CN106670498B - 铜铟碲超薄规则半导体纳米片的制备方法 - Google Patents

铜铟碲超薄规则半导体纳米片的制备方法 Download PDF

Info

Publication number
CN106670498B
CN106670498B CN201611145707.7A CN201611145707A CN106670498B CN 106670498 B CN106670498 B CN 106670498B CN 201611145707 A CN201611145707 A CN 201611145707A CN 106670498 B CN106670498 B CN 106670498B
Authority
CN
China
Prior art keywords
copper
tellurium
indium
source
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611145707.7A
Other languages
English (en)
Other versions
CN106670498A (zh
Inventor
曹立新
张晓�
董博华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201611145707.7A priority Critical patent/CN106670498B/zh
Publication of CN106670498A publication Critical patent/CN106670498A/zh
Application granted granted Critical
Publication of CN106670498B publication Critical patent/CN106670498B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种利用热注射法制备铜铟碲超薄规则半导体纳米片的制备方法。通过控制反应温度、时间以及原料用量来达到铜铟碲超薄纳米片的合成。本发明制备方法工艺简单、易操作、原料易得、成本较低、环境友好,整个反应过程不需要特殊设备,易于推广,同时此纳米片还具有一定的近红外发光性能和敏感的光电响应效应。本发明制备的材料是一种在光电方面具有一定应用前景的材料。

