CN106693935A - 以核‑壳金属有机骨架制备磁性炭材料的方法 - Google Patents

以核‑壳金属有机骨架制备磁性炭材料的方法 Download PDF

Info

Publication number
CN106693935A
CN106693935A CN201611233463.8A CN201611233463A CN106693935A CN 106693935 A CN106693935 A CN 106693935A CN 201611233463 A CN201611233463 A CN 201611233463A CN 106693935 A CN106693935 A CN 106693935A
Authority
CN
China
Prior art keywords
core
metal
organic framework
carbon material
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611233463.8A
Other languages
English (en)
Inventor
林小英
林松烨
郑琴琴
金雨来
林剑涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN201611233463.8A priority Critical patent/CN106693935A/zh
Publication of CN106693935A publication Critical patent/CN106693935A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种以核‑壳金属有机骨架材料制备磁性炭材料的方法,将所采用的有机配体与金属盐先后超声溶解于溶剂中,滴加2‑10滴氟硼酸,转移至聚四氟乙烯内衬反应釜中,在烘箱中反应,过滤、干燥得到金属‑有机骨架材料;将合成“壳”材料所需有机配体与金属盐先后超声溶解于溶剂中,滴加2‑10滴氟硼酸,加入为核的金属有机骨架材料,后转移至聚四氟乙烯内衬反应釜中,在烘箱中反应,过滤、干燥得到核‑壳金属有机骨架材料;将上述得到的核‑壳金属有机骨架材料进行高温炭化加热,得到磁性炭材料。该方法制得的炭材料孔道结构规则,孔径分布均匀,具有磁性,在气体吸附储存、工业废物分离等方面具有良好的应用价值,且该方法制备过程简单易行、安全性好。

