CN106688093B - 功率组件 - Google Patents

功率组件 Download PDF

Info

Publication number
CN106688093B
CN106688093B CN201580048448.3A CN201580048448A CN106688093B CN 106688093 B CN106688093 B CN 106688093B CN 201580048448 A CN201580048448 A CN 201580048448A CN 106688093 B CN106688093 B CN 106688093B
Authority
CN
China
Prior art keywords
power
conductor
pcc
conductor layer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580048448.3A
Other languages
English (en)
Other versions
CN106688093A (zh
Inventor
露野圆丈
楠川顺平
德山健
诹访时人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of CN106688093A publication Critical patent/CN106688093A/zh
Application granted granted Critical
Publication of CN106688093B publication Critical patent/CN106688093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04034Bonding areas specifically adapted for strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49177Combinations of different arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明的目的在于提供一种以较薄的绝缘层耐受高电压的功率组件。本发明的功率组件包括:用于构成逆变器电路的上臂侧的第一功率半导体元件(328)和下臂侧的第二功率半导体元件(330);传输直流电流的第一导体部(315);传输交流电流的第二导体部(320);导电性的散热部(307);和配置在第二导体部(320)与散热部(307)之间的第一中间导体层(910),在第一中间导体层(910)与第二导体部(320)之间和第一中间导体层(910)与散热部(307)之间配置有绝缘层。

