CN106711202A - 一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法 - Google Patents

一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法 Download PDF

Info

Publication number
CN106711202A
CN106711202A CN201610914172.9A CN201610914172A CN106711202A CN 106711202 A CN106711202 A CN 106711202A CN 201610914172 A CN201610914172 A CN 201610914172A CN 106711202 A CN106711202 A CN 106711202A
Authority
CN
China
Prior art keywords
type
znalsno
amorphous oxide
oxide semiconductor
semiconductor films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610914172.9A
Other languages
English (en)
Inventor
吕建国
吕容恺
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610914172.9A priority Critical patent/CN106711202A/zh
Publication of CN106711202A publication Critical patent/CN106711202A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种p型ZnAlSnO非晶氧化物半导体薄膜,所述ZnAlSnO中,Sn为材料的基体元素,且为+4价,与O结合形成材料的基体;Zn为+2价,Al为+3价,掺入基体形成p型导电;同时,Al作为空穴浓度的控制元素;Sn具有球形电子轨道,在非晶状态下电子云高度重合,起到空穴传输通道的作用。且p型ZnAlSnO非晶薄膜的化学式为ZnAlxSnyO1+1.5x+2y,其中0.4≦x≦0.6,6.3≦y≦6.7。本发明还公开了p型ZnAlSnO非晶薄膜的制备方法和应用。所制得的p型ZnAlSnO非晶薄膜的空穴浓度1014cm‑3,可见光透过率≧90%。将其作为沟道层应用于薄膜晶体管,迁移率为3.2~5.6cm2/Vs。