Description

以核-壳金属有机骨架制备磁性炭材料的方法
【技术领域】
本发明涉及一种以核-壳金属有机骨架制备高比表面积磁性炭材料的方法。
【背景技术】
金属-有机骨架材料是由有机配体与金属离子通过自组装形成的拓扑结构,具有结构可设计性和调节性,其中有机配体具有高的含碳量。核-壳金属-有机骨架材料是以某种金属-有机骨架为核,以另一种金属有机骨架为壳组装而成的一种核-壳结构。核-壳结构能结合两种不同材料的优点,可根据实际所需可以设计出相应的核-壳结构。炭材料因为具有较高的比表面积和导电能力,并且化学稳定性、热稳定性高,目前在吸附、分离、电学、超级电容器等领域有极为重要的价值。在炭材料中,磁性炭材料由于具有磁性,使炭材料易于回收循环利用,大幅节省成本。所以通过设计以铁磁性金属为金属中心的核-壳金属有机骨架为前驱体制备多孔炭具有重要的意义。
中国发明专利(ZL201410130580.6)以首先利用水热法制备出具有多孔结构的金属-有机骨架材料Fe-MIL-101或Fe-MIL-100,将其在N2/H2氛围或者真空状态,在温度为500-700℃下锻烧2-8小时,得到磁性多孔碳/氧化铁纳米复合的吸附材料。其具有如下缺点:
1、所制备的磁性炭材料比表面积较小,比表面积在200~450m2/g,限制了它的应用。
2、所选的炭化前驱体只有Fe-MIL-101或Fe-MIL-100,方法使用范围较为狭窄。
3、所制备的磁性材料中金属组分只包含氧化铁,使得该材料难以应用于催化领域。
【发明内容】
本发明所要解决的技术问题在于提供一种以核-壳金属有机骨架材料为前驱体制备高比表面积磁性炭材料的方法,该方法制得的炭材料孔道结构规则,孔径分布均匀,具有磁性,在气体吸附储存、工业废物分离等方面具有良好的应用价值,且该方法制备过程简单易行、安全性好。
本发明是这样实现的:
以核-壳金属有机骨架制备磁性炭材料的方法,包括如下步骤:
步骤1:前驱体核-壳金属有机骨架材料中的“核”材料的合成:
将所采用的有机配体与金属盐先后超声溶解于溶剂中,滴加2-10滴的氟硼酸,搅拌均匀,转移至聚四氟乙烯内衬的反应釜中,在烘箱中反应,过滤、干燥得到金属-有机骨架材料;其中反应温度为80-200℃,金属盐与有机配体的反应比例为0.2-5∶1;
步骤2:前驱体核-壳金属有机骨架材料的合成:
将合成“壳”材料所需的有机配体与金属盐先后超声溶解于溶剂中,滴加2-10滴的氟硼酸,搅拌均匀,加入为核的金属有机骨架材料,后转移至聚四氟乙烯内衬的反应釜中,在烘箱中反应,过滤、干燥得到核-壳金属有机骨架材料;其中反应温度为80-200℃,金属盐与有机配体的反应摩尔比例为0.2-5∶1,金属有机骨架材料与有机配体的投加质量比例为0.01-0.5∶1;
步骤3:高温炭化:
将上述得到的核-壳金属有机骨架材料放在石英舟上,置于管式炉中,在氮气气氛下,进行高温炭化加热,在炭化过程中金属有机骨架材料结构中的铁磁性金属组分被氧化具有磁性的金属氧化物,有机基团被炭化包裹在金属氧化物上,得到磁性金属氧化物与活性炭的复合物,就是磁性炭材料。
进一步地,所述核-壳金属有机骨架中“核”或者“壳”至少有一个具有铁磁性金属组分。
进一步地,所述铁磁性金属组分来源金属盐为铁盐、镍盐、钴盐,其他金属组分来源金属盐为锌盐、钾盐、镁盐、铅盐。
进一步地,所述有机配体指具有配位官能团的配体,为羧酸类配体、含氮配体、含氨基配体或磷酸类配体。
进一步地,所述溶剂为N,N-二甲基甲酰胺、水、甲醇、乙醇。
进一步地,所述步骤3中的高温炭化是以1~10℃/min的升温速度从室温加热到450~1000℃,并在450~1000℃保持10-600min小时,之后自然冷却到室温。
本发明的优点在于:
1、提高所制备的磁性多孔炭的比表面积及孔容得到高性能的磁性炭材料。
2、开发炭化前驱体的种类,增加制备磁性炭的材料多样性;以及可根据需求,采用合适的金属盐和配体构建核-壳金属有机骨架。
3、制备方法简单快捷,有益于工业化生产。
以下实施案例和附图仅为详细说明本发明的示例,并不用来限制本发明的范围。
【附图说明】
图1是实施例1中的Fe-MOF和Fe-Zn核-壳MOF的粉末X-射线衍射图。
图2是实施例2中的Co-MOF和Co-Zn核-壳MOF的粉末X-射线衍射图。