Description

铜铟碲超薄规则半导体纳米片的制备方法
技术领域
本发明涉及一种面积小、厚度薄、形状规则的半导体纳米片材料,具体讲铜铟碲规则纳米片的制备方法。
背景技术
纳米材料技术是20世纪80年代中后期逐渐发展起来的,纳米材料具有许多宏观材料和单个原子或分子所不具备的特殊物理、化学和生物性能,成为科学工作者的重要研究对象,被誉为“21世纪最有前途的材料”。在众多的纳米材料中,半导体纳米材料作为重要的纳米材料,由于尺度小于其激子玻尔半径或者光波长、声子平均自由程、激子扩散长度等物理量,有着与宏观物质迥异的量子尺寸效应、表面界面效应、小尺寸效应及宏观量子隧道效应,从而表现出不同于体相又不同于微观物质的特殊性质,如:光学特性、光电转化特性、光电催化特性、电学特性等。相比于研究较为广泛的二元半导体纳米材料,具有低毒性、窄带隙和近红外荧光性质等优点的Ⅰ-Ⅲ-Ⅵ族三元半导体纳米材料有着更潜在的研究意义。CuInTe2同属于Ⅰ-Ⅲ-Ⅵ半导体纳米材料,同样的具备了上述的各项优点,但受到其本身合成难度的限制,其制备及应用虽已经引起科学界的广泛关注,但取得的成果并不显著。因此,探索CuInTe2纳米材料的制备方法及有效控制其形貌在材料合成及应用方面具有重要意义。
发明内容
本发明的目的是提供一种铜铟碲超薄规则半导体纳米片制备方法,该方法能做到在特定的温度下快速反应生成规则纳米片材料。
铜铟碲规则纳米片制备方法,其主要特征在于在一定高温下利用热注射的方式来合成铜铟碲规则纳米片。通过对各种反应前驱体配比和溶剂用量以及对注射温度和反应温度及时间的控制,可以非常快速的制备出铜铟碲超薄规则纳米片。
本发明的优点在于通过简单热注射的方法、仅通过控制原料配比和注射温度就可制备出铜铟碲超薄规则半导体纳米片。铜铟碲超薄规则纳米片同时还具有一定的近红外发光性能和光电响应性能。
具体实施方式
操作时首先称取一定量的铜源和铟源的前驱体,溶解于加入一定量的表面配体的十八稀溶液中,形成0.02mol/L左右的有机溶液,然后在脱气和充入惰性气体交替进行的过程中将混合溶液加热到90℃。称取一定量碲粉,加入有机溶液,形成0.5mol/L的含碲有机溶液,并通过加热的方式促进碲粉溶解,然后将其加入到之前的混合溶液中,持续搅拌。再在120℃下将一定量的十八稀溶剂进行脱气处理,然后升温至较高温度后,将最后得到的混合溶液快速注入到高温下的十八稀溶剂中,随后停止反应,快速降温到室温,得到铜铟碲的超薄规则纳米片。收集铜铟碲超薄规则纳米片的方法是:将乙醇加入产物混合溶液中,转移至离心管离心,得到沉淀产物,用环己烷在溶解后继续用乙醇洗涤2-3次,最后再溶解到环己烷中制成溶液或是通过冷冻干燥的方法得到固体粉末。
附图说明:
图1: 230℃下注射得到的铜铟碲超薄规则半导体纳米片的正面电镜照片以及侧面电镜照片,纳米片呈现较为规则的六边形,大小尺寸为30nm左右,厚度尺寸约为2nm;
图2:230℃下注射得到的铜铟碲超薄规则半导体纳米片的XRD图谱;
图3:铜铟碲超薄规则半导体纳米片的荧光发射图谱,激发波长为750nm,发射峰位置在980nm左右;
图4:铜铟碲超薄规则半导体纳米片制得的半导体光电极在黑暗和300W氙灯照射下的线性扫描伏安曲线图谱。
实施例1
取0.2mmol醋酸铟、0.2mmol碘化亚铜、2ml十二硫醇、4ml十八烯放入一号三口烧瓶中,将该混合溶液在室温下脱气,直到没有气泡产生,然后在惰性气体氮气气流下升温至90℃,在90℃下再次脱气半个小时。取0.2mmol高纯碲和0.4ml三正辛基膦放入小玻璃瓶内抽真空后加热溶解,然后注射到一号三口烧瓶中持续搅拌。再取5ml十八烯加入二号三口烧瓶中。在100℃条件下进行脱气处理1个小时,然后在氮气环境下升高温度至230℃。230℃时,将一号烧瓶中混合溶液快速注入到二号三口烧瓶中,然后停止反应并快速降到室温。
最后将产物倒入50ml离心管中,加入一定量的环己烷、乙醇,在7000r/min的条件下离心洗涤6min,倒掉上层清液,重复此过程2-3次。之后将产物溶解到环己烷中或通过冷冻干燥法干燥,即可得到铜铟碲超薄规则纳米片(图1,图2)。该超薄规则纳米片的发射峰位置在980nm左右(图3),同时在线性扫描伏安曲线中可看出相比于无光条件,其在300W氙灯照射条件下的电流密度明显的增大(图4)。
以上显示和描述了本发明的基本原理和主要特征及本发明的优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.铜铟碲超薄规则半导体纳米片的制备方法,其特征在于:操作时首先称取一定量的铜源和铟源的化合物,溶解于一定量的表面配体的十八稀溶液中,形成铜源、铟源浓度均在0.02-0.2mol/L的十八稀有机溶液,然后在脱气和充入惰性气体交替进行的过程中将混合溶液加热到90℃;称取一定量碲粉,加入有机表面配体溶液,形成碲浓度为0.5mol/L的含碲有机溶液,并通过加热的方式促进碲粉溶解,然后将其加入到之前的铜源、铟源浓度均在0.02-0.2mol/L的十八稀有机溶液中,持续搅拌,形成前驱体溶液;再在120℃下将一定量的十八稀溶剂进行脱气处理,然后升温至较高温度后,将最后得到的前驱体溶液快速注射到高温下的十八稀溶剂中,随后停止反应,快速降温到室温,得到铜铟碲的超薄规则纳米片,收集铜铟碲超薄规则纳米片的方法是:将乙醇加入产物溶液中,转移至离心管离心,得到沉淀产物,用环己烷溶解后继续用乙醇洗涤2-3次,最后再溶解到环己烷中制成溶液或是通过冷冻干燥的方法得到固体粉末。
2.根据权利要求1所述的铜铟碲超薄规则半导体纳米片的制备方法,其特征在于所用的铜源为亚铜盐,铟源为铟盐,碲源为高纯碲粉。
3.根据权利要求1所述的铜铟碲超薄规则半导体纳米片的制备方法,其特征在于有两种表面配体,分别以硫醇为铜源和铟源的表面配体,以正三辛基膦为碲源的表面配体。
4.根据权利要求1所述的铜铟碲超薄规则半导体纳米片的制备方法,其特征在于停止反应所得到的混合溶液中生成的铜铟碲浓度在0.001mol/L至1mol/L。
5.根据权利要求1所述的铜铟碲超薄规则半导体纳米片的制备方法,其特征在于注射温度为150℃-300℃,高温下反应迅速,反应时间极短。
6.根据权利要求1所述的铜铟碲超薄规则半导体纳米片的制备方法,其特征在于阳离子与阴离子之间需要先分开溶解再混合,包括将铜源和铟源放到一起溶解,碲源单独溶解以及将铜源,铟源,碲源各自单独溶解。
7.根据权利要求1所述的铜铟碲超薄规则半导体纳米片的制备方法,其特征在于所述的铜铟碲超薄规则纳米片需用有机溶液洗涤。
CN201611145707.7A 2016-12-13 2016-12-13 铜铟碲超薄规则半导体纳米片的制备方法 Expired - Fee Related CN106670498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611145707.7A CN106670498B (zh) 2016-12-13 2016-12-13 铜铟碲超薄规则半导体纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611145707.7A CN106670498B (zh) 2016-12-13 2016-12-13 铜铟碲超薄规则半导体纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN106670498A CN106670498A (zh) 2017-05-17
CN106670498B true CN106670498B (zh) 2018-11-13