Description

功率组件
技术领域
本发明涉及将功率半导体元件组件化得到的功率组件,尤其涉及用于搭载在车辆上的功率组件。
背景技术
由功率半导体元件的开关动作所实现的电力转换装置由于转换效率高而在民用、车载用、铁路用、变电设备等方面广为利用。该功率半导体元件会因通电而发热,故而需要较高的散热性能。通常为了散热使用具有翅片的金属制的散热构造,并且出于稳定电位、防触电之目的使其接地(GND)。因此,配置在功率半导体元件与散热构造之间的绝缘部件需要具有优异的导热性能。然而,在所转换的电压较高的情况下,为了提高绝缘性能需要采用使用绝缘部件的厚度增大的结构,导致散热性能恶化。
作为提高散热性能的方法,已知例如专利文献1所示那样,在绝缘层与绝缘层之间插入作为高导热性材料的导体的方法。
现有技术文献
专利文献
专利文献1:日本特开2012-244750号公报
发明内容
发明要解决的技术问题
专利文献1记载的功率组件能够通过在第一绝缘部件与第二绝缘部件之间设置金属制的板材而提高散热性能,但并不能减小第一绝缘部件与第二绝缘部件相加而得的绝缘部件的总厚度。
本发明的问题点为,通过在满足高绝缘性能的同时减小绝缘层的总厚度,来提供一种散热性能优异的功率组件。
解决问题的技术方案
本发明的功率组件包括:用于构成将直流电流转换为交流电流的逆变器电路的上臂侧的第一功率半导体元件;用于构成所述逆变器电路的下臂侧的第二功率半导体元件;与所述第一功率半导体元件电连接,并且传输所述交流电流的第一导体部;与所述第二功率半导体元件电连接,并且传输所述直流电流的第二导体部;隔着所述第一导体部和所述第二导体部配置在与所述第一功率半导体元件和所述第二功率半导体元件相反的一侧的导电性的散热部;隔着绝缘层配置在所述第一导体部与所述散热部之间的第一中间导体层;和隔着绝缘层配置在所述第二导体部与所述散热部之间的第二中间导体层,其中,所述第二中间导体层以与所述第一中间导体层分离的方式构成,所述第一中间导体层形成对所述第一导体部与所述散热部之间的电压进行分担的电容电路。
发明效果
根据本发明,由于能够减小绝缘层的总厚度,并且能够提高功率组件的散热性能,所以能够使电力转换装置小型化。
附图说明
图1是实施例1的功率组件的电路图。
图2是实施例1的功率组件的平面图。
图3是以A-B剖面剖切图2的功率组件的剖面图。
图4表示在绝缘层与电极间存在空气层的情况下的电压分担的模型。
图5表示帕邢定律给出的局部放电发生电压与气压p·电极距离d的关系。
图6表示最小局部放电电压与绝缘层厚度的关系。
图7表示考虑了海拔引起的气压变化的最小局部放电电压与绝缘层厚度的关系。
图8表示考虑了温度引起的粒子密度变化的最小局部放电电压与绝缘层厚度的关系。
图9表示最小局部放电电压与绝缘层厚度的关系。
图10是由功率组件的被施加交流电压的绝缘层部分构成的实验系统的示意图。
图11表示电压分担率与频率的关系。
图12是由功率组件的绝缘层部分构成的实验系统的示意图。
图13表示电压分担率与频率的关系。
图14是实施例2的功率组件的平面图。
图15是以C-D剖面剖切图14的功率组件的剖面图。
图16(a)是实施例3的功率组件的立体图。
图16(b)是以E-F剖面剖切图16(a)的功率组件的剖面图。
图17是以图16(a)的G-H剖面进行剖切时的剖面的示意图。
图18是表示实施例3的功率组件中的中间导体的配置的展开图。
图19是功率组件及其周边的电路图。
图20(a)是表示低电感化的原理图的电路图。
图20(b)是表示低电感化的原理图的功率组件的展开图。
图21是实施例4的功率组件的剖面图。
图22表示具有中间导体的绝缘层的制造方法。
图23表示具有中间导体的绝缘层的制造方法的变形例。
图24是电力转换装置的电路图。
图25是表示电力转换装置的外观的立体图。
图26是混合动力车的控制模块图。
具体实施方式
以下参照附图对本发明的功率组件的实施方式进行说明。其中,各图对于同一部件标注同一标记,省略重复的说明。
首先使用图1至图3说明第一实施方式的功率组件的结构。
图1是本实施例的功率组件300的电路结构图。功率组件300包括构成上臂电路的IGBT328与二极管156,和构成下臂电路的IGBT330与二极管166。这里,IGBT是绝缘栅双极晶体管的简称。与蓄电池的正极侧连接,利用功率半导体元件的开关动作而生成交流波形的电路为上臂电路,与蓄电池的负极侧或GND侧连接并生成交流波形的电路为下臂电路。在中性点接地的情况下,下臂电路不与GND连接而是与电容器的负极侧连接。
功率组件300包括导体板315、318、320和319。导体板315与上臂侧的IGBT328的集电极侧连接。导体板318与上臂侧的IGBT328的发射极侧连接。导体板320与下臂侧的IGBT330的集电极侧连接。导体板319与下臂侧的IGBT330的发射极侧连接。
功率组件300具有端子315B、319B、320B、325U和325L。端子315B与导体板315连接。端子315B被连接至直流蓄电池或平滑电容器的正极侧。端子319B与导体板319连接。端子319B被连接至直流蓄电池或平滑电容器的负极侧,或者被接地(GND)。端子320B与导体板320连接。端子320B被连接至电动机。端子325U是上臂侧的IGBT328的控制端子。端子325L是下臂侧的IGBT325的控制端子。
与端子315B连接的导体板315用于传输直流电流。与端子319B连接的导体板319用于传输直流电流。与端子320B连接的导体板320用于传输交流电流。
图2是表示本实施例的功率组件300的结构的平面图。IBGT328和IGBT330以各自的发射极面朝向相同方向的方式配置。
图3是以A-B剖面剖切图2的功率组件300时的剖面图。功率组件300具有散热面307,其上形成有用于散热的翅片。散热面307隔着导体板320和导体板315配置在与IGBT328、330、二极管156、166相反的一侧。散热面307由导电性的部件形成,并被接地至GND以稳定电压。
功率组件300还具有中间导体910和中间导体911。中间导体910配置在导体板320与散热面307之间。中间导体911配置在导体板315与散热面307之间。在中间导体910与导体板320之间、中间导体910与散热面307之间、中间导体911与导体板315之间以及中间导体911与散热面307之间,形成有绝缘层900。
本实施例的功率组件中,中间导体910形成为,在沿着导体板320与中间导体910的排列方向投影的情况下,使导体板320的投影部包含于该中间导体910的投影部内。并且,中间导体911形成为,在沿着导体板315与中间导体911的排列方向投影的情况下,使导体板319的投影部包含于该中间导体911的投影部内。
将本实施例的功率组件这样的、使上臂电路和下臂电路这两个臂电路组件化为一体的结构称作2in1结构。2in1结构与按每一个臂电路进行组件化的1in1结构相比能够减少输出端子的数量。本实施例示出了2in1结构之示例,但通过采用3in1结构、4in1结构或6in1结构等,能够进一步减少端子数量。在2in1结构的功率组件中,通过将上臂电路与下臂电路排列在一起,并使它们隔着绝缘层与金属平板相对配置,从而能够利用磁场抵消效应降低电路的电感。