图3是实施例3中的Ni-MOF和Ni-Zn核-壳MOF的粉末X-射线衍射图。
图4是实施例1、2、3中核-壳MOF的热重曲线图。
图5是实施例1、2、3中磁性炭材料的N2吸附/脱附曲线图。
【具体实施方式】
实施例1:
以Fe-MOF为核,MOF-5(Zn)为壳制备Fe-Zn核-壳MOF,以Fe-Zn核-壳MOF为前驱体,通过高温炭化制备高比表面积的磁性炭材料。
Fe-MOF中金属元素是铁(Fe),配位的有机化合物是对苯二甲酸,此物质的制备方法为称取1.6230g六水合氯化铁和0.8405g均苯三甲酸溶解于40mL蒸馏水中,滴加4滴的氟硼酸,搅拌均匀转入带四氟乙烯内衬的高压反应釜中,在150℃下反应24小时,得到产品,在150℃下真空干燥12小时后得到Fe-MOF。
Fe-Zn核-壳MOF的制备首先配制MOF-5(Zn)的反应液,将2.9749g六水合硝酸锌和0.8310g对苯二甲酸溶解于80mL N,N-二甲基甲酰胺溶液中,滴加4滴的氟硼酸,搅拌均匀,后按Fe-MOF与对苯二甲酸质量比为0.05:1的比例添加Fe-MOF,转入带四氟乙烯内衬的高压反应釜中,在100℃下反应48小时,得到产品,在100℃下真空干燥4小时后得到Fe-Zn核-壳MOF。经粉末X-射线衍射分析(见图1),发现有明显的衍射峰,说明Fe-Zn核-壳MOF结晶性较好。通过热失重分析(见图4),得到Fe-Zn核-壳MOF的分解温度约为400℃。
将所得Fe-Zn核-壳MOF放在石英舟上,置于高温管式炉中,以5℃/min的升温速度从室温加热到950℃,并在950℃保持3小时,之后自然冷却到室温,得到磁性炭材料Fe-Zn-MOF-C。其BET比表面积经低温氮气吸附/脱附等温线测得为783.56m2/g(见图5),孔容为0.80cm3/g,平均孔径为5.40nm,室温条件下的饱和磁化强度为8.32emu/g。
实施例2:
主要方法同实施例1,不同之处在于,本实施例以另一种金属有机骨架材料Co-MOF为核,以MOF-5(Zn)为壳制备Co-Zn核-壳MOF,以Co-Zn核-壳MOF为前驱体,通过高温炭化制备高比表面积的磁性炭材料。
Co-MOF中金属元素是钴(Co),配位的有机化合物是对苯二甲酸,此物质的制备方法为将2.9103g六水合硝酸钴和0.8310g对苯二甲酸溶解于80mL N,N-二甲基甲酰胺溶液中,搅拌均匀转入带四氟乙烯内衬的高压反应釜中,在100℃下反应24小时,得到产品,在100℃下真空干燥4小时后得到Co-MOF。
Co-Zn核-壳MOF的制备首先配制MOF-5(Zn)的反应液,将2.9749g六水合硝酸锌和0.8310g对苯二甲酸溶解于80mL N,N-二甲基甲酰胺溶液中,滴加4滴的氟硼酸,搅拌均匀,后按Co-MOF与对苯二甲酸质量比为0.05:1的比例添加Co-MOF,转入带四氟乙烯内衬的高压反应釜中,在100℃下反应48小时,得到产品,在100℃下真空干燥4小时后得到Co-Zn核-壳MOF。经粉末X-射线衍射分析(见图2),发现有明显的衍射峰,说明Co-Zn核-壳MOF结晶性较好。通过热失重分析(见图4),得到Co-Zn核-壳MOF的分解温度约为400℃。
将所得Co-Zn核-壳MOF放在石英舟上,置于高温管式炉中,以2.5℃/min的升温速度从室温加热到750℃,并在750℃保持1小时,之后自然冷却到室温,得到磁性炭材料Co-Zn-MOF-C。其BET比表面积经低温氮气吸附/脱附等温线测得为974.11m2/g(见图5),孔容为0.87cm3/g,平均孔径为3.71nm,室温条件下的饱和磁化强度为10.5emu/g。
实施例3:
主要方法同实施例1,不同之处在于,本实施例以另一种金属有机骨架材料Ni-MOF为核,以MOF-5(Zn)为壳制备Ni-Zn核-壳MOF,以Ni-Zn核-壳MOF为前驱体,通过高温炭化制备高比表面积的磁性炭材料。
Ni-MOF中金属元素是镍(Ni),配位的有机化合物是均苯三甲酸,此物质的制备方法为将1.4560g硝酸镍和0.8306g均苯三甲酸溶解于80mL N,N-二甲基甲酰胺溶液中,搅拌均匀转入带四氟乙烯内衬的高压反应釜中,在100℃下反应48小时,得到产品,在100℃下真空干燥4小时后得到Ni-MOF。经粉末X-射线衍射分析(见图3),发现有明显的衍射峰,说明Co-Zn核-壳MOF结晶性较好。通过热失重分析(见图4),得到Co-Zn核-壳MOF的分解温度约为400℃。