Description

一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法
技术领域
本发明涉及一种非晶氧化物半导体薄膜,尤其涉及一种p型非晶氧化物半导体薄膜及其制备方法。
背景技术
薄膜晶体管(TFT)是微电子特别是显示工程领域的核心技术之一。目前,TFT主要是基于非晶硅(a-Si)技术,但是a-Si TFT是不透光的,光敏性强,需要加掩膜层,显示屏的像素开口率低,限制了显示性能,而且a-Si迁移率较低(~2 cm2/Vs),不能满足一些应用需求。基于多晶硅(p-Si)技术的TFT虽然迁移率高,但是器件均匀性较差,而且制作成本高,这限制了它的应用。此外,有机半导体薄膜晶体管(OTFT)也有较多的研究,但是OTFT的稳定性不高,迁移率也比较低(~1 cm2/Vs),这对其实际应用是一个较大制约。
为解决上述问题,人们近年来开始致力于非晶氧化物半导体(AOS)TFT的研究,其中最具代表性的是InGaZnO。与Si基TFT不同,AOS TFT具有如下优点:可见光透明,光敏退化性小,不用加掩膜层,提高了开口率,可解决开口率低对高分辨率、超精细显示屏的限制;易于室温沉积,适用于有机柔性基板;迁移率较高,可实现高的开/关电流比,较快的器件响应速度,应用于高驱动电流和高速器件;特性不均较小,电流的时间变化也较小,可抑制面板的显示不均现象,适于大面积化用途。
由于金属氧化物特殊的电子结构,氧原子的2p能级一般都远低于金属原子的价带电子能级,不利于轨道杂化,因而O 2p轨道所形成的价带顶很深,局域化作用很强,因而空穴被严重束缚,表现为深受主能级,故此,绝大多数的氧化物本征均为n型导电,具有p型导电特性的氧化物屈指可数。目前报道的p型导电氧化物半导体主要为SnO、NiO、Cu2O、CuAlO2等为数不多的几种,但这些氧化物均为晶态结构,不是非晶形态。目前人们正在研究的AOS如InGaZnO等均为n型半导体,具有p型导电的非晶态氧化物半导体几乎没有。因而,目前报道的AOS TFT均为n型沟道,缺少p型沟道的AOS TFT,这对AOS TFT在新一代显示、透明电子学等诸多领域的应用产生了很大的制约。因而,设计和寻找并制备出p型导电的非晶氧化物半导体薄膜是人们亟需解决的一个难题。
发明内容
本发明针对实际应用需求,拟提供一种p型非晶氧化物半导体薄膜及其制备方法。
本发明提供了一种p型ZnAlSnO非晶氧化物半导体薄膜,其中:Sn为材料的基体元素,Sn为+4价,与O结合形成材料的基体;Zn为+2价,Al为+3价,掺入基体形成p型导电;同时,Al具有较低的标准电势、与O有高的结合能,因而作为空穴浓度的控制元素;Sn具有球形电子轨道,在非晶状态下电子云高度重合,因而Sn同时起到空穴传输通道的作用。
本发明所提供的p型ZnAlSnO非晶氧化物半导体薄膜,在ZnAlSnO材料中,Zn为+2价,Al为+3价,Sn为+4价;且ZnAlSnO薄膜为非晶态,其化学式为ZnAlxSnyO1+1.5x+2y,其中0.4≦x≦0.6,6.3≦y≦6.7;ZnAlSnO非晶薄膜具有p型导电特性,空穴浓度1014cm-3,可见光透过率≧90%。
本发明还提供了制备上述p型ZnAlSnO非晶氧化物半导体薄膜的制备方法,具体步骤如下:
(1)以高纯ZnO、Al2O3和SnO2粉末为原材料,混合,研磨,在1000℃的O2气氛下烧结,制成ZnAlSnO陶瓷片为靶材,其中Zn、Al、Sn三组分的原子比为1:(0.4~0.6):(6.3~6.7);
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至不高于2×10-3Pa;
(3)通入Ar-O2为工作气体,气体压强1.0~1.3Pa,Ar-O2流量体积比为100:33~100:67,溅射功率140~160W,衬底温度为室温,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnAlSnO非晶薄膜。
以本发明的上述p型ZnAlSnO非晶氧化物半导体薄膜为沟道层,制备出AOS薄膜晶体管(TFT),所得的p型非晶ZnAlSnO TFT开关电流比在104量级,场效应迁移率3.2~5.6cm2/Vs。
上述材料参数和工艺参数为发明人经多次实验确立的,需要严格控制,在发明人的实验中若超出上述参数的范围,则无法实现设计的p型ZnAlSnO材料,也无法获得具有p型导电且为非晶态的ZnAlSnO薄膜。
本发明的有益效果在于:
1)本发明所述的p型ZnAlSnO非晶氧化物半导体薄膜,其中Sn为材料的基体元素,Zn和Al掺入基体形成p型导电,同时Al为空穴浓度的控制元素,Sn起到空穴传输通道的作用,基于上述原理,ZnAlSnO是一种理想的p型AOS材料。
2)本发明所述的p型ZnAlSnO非晶氧化物半导体薄膜,具有良好的材料特性,其p型导电性能可通过组分比例实现调控。
3)本发明所述的p型ZnAlSnO非晶氧化物半导体薄膜,以此作为沟道层制备的p型AOS TFT具有良好的性能,为p型AOS TFT的应用奠定了基础。
4)本发明所述的p型ZnAlSnO非晶氧化物半导体薄膜,与已存在的n型InGaZnO非晶氧化物半导体薄膜组合,可形成一个完整的AOS的p-n体系,且p型ZnAlSnO与n型InGaZnO均为透明半导体材料,因而可制作透明光电器件和透明逻辑电路,开创AOS在透明电子产品中应用,极大促进透明电子学的发展。
5)本发明所述的p型ZnAlSnO非晶氧化物半导体薄膜,完全在室温下生长,非常适合于有机柔性衬底,因而可在可穿戴、智能化的柔性产品中获得广泛应用。
6)本发明所述的p型ZnAlSnO非晶氧化物半导体薄膜,在生长过程中存在较宽的参数窗口,可实现大面积室温沉积,能耗低,制备工艺简单、成本低,可实现工业化生产。
附图说明
图1为各实施例所采用的p型非晶ZnAlSnO TFT器件结构示意图。图中,1为低阻n++ Si衬底,同时也作为栅极,2为SiO2绝缘介电层,3为p型非晶ZnAlSnO沟道层,4为金属Ag源极,5为金属Ag漏极。
图2为实施例1制得的以p型ZnAlSnO非晶氧化物半导体薄膜为沟道层的TFT的转移特性曲线。
图3为实施例2制得的以p型ZnAlSnO非晶氧化物半导体薄膜为沟道层的TFT的转移特性曲线。
具体实施例
以下结合附图及具体实施例进一步说明本发明。
实施例1
(1)以高纯ZnO、Al2O3和SnO2粉末为原材料,混合,研磨,在1000℃的O2气氛下烧结,制成ZnAlSnO陶瓷片为靶材,其中Zn、Al、Sn三组分的原子比为1:0.5:6.5;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至2×10-3Pa;