Family

ID=58868142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611145707.7A Expired - Fee Related CN106670498B (zh) 2016-12-13 2016-12-13 铜铟碲超薄规则半导体纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN106670498B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462164A (zh) * 2023-04-10 2023-07-21 邯郸学院 一种制备碲基超薄半导体纳米片的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1269243C (zh) * 2003-09-10 2006-08-09 中国科学院物理研究所 一种电极复合材料及其制备和用途
KR101100297B1 (ko) * 2009-01-09 2011-12-28 한국과학기술연구원 금속 화합물 미세 분말의 제조방법
CN102976288A (zh) * 2012-11-01 2013-03-20 河南大学 一种以Sn(IV)的无机配合物诱导合成纳米晶的新方法
CN102941350B (zh) * 2012-11-06 2015-04-22 南京工业大学 一种纳米铜粉的制备方法
CN103896222B (zh) * 2012-12-24 2016-01-20 中国科学技术大学 超薄纳米片半导体材料的制备方法
CN104057101B (zh) * 2014-07-01 2015-12-09 扬州大学 一种催化制备铜铟碲纳米线的方法
CN105328206A (zh) * 2015-11-19 2016-02-17 北京化工大学 一种油相化学还原制备铜纳米线的方法

Also Published As

Publication number Publication date
CN106670498A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
Jia et al. Investigation on two forms of temperature-sensing parameters for fluorescence intensity ratio thermometry based on thermal coupled theory
Xu et al. Ln3+ (Ln= Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties
Wang et al. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes
Yi et al. Strong red-emitting near-infrared-to-visible upconversion fluorescent nanoparticles
Wang et al. Enhanced deep-ultraviolet upconversion emission of Gd 3+ sensitized by Yb 3+ and Ho 3+ in β-NaLuF 4 microcrystals under 980 nm excitation
Li et al. LaF3, CeF3, CeF3: Tb3+, and CeF3: Tb3+@ LaF3 (core− shell) nanoplates: hydrothermal synthesis and luminescence properties
Teshima et al. Flux growth of highly crystalline NaYF4: Ln (Ln= Yb, Er, Tm) crystals with upconversion fluorescence
CN110205121B (zh) 室温磷光碳点材料及其制备方法与应用
Sheng et al. One-step growth of high luminescence CdTe quantum dots with low cytotoxicity in ambient atmospheric conditions
CN105694888B (zh) 一种Mg2+掺杂NaREF4上转换荧光材料及其制备方法
Xu et al. Supramolecular self-assembly enhanced europium (III) luminescence under visible light
Wang et al. Shape-and size-controlled synthesis of calcium molybdate doughnut-shaped microstructures
He et al. Reducing grain size and enhancing luminescence of NaYF4: Yb3+, Er3+ upconversion materials
Han et al. Synthesis of Compositionally Defined Single-Crystalline Eu3+-Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO4–CaWO4: Eu3+–0D CdS/CdSe QD Nanoscale Heterostructures
Wu et al. Upconversion photoluminescence enhancement and modulation of NaYF4: Yb, Er through using different ligands
Huang et al. Photoluminescence of graphene quantum dots enhanced by microwave post-treatment
CN106966382A (zh) 一种超临界连续水热合成石墨烯量子点的方法
CN105170165A (zh) 片状Ag2S负载Ag3PO4纳米球复合可见光催化剂及其制备方法
CN104710983A (zh) 金属离子配位催化制备氮掺杂石墨烯量子点的方法
CN105148925B (zh) 一种氧空位可调的三维有序大孔ZnO‑Cu2O‑TiO2复合氧化物、制备方法及其应用
CN105199735B (zh) 一种固态量子点的制备方法
CN106670498B (zh) 铜铟碲超薄规则半导体纳米片的制备方法
CN114591741A (zh) 一种镧系离子掺杂的双钙钛矿纳米晶体、其制备方法及应用
CN103897696A (zh) 一种Cr掺杂的纳米近红外长余辉材料及其制备方法
Mei et al. White luminescent hybrid soft materials of lanthanide (Eu3+, Sm3+) beta-diketonates and Ag/Ag2S nanoparticles based with thiol-functionalized ionic liquid bridge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181113

Termination date: 20191213