Ni-Zn核-壳MOF的制备首先配制MOF-5(Zn)的反应液,将2.9749g六水合硝酸锌和0.8310g对苯二甲酸溶解于80mL N,N-二甲基甲酰胺溶液中,滴加4滴的氟硼酸,搅拌均匀,后按Ni-MOF与对苯二甲酸质量比为0.1:1的比例添加Ni-MOF,转入带四氟乙烯内衬的高压反应釜中,在100℃下反应48小时,得到产品,在100℃下真空干燥4小时后得到Ni-Zn核-壳MOF。将所得Ni-Zn核-壳MOF放在石英舟上,置于高温管式炉中,以10℃/min的升温速度从室温加热到950℃,并在950℃保持5小时,之后自然冷却到室温,得到磁性炭材料Ni-Zn-MOF-C。其BET比表面积经低温氮气吸附/脱附等温线测得为961.05m2/g(见图5),孔容为1.06cm3/g,平均孔径为1.36nm,室温条件下的饱和磁化强度为13.74emu/g。
以上所述仅为本发明的较佳实施用例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换以及改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.以核-壳金属有机骨架制备磁性炭材料的方法,其特征在于:包括如下步骤:
步骤1:前驱体核-壳金属有机骨架材料中的“核”材料的合成:
将所采用的有机配体与金属盐先后超声溶解于溶剂中,滴加2-10滴的氟硼酸,搅拌均匀,转移至聚四氟乙烯内衬的反应釜中,在烘箱中反应,过滤、干燥得到金属-有机骨架材料;其中反应温度为80-200℃,金属盐与有机配体的反应比例为0.2-5∶1;
步骤2:前驱体核-壳金属有机骨架材料的合成:
将合成“壳”材料所需的有机配体与金属盐先后超声溶解于溶剂中,滴加2-10滴的氟硼酸,搅拌均匀,加入为核的金属有机骨架材料,后转移至聚四氟乙烯内衬的反应釜中,在烘箱中反应,过滤、干燥得到核-壳金属有机骨架材料;其中反应温度为80-200℃,金属盐与有机配体的反应摩尔比例为0.2-5∶1,金属有机骨架材料与有机配体的投加质量比例为0.01-0.5∶1;
步骤3:高温炭化:
将上述得到的核-壳金属有机骨架材料放在石英舟上,置于管式炉中,在氮气气氛下,进行高温炭化加热,在炭化过程中金属有机骨架材料结构中的铁磁性金属组分被氧化具有磁性的金属氧化物,有机基团被炭化包裹在金属氧化物上,得到磁性金属氧化物与活性炭的复合物,就是磁性炭材料。
2.如权利要求1所述的以核壳金属有机骨架制备磁性炭材料的方法,其特征在于:
所述核-壳金属有机骨架中“核”或者“壳”至少有一个具有铁磁性金属组分。
3.如权利要求2所述的以核壳金属有机骨架制备磁性炭材料的方法,其特征在于:所述铁磁性金属组分来源金属盐为铁盐、镍盐、钴盐,其他金属组分来源金属盐为锌盐、钾盐、镁盐、铅盐。
4.如权利要求1所述的以核壳金属有机骨架制备磁性炭材料的方法,其特征在于:所述有机配体指具有配位官能团的配体,为羧酸类配体、含氮配体、含氨基配体或磷酸类配体。
5.如权利要求1所述的以核-壳金属有机骨架制备磁性炭材料的方法,其特征在于:所述溶剂为N,N-二甲基甲酰胺、水、甲醇、乙醇。
6.如权利要求1所述的以核-壳金属有机骨架制备磁性炭材料的方法,其特征在于:所述步骤3中的高温炭化是以1~10℃/min的升温速度从室温加热到450~1000℃,并在450~1000℃保持10-600min,之后自然冷却到室温。
CN201611233463.8A 2016-12-28 2016-12-28 以核‑壳金属有机骨架制备磁性炭材料的方法 Pending CN106693935A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611233463.8A CN106693935A (zh) 2016-12-28 2016-12-28 以核‑壳金属有机骨架制备磁性炭材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611233463.8A CN106693935A (zh) 2016-12-28 2016-12-28 以核‑壳金属有机骨架制备磁性炭材料的方法