本实施例的功率组件通过设置中间导体910,使导体板320与散热面307之间的电压分担于导体板320与中间导体910之间和中间导体910与散热面307之间。由此,本实施例的功率组件能够在满足绝缘性的同时减小绝缘层厚度。关于其原理,以下使用图4~图13进行说明。
图4是表示在绝缘层与电极间存在空气层的情况下的电压分担的模型的图。电极间形成有空气层850和绝缘层851。令电极间整体施加的交流电压为V,其中施加在空气层上的电压为V1,则电压V由下式表示。其中,Ce表示空气层的电容、Cf表示绝缘层的电容,ε0表示真空介电常数,ε表示绝缘层的相对介电常数,S表示电极面积,de表示空气层的厚度,df表示绝缘层的厚度。
(式1)V=V1·(Ce+Cf)/Cf=V1·(df/(ε·de)+1)
(式2)Ce=ε0·S/de(式3)Cf=ε0·ε·S/df
若在电极与绝缘层之间以及绝缘层内部产生由气孔或剥离引起的空气层,则在电极上施加了高压时会发生局部放电。绝缘层若始终暴露在发生局部放电的环境下,会被放电产生的火花所腐蚀,耐受时间显著下降。尤其是,树脂制的绝缘体的耐热性比陶瓷低,该影响变得显著。为了提高绝缘性,使其在不发生局部放电的条件下使用是一种有效的办法。
另外,放电现象在直流电压和交流电压下是不同的。在直流电压下,在电极间存在绝缘层的情况下,即使处于会发生局部放电的条件,在一次放电之后,由于绝缘层带电导致空间的电场降低,放电会停止。因而,仅对电压进行一次放电,所以放电对绝缘层劣化的影响较小。而在交流电压下,因为施加在绝缘层上的电压会随时间的经过而反转,所以放电会反复进行。因此,放电对绝缘层劣化的影响较大。此外,在利用功率半导体元件的开关动作而生成交流波形的情况下,由于有浪涌电压叠加在交流波形上,所以绝缘层将被施加比额定电压高的电压。
因此,对于被施加交流电压的绝缘层,特别是使其不暴露在发生局部放电的环境下是很重要的。为了抑制局部放电,可考虑以下任一方法,即,使电极间以不存在空气层的方式被绝缘体完全填满而进行制造,并且使得即使在存在温度变化的使用环境下也能够维持其状态,或者,设置绝缘层的厚度为使得即使因剥离等而产生了空气层也不会发生局部放电。本实施方式的功率组件采用后一方案。
使用图5对发生局部放电的电压进行说明。在电极间存在空隙的情况下,局部放电开始的电压由气压与电极间的空隙长度的函数表示,这一现象由帕邢发现,并由其之后的众多研究人员通过理论、实验给予了证实。图5是表示在气压p下对电极距离d的电极施加了电压时,发生局部放电的电压关于气压p与电极距离d之积的关系的曲线图。图5是在20℃下测量的结果。如图5所示,局部放电发生电压在气压与电极距离的积p·d为某一值时具有最小值。即,当电极间的空隙上施加的电压超过局部放电发生电压为最小值的该电压时,根据p·d之积的值,会发生局部放电。
由于帕邢定律的压力能够换算成气体的粒子密度,所以使用气体的状态方程能够求取任意温度、压力下的局部放电开始电压。将这样求得的局部放电开始电压代入式(1)中的V1,能够利用气压p与空气层的厚度de的关系,计算发生放电的电极间电压V的最小值。对这样计算出的最小局部放电电压的值关于绝缘层的厚度df绘图,并将得到的曲线图表示在图6~图8中。
图6表示25℃、1atm下的最小局部放电电压与绝缘层厚度df的关系。当绝缘层厚度df变厚时,电压V中由绝缘层851所分担的电压增大,所以空气层850所分担的电压V1减小。因而,绝缘层厚度df越大则最小局部放电开始电压越高。
此处应当关注的一点是,最小局部放电电压与绝缘层厚度df的关系并不是成比例的。即,绝缘层厚度df较小的区域中的曲线的斜率比绝缘层厚度df较大的区域中的曲线的斜率大。利用这一特征,如后文叙述,能够在确保绝缘性的同时实现绝缘层厚度的减小。另外,根据图6可知,在相同的最小局部放电电压下,绝缘层851的介电常数越低,越能够减小其厚度df
图7表示25℃、绝缘层的相对介电常数为6时的最小局部放电电压与绝缘层厚度df的关系。根据图7可知,为了实现相同的最小局部放电电压,海拔越高即气压越低,越需要增大绝缘层厚度。特别是,自超过4000m的附近起,该影响变得显著。
图8表示1atm、绝缘层的相对介电常数为6时的最小局部放电电压与绝缘层厚度df的关系。根据图8可知,为了实现相同的最小局部放电电压,温度越高越需要增大绝缘层厚度df。特别是,自超过50℃的附近起,该影响变得显著。
图9表示25℃、1atm且相对介电常数为6时的最小局部放电电压与绝缘层厚度df的关系。使用图9说明在抑制局部放电的同时减小绝缘层851的总厚度df的原理。
例如,考虑电极间最大施加1.6kVp的电压的情况。根据图9,由于绝缘层厚度df为330μm时的最小局部放电电压为1.6kVp,所以即使因剥离等产生空隙,只要绝缘层形成得比330μm厚,就不会发生局部放电。
另一方面,在电极间施加的电压为0.8kVp时,只要绝缘层比80μm厚,就不会发生局部放电。其原因在于,如上所述,最小局部放电电压与绝缘层厚度df的关系不是比例关系,在绝缘层厚度df小的区域斜率较大,而随着绝缘层厚度df增大,斜率变小。
因此,对于1.6kVp的电压,通过将其电压二等分为0.8kVp和0.8kVp,只要分别设置比80μm厚的绝缘层就能够抑制放电。由此,能够将在单层的情况下需要330μm的绝缘层的总厚度降低至160μm。此处表示了双层的示例,通过采用三层以上能够进一步薄化。若绝缘层能够薄化,则热阻相应地降低,所以散热性能得到提高。并且,由于绝缘层实现薄化,具有能够相应地降低材料成本的效果。因此,接下来使用图10~图13对用于使施加在功率组件的绝缘层上的电压分割的结构之模型进行说明。
图10是对具有中间导体的绝缘层部分施加交流电压的实验系统的示意图。如上所述,在图3的功率组件中,导体板319中流动的是直流电流,而导体板320中流动的是交流电流。图10表示被施加交流电压的功率组件的绝缘层中的电压分担模型。图10的电极800对应于图3的导体板320,图10的中间导体801对应于图3的中间导体910,图10的电极802对应于图3的散热面307,图10的绝缘层810和811对应于图3的绝缘层900。
信号发生器1001与电极800和801连接。中间导体801配置在电极800与电极801之间。绝缘层810配置在电极800与中间导体801之间。绝缘层811配置在电极802与中间导体801之间。电极802被接地至GND。令中间导体801与电极802之间的电压为V2,电极800与电极802之间的电压为V3,则施加了交流电压的情况下的电容电路中的电压分担能够由下式计算。
(式4)V2=V3·Ca/(Ca+Cb)
(式5)Ca=ε0·εa·Sa/da(式6)Cb=ε0·εb·Sb/db
其中,Ca表示电极800与中间导体801之间的电容,Cb表示中间导体801与电极802之间的电容,ε0表示真空介电常数,εa表示绝缘层810的相对介电常数,εb表示绝缘层811的相对介电常数,Sa表示电极800与中间导体801在配置方向上的投影面所重合的面积,Sb表示中间导体801与电极802在配置方向上的投影面所重合的面积,da表示绝缘层810的厚度,db表示绝缘层811的厚度。
此处,对电压分担模型的结构和绝缘层的材质进行调整,使εa=εb、da=db、Sa=Sb,从而使得Ca=Cb。此时,根据式(4),V2除以V3得到的电压分担率为50%。本模型中使得Ca=Cb
