSnO非晶氧化物半导体薄膜的制备方法,其特征在于:制备p型CaCoSnO非晶氧化物半导体薄膜包括步骤如下:
1)以高纯CaO、Co2O3和SnO粉末为原材料,混合,研磨,在950~1050℃的Ar气氛下烧结,制成CaCoSnO陶瓷片为靶材,其中Ca、Co、Sn三组分的原子比为3:4:1~2;
2)采用脉冲激光沉积(PLD)方法,将衬底和靶材安装在PLD反应室中,抽真空至真空度低于1×10-3Pa;
3)通入O2为工作气体,气体压强6~8Pa,衬底温度为300~500℃,以脉冲激光轰击靶材,靶材表面原子和分子熔蒸后在衬底上沉积,形成一层薄膜,在不高于100Pa的O2气氛中自然冷却到室温,得到p型CaCoSnO非晶薄膜。
CN201610914166.3A 2016-10-20 2016-10-20 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法 Expired - Fee Related CN106711193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610914166.3A CN106711193B (zh) 2016-10-20 2016-10-20 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610914166.3A CN106711193B (zh) 2016-10-20 2016-10-20 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106711193A CN106711193A (zh) 2017-05-24
CN106711193B true CN106711193B (zh) 2020-03-03

Family

ID=58940664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610914166.3A Expired - Fee Related CN106711193B (zh) 2016-10-20 2016-10-20 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106711193B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178730A (zh) * 2014-08-18 2014-12-03 中国科学院上海应用物理研究所 p型SnO薄膜及其p-n结二极管的制备方法
CN104630716A (zh) * 2015-02-27 2015-05-20 河北大学 一种P型透明Ca3Co4O9导电薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178730A (zh) * 2014-08-18 2014-12-03 中国科学院上海应用物理研究所 p型SnO薄膜及其p-n结二极管的制备方法
CN104630716A (zh) * 2015-02-27 2015-05-20 河北大学 一种P型透明Ca3Co4O9导电薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P-type transparent conducting oxides;Kelvin H.L Zhang et al;《journal of Physics-Condensed Matter》;20160727;第28卷(第38期);第383002-383020页 *

Also Published As

Publication number Publication date
CN106711193A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
CN101803028B (zh) 利用薄膜半导体材料的薄膜晶体管
CN109402739A (zh) 一种二维铋氧硒原子晶体材料、及其制备方法和用途
Tsay et al. Solution processed amorphous InGaZnO semiconductor thin films and transistors
Sun et al. p-type conductive NiOx: Cu thin films with high carrier mobility deposited by ion beam assisted deposition
CN106711197B (zh) 一种p型CuNiSnO非晶氧化物半导体薄膜及其制备方法
CN106711195B (zh) 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法
CN106711193B (zh) 一种p型CaMSnO非晶氧化物半导体薄膜及其制备方法
CN106711201B (zh) 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法
CN106711200B (zh) 一种p型ZnRhMO非晶氧化物半导体薄膜及其制备方法
CN106711228B (zh) 一种p型LaMSnO非晶氧化物半导体薄膜及其制备方法
CN106702326B (zh) 一种p型NiMSnO非晶氧化物半导体薄膜及其制备方法
CN106298953B (zh) 一种高性能氧化镍基p型薄膜晶体管及其制备方法
CN106711199B (zh) 一种p型CuNSnO非晶氧化物半导体薄膜及其制备方法
Huang et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature
CN106711198B (zh) 一种p型CuMInO非晶氧化物半导体薄膜及其制备方法
CN106711196B (zh) 一种p型ZnGeSnO非晶氧化物半导体薄膜及其制备方法
Garzon‐Fontecha et al. Electrical, optical, and structural characterization of p‐type N‐doped S n O thin films prepared by thermal oxidation of sputtered SnNx thin films
US20140151611A1 (en) Transparent conducting oxide material and methods of producing same
Chen et al. The influence of channel compositions on the electrical properties of solution-processed indium-zinc oxide thin-film transistors
Kim et al. Defect control in zinc oxynitride semiconductor for high-performance and high-stability thin-film transistors
CN109037315B (zh) 一种用于薄膜晶体管的沟道层材料及其制备方法与应用
Ding et al. Influence of annealing temperature on the optoelectronic properties of ITZO thin films
CN106711192B (zh) 一种p型CuMSnO非晶氧化物半导体薄膜及其制备方法
Lee et al. Effect of Chloride Precursors on the Stability of Solution-Processed Indium Zinc Oxide Thin-Film Transistors
CN110459601B (zh) 一种二维非晶氧化物半导体与薄膜晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200303