Publications (1)

Publication Number Publication Date
CN106693935A true CN106693935A (zh) 2017-05-24

Family

ID=58895524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611233463.8A Pending CN106693935A (zh) 2016-12-28 2016-12-28 以核‑壳金属有机骨架制备磁性炭材料的方法

Country Status (1)

Country Link
CN (1) CN106693935A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694581A (zh) * 2017-10-12 2018-02-16 郑州大学 杂原子掺杂的多孔碳包覆磷化亚铜复合型催化剂的应用
CN109621910A (zh) * 2019-01-02 2019-04-16 湖南大学 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN110090621A (zh) * 2019-05-16 2019-08-06 南京林业大学 一种金属有机骨架衍生多孔碳材料及其制备方法与应用
CN110125428A (zh) * 2019-04-22 2019-08-16 安徽理工大学 MOF衍生的分层蛋黄-壳ZnO-Ni@CNT微球的制备及应用
CN111217351A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种激光烧蚀法制备磁性多孔碳的方法
CN113307245A (zh) * 2021-05-31 2021-08-27 北京化工大学 一种具备特定形貌和多重分形结构的多孔炭光热材料的制备方法
CN113952935A (zh) * 2021-11-19 2022-01-21 中国农业科学院蔬菜花卉研究所 一种磁性MOFs复合材料及其制备方法和应用
CN116425992A (zh) * 2023-04-28 2023-07-14 华中科技大学 一种利用溶剂热将废弃聚乳酸转化为金属-有机框架材料的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203207A (zh) * 2012-01-12 2013-07-17 安徽大学 一种磁性纳米孔洞金属-有机骨架核-壳材料的制备、功能化设计及应用
CN103949286A (zh) * 2014-04-16 2014-07-30 国家纳米科学中心 一种用于选择性加氢反应的MOFs@贵金属@MOFs催化剂、制备方法及其用途
WO2015044964A1 (en) * 2013-09-30 2015-04-02 Council Of Scientific & Industrial Research Magnetic nanoparticles decorated activated carbon nanocomposites for purification of water
CN104710965A (zh) * 2015-04-02 2015-06-17 北京科技大学 一种多级孔道碳基复合相变材料的制备方法
CN104925783A (zh) * 2015-06-24 2015-09-23 上海大学 核壳分级结构多孔碳的制备方法
CN105001245A (zh) * 2015-07-15 2015-10-28 北京工业大学 一种Zn的金属有机骨架材料和制备方法及其应用
CN105152281A (zh) * 2015-09-10 2015-12-16 上海大学 核壳结构分级多孔碳材料电容型脱盐电极的制备方法
CN105731419A (zh) * 2016-01-18 2016-07-06 上海应用技术学院 一种棒状多级孔碳材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203207A (zh) * 2012-01-12 2013-07-17 安徽大学 一种磁性纳米孔洞金属-有机骨架核-壳材料的制备、功能化设计及应用
WO2015044964A1 (en) * 2013-09-30 2015-04-02 Council Of Scientific & Industrial Research Magnetic nanoparticles decorated activated carbon nanocomposites for purification of water
CN103949286A (zh) * 2014-04-16 2014-07-30 国家纳米科学中心 一种用于选择性加氢反应的MOFs@贵金属@MOFs催化剂、制备方法及其用途
CN104710965A (zh) * 2015-04-02 2015-06-17 北京科技大学 一种多级孔道碳基复合相变材料的制备方法
CN104925783A (zh) * 2015-06-24 2015-09-23 上海大学 核壳分级结构多孔碳的制备方法
CN105001245A (zh) * 2015-07-15 2015-10-28 北京工业大学 一种Zn的金属有机骨架材料和制备方法及其应用
CN105152281A (zh) * 2015-09-10 2015-12-16 上海大学 核壳结构分级多孔碳材料电容型脱盐电极的制备方法
CN105731419A (zh) * 2016-01-18 2016-07-06 上海应用技术学院 一种棒状多级孔碳材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JING TANG ET AL.: ""Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
农洁静 等: ""金属有机骨架(MOFs)为壳的核壳结构材料研究进展"", 《化工进展》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694581A (zh) * 2017-10-12 2018-02-16 郑州大学 杂原子掺杂的多孔碳包覆磷化亚铜复合型催化剂的应用
CN107694581B (zh) * 2017-10-12 2020-04-03 郑州大学 杂原子掺杂的多孔碳包覆磷化亚铜复合型催化剂的应用
CN111217351A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种激光烧蚀法制备磁性多孔碳的方法
CN109621910A (zh) * 2019-01-02 2019-04-16 湖南大学 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN109621910B (zh) * 2019-01-02 2022-05-20 湖南大学 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN110125428A (zh) * 2019-04-22 2019-08-16 安徽理工大学 MOF衍生的分层蛋黄-壳ZnO-Ni@CNT微球的制备及应用
CN110090621A (zh) * 2019-05-16 2019-08-06 南京林业大学 一种金属有机骨架衍生多孔碳材料及其制备方法与应用
CN113307245A (zh) * 2021-05-31 2021-08-27 北京化工大学 一种具备特定形貌和多重分形结构的多孔炭光热材料的制备方法
CN113952935A (zh) * 2021-11-19 2022-01-21 中国农业科学院蔬菜花卉研究所 一种磁性MOFs复合材料及其制备方法和应用
CN116425992A (zh) * 2023-04-28 2023-07-14 华中科技大学 一种利用溶剂热将废弃聚乳酸转化为金属-有机框架材料的方法
CN116425992B (zh) * 2023-04-28 2024-04-19 华中科技大学 一种利用溶剂热将废弃聚乳酸转化为金属-有机框架材料的方法