(式7)V2/V3=50%
图11是表示使图10的信号发生器1001的频率变化时的电压分担率V2/V3的曲线图。电压分担率通过利用波形记录器1000测量中间导体801与电极802间的电压V1和电极800与电极802间的电压V2而求得。
根据图11能够看出这样的趋势,即,随着电极800与电极802之间施加的电压的频率升高,电压分担率接近50%。电压分担率在频率超过100Hz后大致为50%。这样的趋势对于正弦波和方波也是同样的。
根据本模型的结构可知,在被施加100Hz以上交流电压的电极间的绝缘层中,通过设置中间导体能够基于电容分担施加在绝缘层上的电压。
另外,此处为了进行模型的评价而从中间导体801输出电流,但在实际的功率组件中,不需要从中间导体输出电流。因此能够将中间导体埋设在绝缘层内。通过将中间导体埋设在绝缘层内,能够防止中间导体的端面接近电极,能够防止从端面发生放电。
在将中间导体埋设在绝缘层内的情况下,通过在中间导体的上下层使用相同材质的绝缘层,并使中间导体的外形尺寸与相对的任一电极的尺寸匹配,则即使另一电极的尺寸不同,也能够使中间导体两侧的电容相同。该情况下,由于实际上难以实现完全相同地匹配,所以考虑到对位和尺寸交叉,优选中间导体比面积较小一方的电极大稍许。这是因为,若中间导体较小则会产生电压不被分担的部分,存在因剥离而发生局部放电的情况。本实施方式的功率组件中,具有面积比导体板320和315的面积稍大的中间导体910和911。
另外,关于直流侧的中间导体910,根据后述的理由,其不受导体板315的尺寸的限制,既可以比导体板大也可以小。此外也能够省略。
在具有将上下臂电路组件化得到的2in1组件结构的本实施方式的功率组件中,设置有用于传输直流电流的导体板和用于传输交流电流的导体板。因此,配置在导电性的散热面与导体板之间的绝缘层中,存在被施加直流电压的部分和被施加交流电压的部分。图3的功率组件中,导体板320与散热面307之间被施加交流电压,导体板315与散热面307之间被施加直流电压。
本实施例的功率组件在被施加交流电压的一侧的绝缘层中设置中间导体910,在被施加直流电压的一侧的绝缘层中设置中间导体911。并且,中间导体910与中间导体911以电气上独立的方式配置。此时,在被施加交流电压的导体板320与散热面307之间,由于配置有中间导体910,所以产生与形成在各导体间的电容对应的电压分担。其结果是,根据图9所示的原理,能够减小用于获得规定的耐压能力的绝缘层的厚度。
另一方面,在被施加直流电压的导体板315与散热面307之间,即使配置中间导体也不会产生电压分担。这是因为直流电压的频率为0。
接着,作为比较例使用图12和图13对中间导体910与中间导体911电连接的情况下的电压分担进行说明。
图12是对具有直流导体的绝缘层部分施加直流电压和交流电压的实验系统的示意图。图12的电极802对应于图3的散热面307,图12的电极803对应于图3的导体板320,图12的电极804对应于图3的导体板315,图12的绝缘层810和811对应于图3的绝缘层900。图12的中间导体801相当于被电连接的图3的中间导体910和911。
信号发生器1001与电极803和电极802连接。直流电源1002与电极804和电极802连接。中间导体801被配置成,隔着绝缘层810与电极803相对,并且隔着相同的绝缘层810与电极804相对。并且,中间导体801被配置成隔着绝缘层811与电极802相对。电极802被接地至GND。令中间导体801与电极802之间的电压为V4,电极803与电极802之间的电压为V5。电极804与中间导体801之间的电容经由电源电路1002被并联地连接在中间导体801与电极802之间的电容上,所以施加交流电压的情况下的电容电路的电压分担由下式表示。
(式8)V4=V5·Cc/(Cc+Cd+Ce)
(式9)Cc=ε0·εc·Sc/dc
(式10)Cd=ε0·εd·Sd/dd
(式11)Ce=ε0·εe·Se/de
其中,Cc表示交流侧电极803与中间导体801之间的电容,Cd表示直流侧电极804与中间导体801之间的电容,Ce表示中间导体801与电极802之间的电容,ε0表示真空介电常数,εc表示交流侧电极803与中间导体801之间的绝缘层的相对介电常数,εd表示直流侧电极804与中间导体801之间的绝缘层的相对介电常数,εe表示中间导体801与电极802之间的绝缘层的相对介电常数,Sc表示交流侧电极803与中间导体801在配置方向上的投影面所重合的面积,Sd表示直流侧电极804与中间导体801在配置方向上的投影面所重合的面积,Se表示中间导体801与电极802在配置方向上的投影面所重合的面积,dc表示交流侧电极803与中间导体801之间的绝缘层的厚度,dd表示直流侧电极804与中间导体801之间的绝缘层的厚度,de表示中间导体801与电极802之间的绝缘层的厚度。
此处,电容以满足2.1Cc=2.1Cd=Ce的方式制造,计算由V4除以V5得到的电压分担率(%)如下。
(式12)V4/V5≈24.4%
图13是表示使图12的信号发生器1001的频率变化时的电压分担率V4/V5的曲线图。电压分担率通过利用波形记录器1000测量中间导体801与电极802间的电压V4和电极803与电极802间的电压V5而求得。
根据图13能够看出这样的趋势,即,随着电极803与电极802之间施加的电压的频率升高,电压分担率接近24.4%。电压分担率在频率超过100Hz后为与计算值相等的大致24.4%。这样的趋势对于正弦波和方波也是同样的。
根据本模型的结果可知,若交流侧与直流侧的中间导体连结,则在对交流电压进行电压分担时,电极803与中间导体801间会被施加高电压。这是因为,在中间导体801与电极802间的电容Ce上,经电源路径并联连接了电极804与中间导体801间的电容Cd
此时,在电压分担率较高的电极803与中间导体801之间,必须增大绝缘层厚度以使局部放电不会发生。根据图9可知,在被施加了1.6kVp的75%的电压即1.2kVp的电压的情况下,必须使绝缘层比190μm厚。而如上所述,在将1.6kVp的电压按0.8kVp和0.8kVp来平均地分担的情况下,为了抑制放电所必需的绝缘层厚度为160μm,所以本例在进行电压分担的单侧就超过了该厚度。
另外,在要使绝缘层上施加的交流电压平均分担的情况下,需要调整绝缘层的相对介电常数和中间导体的上下层的绝缘层厚度以满足下式。
(式13)Cc/(Cc+Cd+Ce)≈0.5
即,需要满足下式。
(式14)Cc≈Cd+Ce在减小Sd和Se的情况下,存在散热性能降低的弊端。而在利用相对介电常数进行应对的情况下,由于相对介电常数由材料决定,难以大幅变更,所以可应对的程度受到限制。为此,期望利用绝缘层厚度进行应对。不过,为了使构成Cc的绝缘层的厚度比在0.8kVp的电压下不发生局部放电的80μm大并且要满足上式,则绝缘层的总厚度不能小于160μm。
而且,在功率组件到电源的路径中,存在平滑电容以及总线和壳体上的寄生电容。由于这些电容也会叠加,所以若仅靠功率组件自身则绝缘层的设计较为困难。
因而,在2in1结构的功率组件中,通过使中间导体以在直流侧和交流侧电分离的方式配置,能够实现绝缘层的薄化。