(3)通入Ar-O2为工作气体,气体压强1.3Pa,Ar-O2流量体积比为100:33,溅射功率150W,衬底温度为室温,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnAl0.5Sn6.5O14.75非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型ZnAl0.5Sn6.5O14.75薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度40nm;具有p型导电特性,空穴浓度1014cm-3;可见光透过率92%。
以镀覆有300nm厚度SiO2的n++-Si为衬底,按照上述生长步骤制得p型ZnAl0.5Sn6.5O14.75薄膜,以此作为沟道层,采用图1所示的结构制作出TFT器件,n++-Si为栅极,300nm厚的SiO2为栅极绝缘层,ZnAl0.5Sn6.5O14.75沟道层厚度40nm,100nm厚的Ag金属为源极和漏极, TFT沟道层长和宽分别为200μm和1000μm。对该p型ZnAlSnO非晶薄膜为沟道层的TFT进行器件性能测试,图2为测试所得的转移特性曲线,开关电流比为3.9×104,场效应迁移率5.6cm2/Vs。
实施例2
(1)以高纯ZnO、Al2O3和SnO2粉末为原材料,混合,研磨,在1000℃的O2气氛下烧结,制成ZnAlSnO陶瓷片为靶材,其中Zn、Al、Sn三组分的原子比为1:0.5:6.5;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至2×10-3Pa;
(3)通入Ar-O2为工作气体,气体压强1.0Pa,Ar-O2流量体积比为100:43,溅射功率150W,衬底温度为室温,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnAl0.5Sn6.5O14.75非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型ZnAl0.5Sn6.5O14.75薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度42nm;具有p型导电特性,空穴浓度1014cm-3;可见光透过率91%。
以镀覆有300nm厚度SiO2的n++-Si为衬底,按照上述生长步骤制得p型ZnAl0.5Sn6.5O14.75薄膜,以此作为沟道层,采用图1所示的结构制作出TFT器件,n++-Si为栅极,300nm厚的SiO2为栅极绝缘层,ZnAl0.5Sn6.5O14.75沟道层厚度42nm,100nm厚的Ag金属为源极和漏极, TFT沟道层长和宽分别为200μm和1000μm。对该p型ZnAlSnO非晶薄膜为沟道层的TFT进行器件性能测试,图3为测试所得的转移特性曲线,开关电流比为5.1×104,场效应迁移率5.3cm2/Vs。
实施例3
(1)以高纯ZnO、Al2O3和SnO2粉末为原材料,混合,研磨,在1000℃的O2气氛下烧结,制成ZnAlSnO陶瓷片为靶材,其中Zn、Al、Sn三组分的原子比为1:0.4:6.3;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至2×10-3Pa;
(3)通入Ar-O2为工作气体,气体压强1.2Pa,Ar-O2流量体积比为100:50,溅射功率140W,衬底温度为室温,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnAl0.4Sn6.3O14.2非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型ZnAl0.4Sn6.3O14.2薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度37nm;具有p型导电特性,空穴浓度1014cm-3;可见光透过率95%。
以镀覆有300nm厚度SiO2的n++-Si为衬底,按照上述生长步骤制得p型ZnAl0.4Sn6.3O14.2薄膜,以此作为沟道层,采用图1所示的结构制作出TFT器件,n++-Si为栅极,300nm厚的SiO2为栅极绝缘层,ZnAl0.4Sn6.3O14.2沟道层厚度37nm,100nm厚的Ag金属为源极和漏极, TFT沟道层长和宽分别为200μm和1000μm。对该p型ZnAlSnO非晶薄膜为沟道层的TFT进行器件性能测试,测试结果:开关电流比为2.1×104,场效应迁移率4.7cm2/Vs。
实施例4
(1)以高纯ZnO、Al2O3和SnO2粉末为原材料,混合,研磨,在1000℃的O2气氛下烧结,制成ZnAlSnO陶瓷片为靶材,其中Zn、Al、Sn三组分的原子比为1:0.6:6.7;
(2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至2×10-3Pa;
(3)通入Ar-O2为工作气体,气体压强1.2Pa,Ar-O2流量体积比为100:67,溅射功率160W,衬底温度为室温,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnAl0.6Sn6.7O15.3非晶薄膜。
以石英为衬底,按照上述生长步骤制得p型ZnAl0.6Sn6.7O15.3薄膜,对其进行结构、电学和光学性能测试,测试结果为:薄膜为非晶态,厚度45nm;具有p型导电特性,空穴浓度1015cm-3;可见光透过率90%。
以镀覆有300nm厚度SiO2的n++-Si为衬底,按照上述生长步骤制得p型ZnAl0.6Sn6.7O15.3薄膜,以此作为沟道层,采用图1所示的结构制作出TFT器件,n++-Si为栅极,300nm厚的SiO2为栅极绝缘层,ZnAl0.6Sn6.7O15.3沟道层厚度45nm,100nm厚的Ag金属为源极和漏极, TFT沟道层长和宽分别为200μm和1000μm。对该p型ZnAlSnO非晶薄膜为沟道层的TFT进行器件性能测试,测试结果:开关电流比为7.5×104,场效应迁移率3.2cm2/Vs。
上述各实施例中,使用的原料ZnO粉末、Al2O3粉末和SnO粉末的纯度均在99.99%以上。
本发明p型ZnAlSnO非晶氧化物半导体薄膜制备所使用的衬底,并不局限于实施例中的单晶硅片和石英片,其它各种类型的衬底均可使用。