Similar Documents

Publication Publication Date Title
CN106693935A (zh) 以核‑壳金属有机骨架制备磁性炭材料的方法
Chen et al. One-pot synthesis of Pd@ MOF composites without the addition of stabilizing agents
Qiu et al. Highly dispersed Co-based Fischer–Tropsch synthesis catalysts from metal–organic frameworks
Fang et al. Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications
Ke et al. Fe 3 O 4@ MOF core–shell magnetic microspheres with a designable metal–organic framework shell
EP2101912B1 (en) Porous organic-inorganic hybrid materials containing iron and an absorbent comprising the same
JP5870191B2 (ja) 結晶性ハイブリッドナノ細孔体粉末を含む複合体およびその製造方法
CN104722276B (zh) 一种瓜环/氧化石墨烯磁性复合材料及其制备方法
Xu et al. Simultaneous adsorption of Li (I) and Rb (I) by dual crown ethers modified magnetic ion imprinting polymers
CN105597686B (zh) Fe3O4@MIL-100(Fe)的制备方法及其应用
Zhang et al. Highly active, water-compatible and easily separable magnetic mesoporous Lewis acid catalyst for the Mukaiyama–Aldol reaction in water
Zhao et al. A series of organic–inorganic hybrids based on lanthanide-substituted Dawson-type phosphotungstate dimers and copper–en linkers
Wei et al. Synthesis and stabilization of a hypothetical porous framework based on a classic flexible metal carboxylate cluster
Yuan et al. A cuboidal [Ni 4 O 4] cluster as a precursor for recyclable, carbon-supported nickel nanoparticle reduction catalysts
Fang et al. Adsorption application of Rb+ on hydrogels of hydroxypropyl cellulose/polyvinyl alcohol/reduced graphene oxide encapsulating potassium cobalt hexacyanoferrate
Lu et al. Hierarchical Pores‐Confined Ultrasmall Cu Nanoparticles for Efficient Oxidation of 5‐Hydroxymethylfurfural
CN106397491A (zh) 一种利用助剂二甲胺合成Ni‑BTC的方法
Kim et al. New alkali earth metal–organic frameworks with a very high thermal stability: synthesis, crystal structure, and characterization of AE [NC 5 H 3 (CO 2) 2](AE= Ba or Sr)
Wang et al. Preparation of several alginate matrix gel beads and their adsorption properties towards rare earths (III)
CN105174934A (zh) 一种高饱和磁感应强度宽温低损耗软磁铁氧体的制备方法
CN103570767B (zh) 一种离子热法合成微孔zni型沸石咪唑骨架物种的方法
CN100420629C (zh) 4a沸石分子筛及其制备方法
Zhang et al. Two topologically different 3D CuII metal–organic frameworks assembled from the same ligands: control of reaction conditions
Yang et al. Vapor-assisted preparation of Mn/Fe/Co/Zn–Cu bimetallic metal–organic frameworks based on octahedron micron crystals (PCN-6′)
Tahmasbi et al. A novel core@ double-shell three-layer structure with dendritic fibrous morphology based on Fe 3 O 4@ TEA@ Ni–organic framework: a highly efficient magnetic catalyst in the microwave-assisted Sonogashira coupling reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170524