另外,被施加直流电压的一侧的中间导体即使省略,施加在绝缘层上的电压也不会发生变化,因此将直流侧的中间导体省略也是有效的。不过,若在直流侧也设置中间导体,则由于绝缘层中具有热导率较高的中间导体的层,能够使热量扩散,散热性能得到提高。
此外,在绝缘层采用绝缘片等具有粘接性的材料的情况下,通过在直流侧和交流侧设置相同厚度的中间导体,能够使压接时的负荷平均,形成均匀的压接面。
使用图14和图15对第二实施方式的功率组件进行说明。实施例2的功率组件表示实施例1的功率组件的变形例。图14是平面图,图15是以图14的C-D剖面进行剖切的剖面图。
本实施方式利用导线连接功率半导体元件的发射极侧的电极。并且,连接于下臂侧IGBT330的集电极侧的导体板320,经中间电极390与上臂侧IGBT328的发射极面连接。中间电极390与导体板320和315同样地,以隔着绝缘层900与散热面307相对的方式配置。在中间电极390与散热面307之间配置有中间导体912。与中间导体910和911同样地,中间导体912被埋设在绝缘层900中。
与导体板320同样地,中间电极390被施加交流电压,所以能够利用中间导体912进行电压分担。
使用图16至图20对第三实施方式的功率组件进行说明。
图16(a)是本实施方式的功率组件的立体图,图16(b)是以图16(a)中的E-F剖面进行剖切时的剖面图。本实施方式的功率组件300采用将功率半导体元件收纳在作为CAN型冷却器的冷却体304中的双面冷却结构。冷却体304包括形成有散热翅片305的第一散热面307A和第二散热面307B、将散热面与框体连接的薄壁部304A、以及凸缘部304B。将由功率半导体元件和导体板构成的电路体从形成为有底筒型形状的冷却体304的插入口306插入,利用密封部件351进行密封而形成功率组件300。本实施方式的功率组件中,由于从第一散热面307A和第二散热面307B这两个面对功率半导体元件进行冷却,所以散热性能优异。
图17是以图16(a)的G-H剖面进行剖切时的剖面的示意图。本实施方式的功率组件300在配置于功率半导体元件的一方侧的绝缘层中具有中间导体910和911。并且,功率组件300在配置于功率半导体元件的与所述一方侧相反的另一方侧的绝缘层中具有中间导体913和914。中间导体910配置在被施加交流电压的导体板320与散热面307A之间。中间导体911配置在被施加直流电压的导体板315与散热面307A之间。中间导体913配置在被施加交流电压的导体板318与散热面307B之间。中间导体914配置在被施加直流电压的导体板319与散热面307B之间。
并且,各中间导体形成电容电路C1至C8。电容C1是导体板315与中间导体911之间的电容。电容C2是中间导体911与散热面307A之间的电容。电容C3是导体板318与中间导体913之间的电容。电容C4是中间导体913与散热面307B之间的电容。电容C5是导体板320与中间导体910之间的电容。电容C6是中间导体910与散热面307A之间的电容。电容C7是导体板319与中间导体914之间的电容。电容C8是中间导体914与散热面307B之间的电容。其中,被施加直流电压的导体板315与散热面307A之间的电容C1、C2和导体板319与散热面307B之间的C8、C9,仅在直流电压发生变化时形成电容电路。
图18是用于说明本实施方式的功率组件中的中间导体的配置的展开图。为便于说明,图中仅表示一部分的结构。
图19是在功率组件的电路图中示出了电容C1至C8的图。电容C1、C2、C8和C7是被施加直流电压的部分。因此,该部分的中间导体911和914能够省略。电容C3、C4、C5和C6是被施加交流电压的部分。因此,该部分的中间导体910和913能够使施加在绝缘层上的电压被分担。
本实施方式的功率组件是一种冷却性能优异的双面冷却结构的功率组件,通过在绝缘层中设置中间导体结构,能够使绝缘层薄化,能够得到散热性能更加优异的高耐压的功率组件。
使用图20(a)和图20(b)对本实施方式的功率组件中的电感降低进行说明。图20(a)是本实施方式的功率组件300的电路图。图20(b)是功率组件300的展开图。
令下臂侧的二极管166为在正向偏压状态下导通的状态。该状态下,当上臂侧的IGBT328成为导通(ON)状态时,下臂侧的二极管166成为反向偏压,因载流子迁移而产生的恢复电流贯通上下臂。此时,各导体板315、3318、320和319上有图20(b)所示的恢复电流360流动。恢复电流360在与直流负极端子319B相对配置的直流正极端子315B上流动。接着流经由各导体板315、318、320、319形成的环形路径。然后流动到直流负极端子319B。
由于电流在环形路径上流动,所以冷却器304的第一散热面307A和第二散热面307B上有涡流361流动。由于该涡流361的电流路径的等效电路362所产生的磁场抵消效应,环形路径上的配线电感363得到降低。另外,恢复电流360的电流路径越接近环形,电感降低的作用越大。这样,通过采用将上臂电路与下臂电路作为1组实现组件化的2in1结构,能够利用磁场抵消效应降低电感。关于这一点,即使增大至4in1、6in1也能够具有相同的效果。
使用图21对第四实施方式的功率组件进行说明。
图21是本实施方式的功率组件的剖面图。对应到实施例3的功率组件相当于图17。相对于实施例3,其改变之处是增加了中间导体的数量。
中间导体910a和910b配置在被施加交流电压的导体板320与散热面307A之间。中间导体911a和911b配置在被施加直流电压的导体板315与散热面307A之间。中间导体913a和913b配置在被施加交流电压的导体板318与散热面307B之间。中间导体914a和914b配置在被施加直流电压的导体板319与散热面307B之间。
并且,各中间导体形成电容电路C1至C12。电容C1是导体板315与中间导体911a之间的电容。电容C2是中间导体911a与中间导体911b之间的电容。电容C3是中间导体911b与散热面307A之间的电容。电容C4是导体板318与中间导体913a之间的电容。电容C5是中间导体913a与中间导体913b之间的电容。电容C6是中间导体913b与散热面307B之间的电容。电容C7是导体板320与中间导体910a之间的电容。电容C8是中间导体910a与中间导体910b之间的电容。电容C9是中间导体910b与散热面307A之间的电容。电容C10是导体板319与中间导体914a之间的电容。电容C11是中间导体914a与中间导体914b之间的电容。电容C12是中间导体914b与散热面307B之间的电容。其中,被施加直流电压的导体板315与散热面307A之间的电容C1、C2、C3和导体板319与散热面307B之间的C10、C11、C12,仅在直流电压发生变化时形成电容电路。
本实施例的功率组件能够将绝缘层上施加的电压分割为3份进行分担,所以能够使绝缘层的总厚度更薄。
图22是表示制造具有中间导体的绝缘层的步骤的图。(1)通过冲压在铜箔上穿孔。例如能够使用6μm厚的铜箔。另外,此处表示了铜箔的示例,但只要是金属箔即可,也可以不是铜箔。(2)通过冲压在铜箔的正背面压接绝缘片。(3)设定利用模具进行落料的位置。(4)利用模具进行落料。
通过以这样的方式进行制造,能够一次性制造多个片材。该情况下,对多个中间导体进行支承的导体的裁断面会从绝缘片露出。为了使该端面不接近电极,对于有导体露出的裁断面通过使片材长度相对于所压接的电极具有富余,从而能够防止从中间导体的端面发生放电。