Claims (6)

1.一种p型ZnAlSnO非晶氧化物半导体薄膜,其特征在于:所述ZnAlSnO中,Sn为材料的基体元素,且为+4价,与O结合形成材料的基体;Zn为+2价,Al为+3价,掺入基体形成p型导电;同时,Al作为空穴浓度的控制元素;Sn具有球形电子轨道,在非晶状态下电子云高度重合,起到空穴传输通道的作用。
2.根据权利要求1所述的一种p型ZnAlSnO非晶氧化物半导体薄膜,其特征在于:所述p型ZnAlSnO非晶氧化物半导体薄膜的化学式为ZnAlxSnyO1+1.5x+2y,其中0.4≦x≦0.6,6.3≦y≦6.7。
3.根据权利要求2所述的一种p型ZnAlSnO非晶氧化物半导体薄膜,其特征在于:所述p型ZnAlSnO非晶氧化物半导体薄膜的空穴浓度1014cm-3,可见光透过率≧90%。
4.如权利要求1~3任一项所述p型ZnAlSnO非晶氧化物半导体薄膜的制备方法,其特征在于包括步骤:
1)以高纯ZnO、Al2O3和SnO2粉末为原材料,混合,研磨,在1000℃的O2气氛下烧结,制成ZnAlSnO陶瓷片为靶材,其中Zn、Al、Sn三组分的原子比为1:0.4~0.6:6.3~6.7;
2)采用射频磁控溅射方法,将衬底和靶材安装在溅射反应室中,抽真空至不高于2×10-3Pa;
3)通入Ar-O2为工作气体,气体压强1.0~1.3Pa,Ar-O2流量体积比为100:33~100:67,溅射功率140~160W,衬底温度为室温,在Ar-O2离子的轰击下,靶材表面原子和分子溅射出来,在衬底上沉积形成一层薄膜,便得到p型ZnAlSnO非晶薄膜。
5.如权利要求1~3任一项所述p型ZnAlSnO非晶氧化物半导体薄膜在薄膜晶体管中的应用,其特征在于:所述p型ZnAlSnO非晶氧化物半导体薄膜为薄膜晶体管的p型沟道层。
6.根据权利要求5所述p型ZnAlSnO非晶氧化物半导体薄膜在薄膜晶体管中的应用,其特征在于:所述薄膜晶体管开关电流比在104量级,场效应迁移率3.2~5.6cm2/Vs。
CN201610914172.9A 2016-10-20 2016-10-20 一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法 Pending CN106711202A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610914172.9A CN106711202A (zh) 2016-10-20 2016-10-20 一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610914172.9A CN106711202A (zh) 2016-10-20 2016-10-20 一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN106711202A true CN106711202A (zh) 2017-05-24