图23是表示制造具有中间导体的绝缘层的步骤的变形例的图。(1)准备绝缘片。(2)通过穿设有中间导体形成部的掩模,利用铝的气相沉积在绝缘片上形成铝膜。以使得利用气相沉积形成的铝膜成为内部的方式,压接(冲压)没有形成图案的绝缘片。铝膜的厚度例如能够为0.1μm。另外,此处表示了铝的气相沉积的示例,但只要是导电性材料即可,也可以不是铝膜。另外,此处表示了气相沉积的示例,但只要是使用掩模能够形成导电材料的形成方法即可,也可以是基于印刷等的方法。(3)设定利用模具进行落料的位置。(4)利用模具进行落料。
通过以这样的方式进行制造,能够形成较薄的中间导体。通过形成具有较薄的中间导体层的绝缘片,能够减小在压接绝缘片时因中间导体的高低差而产生压接压力的不均匀,能够形成均匀的压接面。
使用图24至图26对组装了本发明的功率组件的电力转换装置和车辆系统的结构例进行说明。图24表示电力转换装置的电路图。
电力转换装置200包括逆变器电路部140、142,辅机用的逆变器电路部43和电容器组件500。逆变器电路部140和142包括多个功率组件300,通过将它们连接而构成三相桥式电路。在电流容量较大的情况下,还进一步将功率组件300并联连接,并与三相逆变器电路的各个相对应地进行这样的并联连接,来应对电流容量的增大。另外,通过对功率组件300内置的功率半导体元件进行并联连接,也能够应对电流容量的增大。
逆变器电路部140和逆变器电路部142的基本电路结构是相同的,控制方法和动作也基本相同。此处作为代表,以逆变器电路部140为例进行说明。逆变器电路部140具有三相桥式电路作为基本结构。具体而言,作为U相(以标记U1表示)、V相(以标记V1表示)和W相(以标记W1表示)动作的各个臂电路,各自并联地与输送直流电力的正极侧和负极侧的导体连接。另外,与逆变器电路部140的情况同样地,逆变器电路部142的作为U相、V相和W相动作的各个臂电路由标记U2、V2和W2表示。
各相的臂电路由上臂电路和下臂电路串联连接而得的上下臂串联电路构成。各相的上臂电路分别与正极侧的导体连接,各相的下臂电路分别与负极侧的导体连接。在上臂电路与下臂电路的连接部分别产生交流电力。各上下臂串联电路的上臂电路与下臂电路的连接部连接至各功率组件300的交流端子320B。各功率组件300的交流端子320B分别与电力转换装置200的交流输出端子连接,将产生的交流电力供给至电动发电机192或194的定子绕组。各相的各功率组件300为基本相同的结构,动作也基本相同,故作为代表针对功率组件300的U相(U1)进行说明。
上臂电路中作为开关用的功率半导体元件具有上臂用IGBT328和上臂用二极管156。而下臂电路中作为开关用的功率半导体元件具有下臂用IGBT330和下臂用二极管166。各上下臂串联电路的直流正极端子315B和直流负极端子319B分别与电容器组件500的电容器连接用直流端子连接。从交流端子320B输出的交流电力被供给至电动发电机192、194。
IGBT328、330接收从构成驱动器电路174的2个驱动器电路中的一个或另一个输出的驱动信号而进行开关动作,将从蓄电池136供给来的直流电力转换成三相交流电力。所转换的电力被供给至电动发电机192的定子绕组。另外,关于V相和W相,由于为与U相大致相同的电路结构,所以省略标记328、330、156、166的图示。逆变器电路部142的功率组件300具有与逆变器电路部140的情况同样的结构,另外,辅机用的逆变器电路部43具有与逆变器电路部142同样的结构,此处省略说明。
针对开关用的功率半导体元件,使用上臂用IGBT328和下臂用IGBT330进行说明。上臂用IGBT328和下臂用IGBT330包括集电极、发射极(信号用发射极端子)和栅极(栅极端子)。在上臂用IGBT328/下臂用IGBT330的集电极与发射极之间,如图所示电连接有上臂用二极管156/下臂用二极管166。
上臂用二极管156和下臂用二极管166具有阴极电极和阳极电极这2个电极。以上臂用IGBT328、下臂用IGBT330的从发射极去往集电极方向成为正向的方式,将二极管156、166的阴极电极电连接到IGBT328、330的集电极上,而阳极电极电连接到IGBT328、330的发射极上。另外,作为功率半导体元件也可以使用MOSFET(金属氧化物半导体型场效应晶体管),该情况下不需要上臂用二极管156、下臂用二极管166。
从设置在上下臂串联电路的温度传感器(未图示)将上下臂串联电路的温度信息输入微机。并且,上下臂串联电路的直流正极侧的电压信息也被输入微机。微机基于这些信息进行过热检测和过压检测,在检测到过热或过压的情况下使所有的上臂用IGBT328、下臂用IGBT330的开关动作停止,保护上下臂串联电路不受过热或过压破坏。
图25是表示电力转换装置200的外观的立体图。本实施方式的电力转换装置200的外观通过将壳体12、上部壳10和下部壳16固定而形成,其中,壳体12的上表面或底面为大致长方形,上部壳10设置在壳体12的短边侧的外周中的一个上,下部壳16将壳体12的下部开口封闭。通过使壳体12的底视图或俯视图的形状为大致长方形,能够容易地安装在车辆上,并且容易生产。
图26是搭载了电力转换装置的混合动力车的控制模块图。混合动力车(HEV)110包括2个车辆驱动用系统。其一是以发动机120为动力源的发动机驱动系统,另一是以电动发电机192、194为动力源的旋转电机驱动系统。本发明的电力转换装置200在蓄电池136、电动发电机192、194和辅机用电动机195之间进行直流、交流的电力转换,根据车辆的行驶状态,最优地控制对电动机进行驱动电力的供给和从电动机进行电力再生,对燃油效率的提高作出贡献。
附图标记说明
10 上部壳
12 壳体
16 下部壳
18 交流端子
22 驱动电路基板
43 逆变器电路
110 混合动力车
112 前轮
114 前轮车轴
116 差动齿轮
118 变速器
120 发动机
122 动力分配机构
136 蓄电池
138 直流连接器
140 逆变器电路
142 逆变器电路
156 二极管
166 二极管
172 控制电路
174 驱动器电路
180 电流传感器
192 电动发电机
194 电动发电机
195 电动机
200 电力转换装置
230 输入层叠配线板
300 功率组件
304 冷却体
304A 冷却体的薄壁部
304B 凸缘
305 散热翅片
306 插入口
307 散热面
307A 第一散热面
307B 第二散热面
315 直流正极导体板
315B 直流正极端子
319 直流负极导体板
319B 直流负极端子
318 导体板
320B 交流端子
328 IGBT
330 IGBT
333 绝缘片
348 第一密封部件
350 冷却体的厚壁部
351 第二密封部件
370 连接部
500 电容器组件
800 电极
801 中间导体
802 电极
803 电极
804 电极
810 绝缘层
811 绝缘层
850 空气层
851 绝缘层
900 绝缘层
910 交流侧中间导体
911 直流侧中间导体
912 交流侧中间导体
913 交流侧中间导体
914 直流侧中间导体
1000 波形记录器
1001 信号发生器
1002 直流电源。

Claims (14)

1.一种功率组件,其特征在于,包括:
用于构成将直流电流转换为交流电流的逆变器电路的上臂侧的第一功率半导体元件;
用于构成所述逆变器电路的下臂侧的第二功率半导体元件;
与所述第一功率半导体元件电连接,并且传输所述直流电流的第一导体部;
与所述第二功率半导体元件电连接,并且传输所述交流电流的第二导体部;
隔着所述第二导体部配置在与所述第二功率半导体元件相反的一侧的导电性的第一散热部;和
配置在所述第一散热部与所述第二导体部之间的第一中间导体层,
在所述第一中间导体层与所述第二导体部之间和所述第一中间导体层与所述第一散热部之间配置有绝缘层。
2.如权利要求1所述的功率组件,其特征在于:
所述第一导体部配置在所述第一功率半导体元件与所述第一散热部之间,
所述第一中间导体层被配置成,在沿着所述第二导体部与所述第一中间导体层的排列方向投影的情况下,所述第一中间导体层的投影部不与所述第一导体部的投影部重叠。
3.如权利要求1所述的功率组件,其特征在于:
还包括配置在所述第一散热部与所述第一导体部之间的第二中间导体层,
所述第一导体部配置在所述第一功率半导体元件与所述第一散热部之间,
所述第二中间导体层以与所述第一中间导体层分离的方式构成。
4.如权利要求3所述的功率组件,其特征在于:
包括与所述第二导体部电连接的第三导体部,和配置在所述第一散热部与所述第三导体部之间的第三中间导体层,
在所述第三中间导体层与所述第三导体部之间和所述第三中间导体层与所述第一散热部之间配置有绝缘层,
所述第三中间导体层以与所述第二中间导体层分离的方式构成。
5.如权利要求2~4中的任一项所述的功率组件,其特征在于:
所述第一中间导体层被配置成,在沿着所述第二导体部与所述第一中间导体层的排列方向投影的情况下,所述第二导体部的投影部包含在所述第一中间导体层的投影部中。
6.如权利要求1~4中的任一项所述的功率组件,其特征在于:
所述第一中间导体层沿着所述第二导体部与所述第一中间导体层的排列方向设置有多个。
7.如权利要求1~4中的任一项所述的功率组件,其特征在于,包括:
隔着所述第一功率半导体元件配置在与所述第一导体部相反的一侧,并且与所述第一功率半导体元件电连接的第四导体部;
隔着所述第二功率半导体元件配置在与所述第二导体部相反的一侧,并且与所述第二功率半导体元件电连接的第五导体部;
隔着所述第四导体部配置在与所述第一功率半导体元件相反的一侧的导电性的第二散热部;和
配置在所述第二散热部与所述第四导体部之间的第四中间导体层,
所述第四导体部与所述第二导体部电连接,
在所述第四中间导体层与所述第四导体部之间和所述第四中间导体层与所述第二散热部之间配置有绝缘层。
8.如权利要求7所述的功率组件,其特征在于:
所述第五导体部配置在所述第二功率半导体元件与所述第二散热部之间,
在所述第二散热部与所述第五导体部之间配置有第五中间导体层,
所述第四中间导体层以与所述第五中间导体层分离的方式构成。
9.如权利要求8所述的功率组件,其特征在于:
所述第四中间导体层被设置成,在沿着所述第四导体部与所述第四中间导体层的排列方向投影的情况下,所述第四导体部的投影部包含在所述第四中间导体层的投影部中。
10.如权利要求7所述的功率组件,其特征在于:
所述第四中间导体层沿着所述第四导体部与所述第四中间导体层的排列方向设置有多个。
11.如权利要求1~4中的任一项所述的功率组件,其特征在于:
所述第一中间导体层是形成在所述绝缘层上的金属箔。
12.如权利要求1~4中的任一项所述的功率组件,其特征在于:
所述第一中间导体层是形成在所述绝缘层上的导电性材料的气相沉积物。
13.如权利要求1~4中的任一项所述的功率组件,其特征在于:
所述第一中间导体层是形成在所述绝缘层上的导电性材料的印刷物。
14.一种电力转换装置,其特征在于:
包括权利要求1~4中的任一项所述的功率组件。
CN201580048448.3A 2014-09-09 2015-06-08 功率组件 Active CN106688093B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014182843A JP6200871B2 (ja) 2014-09-09 2014-09-09 パワーモジュール及び電力変換装置
JP2014-182843 2014-09-09
PCT/JP2015/066427 WO2016038955A1 (ja) 2014-09-09 2015-06-08 パワーモジュール