Family

ID=58940802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610914172.9A Pending CN106711202A (zh) 2016-10-20 2016-10-20 一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106711202A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173732A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种p型透明导电氧化物及其掺杂非晶薄膜的制备方法
US20150194531A1 (en) * 2012-09-18 2015-07-09 Lg Chem, Ltd. Transparent conducting film and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150194531A1 (en) * 2012-09-18 2015-07-09 Lg Chem, Ltd. Transparent conducting film and preparation method thereof
CN103173732A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种p型透明导电氧化物及其掺杂非晶薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QINGJUN JIANG ET AL: ""Amorphous ZnAlSnO thin-film transistors by a combustion solution process for future displays"", 《APPLIED PHYSICS LETTERS》 *

Similar Documents

Publication Publication Date Title
Troughton et al. Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status
Sanal et al. Room temperature deposited transparent p-channel CuO thin film transistors
Bae et al. Gallium doping effects for improving switching performance of p-type copper (I) oxide thin-film transistors
CN104584200B (zh) 薄膜晶体管和显示装置
CN105849878A (zh) 具有未图案化的蚀刻停止的motft
CN103346089B (zh) 一种自对准双层沟道金属氧化物薄膜晶体管及其制作方法
CN106128944A (zh) 金属氧化物薄膜晶体管阵列基板的制作方法
CN106783871A (zh) 一种阵列基板、显示面板及制作方法
CN103325842B (zh) 氧化物半导体薄膜及一种薄膜晶体管
CN102683423A (zh) 一种顶栅结构金属氧化物薄膜晶体管及其制作方法
CN104992981B (zh) 氧化物薄膜晶体管及其制备方法和反相器及其制备方法
TW201220504A (en) Metal oxide thin film transistor and manufacturing method thereof
CN103545377B (zh) 一种氧化物薄膜晶体管及其制造方法
CN106711196B (zh) 一种p型ZnGeSnO非晶氧化物半导体薄膜及其制备方法
CN106711197A (zh) 一种p型CuNiSnO非晶氧化物半导体薄膜及其制备方法
CN106711202A (zh) 一种p型ZnAlSnO非晶氧化物半导体薄膜及其制备方法
CN105449000A (zh) 一种双有源层Cu2O/SnO p 沟道薄膜晶体管及其制备方法
CN106711195A (zh) 一种p型ZnMSnO非晶氧化物半导体薄膜及其制备方法
CN106298953B (zh) 一种高性能氧化镍基p型薄膜晶体管及其制备方法
CN106711201A (zh) 一种p型CrMCuO非晶氧化物半导体薄膜及其制备方法
CN106711192B (zh) 一种p型CuMSnO非晶氧化物半导体薄膜及其制备方法
CN102969364A (zh) 一种改善器件均匀性的顶栅结构金属氧化物薄膜晶体管及其制作方法
CN106702326B (zh) 一种p型NiMSnO非晶氧化物半导体薄膜及其制备方法
CN106711198A (zh) 一种p型CuMInO非晶氧化物半导体薄膜及其制备方法
CN106711228A (zh) 一种p型LaMSnO非晶氧化物半导体薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170524