Publications (2)

Publication Number Publication Date
CN106688093A CN106688093A (zh) 2017-05-17
CN106688093B true CN106688093B (zh) 2019-04-30

Family

ID=55458718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580048448.3A Active CN106688093B (zh) 2014-09-09 2015-06-08 功率组件

Country Status (5)

Country Link
US (1) US10068880B2 (zh)
JP (1) JP6200871B2 (zh)
CN (1) CN106688093B (zh)
DE (1) DE112015002954T5 (zh)
WO (1) WO2016038955A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557540B2 (ja) * 2015-07-31 2019-08-07 日立オートモティブシステムズ株式会社 パワーモジュール
JP6719252B2 (ja) 2016-03-30 2020-07-08 日立オートモティブシステムズ株式会社 半導体装置
JP6772768B2 (ja) * 2016-11-09 2020-10-21 株式会社デンソー 半導体装置
KR101956996B1 (ko) * 2016-12-15 2019-06-24 현대자동차주식회사 양면냉각형 파워모듈
JP6559728B2 (ja) * 2017-04-04 2019-08-14 株式会社豊田中央研究所 半導体装置及び電力変換装置
KR102391008B1 (ko) * 2017-08-08 2022-04-26 현대자동차주식회사 파워 모듈 및 그 파워 모듈을 포함하는 전력 변환 시스템
JP6771447B2 (ja) 2017-09-29 2020-10-21 日立オートモティブシステムズ株式会社 パワー半導体装置およびそれを用いた電力変換装置
DE102018111630A1 (de) * 2018-05-15 2019-11-21 Valeo Siemens Eautomotive Germany Gmbh Stromrichtereinrichtung für ein Fahrzeug und Fahrzeug
DE112019003082T5 (de) * 2018-06-21 2021-03-04 Mitsubishi Electric Corporation Leistungsmodulvorrichtung
EP4075498A3 (en) * 2018-07-18 2023-03-01 Delta Electronics (Shanghai) Co., Ltd. Power module structure
US11444036B2 (en) 2018-07-18 2022-09-13 Delta Electronics (Shanghai) Co., Ltd. Power module assembly
US11342241B2 (en) 2018-07-18 2022-05-24 Delta Electronics (Shanghai) Co., Ltd Power module
KR102574378B1 (ko) 2018-10-04 2023-09-04 현대자동차주식회사 파워모듈
JP7341756B2 (ja) * 2019-07-05 2023-09-11 日本特殊陶業株式会社 デバイス搭載用基板
JP7105214B2 (ja) 2019-07-24 2022-07-22 株式会社日立製作所 パワー半導体装置
DE102020200306A1 (de) * 2020-01-13 2021-07-15 Zf Friedrichshafen Ag Kühlkörper, Leistungsmodulzusammenstellung und Wechselrichter
JP7356402B2 (ja) 2020-05-18 2023-10-04 日立Astemo株式会社 パワーモジュール
WO2023112224A1 (ja) * 2021-12-15 2023-06-22 日立Astemo株式会社 半導体装置および絶縁部材
JP2024072609A (ja) * 2022-11-16 2024-05-28 日立Astemo株式会社 電気回路体および電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031325A (ja) * 1998-07-13 2000-01-28 Hitachi Ltd 半導体パワーモジュール及びこれを用いたインバータ装置
US6200407B1 (en) * 1994-08-18 2001-03-13 Rockwell Technologies, Llc Method of making a multilayer circuit board having a window exposing an enhanced conductive layer for use as an insulated mounting area
JP2007049810A (ja) * 2005-08-09 2007-02-22 Toshiba Corp 電力変換装置用半導体装置及び同半導体装置を有する温度保護機能付き電力変換装置
CN101281904A (zh) * 2007-04-02 2008-10-08 株式会社日立制作所 逆变电路用的半导体模块
CN103650318A (zh) * 2011-06-24 2014-03-19 日立汽车系统株式会社 功率半导体模块及使用它的电力转换装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542646B2 (ja) * 2010-12-24 2014-07-09 日立オートモティブシステムズ株式会社 パワーモジュールの製造方法、パワーモジュールの設計方法
JP5825843B2 (ja) * 2011-05-19 2015-12-02 株式会社日立製作所 半導体ユニット及び電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200407B1 (en) * 1994-08-18 2001-03-13 Rockwell Technologies, Llc Method of making a multilayer circuit board having a window exposing an enhanced conductive layer for use as an insulated mounting area
JP2000031325A (ja) * 1998-07-13 2000-01-28 Hitachi Ltd 半導体パワーモジュール及びこれを用いたインバータ装置
JP2007049810A (ja) * 2005-08-09 2007-02-22 Toshiba Corp 電力変換装置用半導体装置及び同半導体装置を有する温度保護機能付き電力変換装置
CN101281904A (zh) * 2007-04-02 2008-10-08 株式会社日立制作所 逆变电路用的半导体模块
CN103650318A (zh) * 2011-06-24 2014-03-19 日立汽车系统株式会社 功率半导体模块及使用它的电力转换装置

Also Published As

Publication number Publication date
JP6200871B2 (ja) 2017-09-20
CN106688093A (zh) 2017-05-17
JP2016059147A (ja) 2016-04-21
DE112015002954T5 (de) 2017-03-16
US20180211938A1 (en) 2018-07-26
WO2016038955A1 (ja) 2016-03-17
US10068880B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
CN106688093B (zh) 功率组件
CN111566927B (zh) 用于电动车辆驱动系统的功率转换器
JP6557540B2 (ja) パワーモジュール
CN102064672B (zh) 具有多侧感应器冷却的功率电子器件组件
JP4529706B2 (ja) 半導体装置および負荷駆動装置
US8462529B2 (en) Power converter assembly with symmetrical layout of power modules
US8604608B2 (en) Semiconductor module
US8659920B2 (en) Switching device provided with a flowing restriction element
US9204573B2 (en) Power conversion apparatus
CN106716813B (zh) 电力转换装置
CN103904912A (zh) 机动车应用中电力电子构件块设计的可扩展和模块化方法
US20230171909A1 (en) Semiconductor device with stacked terminals
WO2019208406A1 (ja) 電力変換装置
US20220087080A1 (en) Power converter
CN111613439A (zh) 集成式功率模块和电容器模块的热学封装设计
US7911161B2 (en) Automotive power inverter with reduced capacitive coupling
US20210319933A1 (en) System and method for dielectric coated busbars
CN221127134U (zh) 半桥功率单元、全桥功率单元、电子设备及车辆
WO2021192424A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Ibaraki

Patentee after: Hitachi astemo Co.,Ltd.

Address before: Ibaraki

Patentee before: HITACHI AUTOMOTIVE SYSTEMS, Ltd.