CN106669683B - 一种核壳型无定形硅铝催化剂及其制备方法和应用 - Google Patents

一种核壳型无定形硅铝催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN106669683B
CN106669683B CN201510758567.XA CN201510758567A CN106669683B CN 106669683 B CN106669683 B CN 106669683B CN 201510758567 A CN201510758567 A CN 201510758567A CN 106669683 B CN106669683 B CN 106669683B
Authority
CN
China
Prior art keywords
alumina
amorphous silica
mtbe
tba
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510758567.XA
Other languages
English (en)
Other versions
CN106669683A (zh
Inventor
张淑梅
周峰
乔凯
翟庆铜
王春梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201510758567.XA priority Critical patent/CN106669683B/zh
Publication of CN106669683A publication Critical patent/CN106669683A/zh
Application granted granted Critical
Publication of CN106669683B publication Critical patent/CN106669683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种核壳型无定形硅铝催化剂及其制备方法以及在MTBE和TBA混合料制备异丁烯中的应用。该催化剂的制备方法如下:先制备无定形硅铝A,然后将无定形硅铝B负载于无定形硅铝A的外表面,然后经卤化,得到核壳型无定形硅铝催化剂。本发明方法制备的催化剂为核壳结构,核为无定形硅铝A,壳为无定形硅铝B,两者有机地配合,并经卤化处理后,实现了MTBE裂解和TBA脱水两种反应同时进行生成异丁烯,使TBA的转化率和MTBE的转化率均较高,生成异丁烯的选择性也较高。

Description

一种核壳型无定形硅铝催化剂及其制备方法和应用
技术领域
本发明涉及一种核壳型无定形硅铝催化剂及其制备方法和应用,该催化剂特别适用于甲基叔丁基醚(MTBE)和叔丁醇(TBA)混合料制备异丁烯。
背景技术
异丁烯是重要的有机化工原料,以其为原料主要用于生产甲基丙烯酸甲酯(MMA)、丁基橡胶、聚异丁烯、叔丁酚、叔丁胺、甲代烯丙基氯、三甲基乙酸、异戊二烯、对叔辛基酚、抗氧剂、农医药中间体、醋酸叔丁酯、硅烷等精细化工产品。 生产异丁烯的原料主要来源于石脑油蒸汽裂解制乙烯装置的副产碳四馏分,炼油厂流化催化裂化(FCC)装置的副产碳四馏分和Halcon法环氧丙烷合成中的副产叔丁醇等,其中工业生产方法主要有硫酸萃取法、吸附分离法、叔丁醇脱水法、甲基叔丁基醚裂解和正丁烯异构化法等。
MTBE裂解是诸多制备异丁烯方法中技术先进、经济性较好的一种方法。在MTBE裂解制异丁烯反应过程中,主反应是在催化剂的作用之下,MTBE裂解为异丁烯及甲醇,最后经精馏等工序得到异丁烯或高纯异丁烯。MTBE裂解制异丁烯的催化剂种类较多,包括氧化铝、氧化硅、无定形硅铝、离子交换树脂、分子筛、固体磷酸及其他酸性催化剂体系。如CN1853772A、CN102451674A、JP2004115407、JP2004091443、JP3220136 等公开的MTBE裂解制异丁烯催化剂均为无定形硅铝系催化剂,再如DE 3509292、DE 3210435、US 4447668、GB1482883、US 4570026、US 4551567等则采用离子交换树脂催化剂,又再如专利CN96123535.7、EP 0118085、JP 7626401、JP 7494602等以固体磷酸、硫酸盐、活性炭作为MTBE裂解催化剂。
制取异丁烯的另外一种较为普遍的方法是TBA脱水。TBA脱水制异丁烯的反应具有副产物少、分离精制容易、投资省等特点。常用的催化剂包括氧化铝、分子筛、磺酸离子交换树脂等。如US3665048、CN101300211A、CN102516030A等公开的异丁烯脱水催化剂均为氧化铝系催化剂。再如US4423271、US2005/0014985A1等中是以磺酸树脂为催化剂。CN103611572A和CN103506158A提供的用于叔丁醇裂解反应的催化剂,是由以下方法制备得到:先通过熔融造粒方法将聚苯乙烯、氯化聚氯乙烯、聚三氟氯乙烯和聚偏氟乙烯或聚三溴苯乙烯共混、熔融后造粒,然后造粒产物与三氧化硫进行磺化反应得到所述的催化剂。
生产过程中,较常遇见MTBE和TBA混合料。其主要来源有两种。第一种来源是以异丁烯与甲醇为原料制取MTBE的开车初期会生产较多量的TBA。这是因为开工的时候,催化剂或(及)装置管道中可能会掺杂一定量的水,过量的异丁烯与水反应很容易生成TBA。对工业装置而言,也意味着在开工初期会有相当量的MTBE和TBA混合产品生成。MTBE和TBA混合产品作为废料处理,或者采用MTBE/TBA分离塔进行分离,分别得到目标产物MTBE和TBA。
第二种来源,也是最重要的来源是人为生产,即在制备MTBE的同时联产TBA。首先,是专门生产TBA的技术存在一定问题。TBA生产工艺较为复杂,由于碳四馏分与水的互溶性较差,因此TBA产品浓度只有45%-55%,加之TBA与水共沸很难分离,普通精馏只能获得85%的TBA。通常要采用多级萃取精馏才能得到较高浓度的TBA产品,但设备投资和操作费用将大幅度提高。其次,制备MTBE的同时联产TBA具有技术上的优势:(1)方案简单灵活。可按照产品在市场上的需求对工艺方案进行适当调整。只需对工艺流程进行简单切换并更换合适的催化剂,就可实现单产MTBE或TBA,以及MTBE和TBA混合物。(2)流程便于实施,投资风险小。通过对单产MTBE工艺进行改造就能很容易转为联产工艺,便于实施。同时又可很方便地恢复到传统的单产工艺,富余的MTBE/TBA分离塔可以用来进行碳四馏分中正丁烯的分离。因此,该技术不存在投资风险。最后,联产装置投资费用低。若厂方有专门的单产MTBE和专门的单产TBA装置,二者各成体系,相互之间设备不能借用,因此比联产工艺的设备多,投资大。联产装置可同时生产MTBE和TBA,比新建两套同规模装置分别生产MTBE和TBA节省投资40%以上,同时也大幅度地减少了操作费用。因此,在制备MTBE的同时联产TBA技术得到了广泛重视。西安石油大学的陆春龙在其硕士论文“MTBE装置的优化分析及与TBA的联产涉及初探”中,就制备MTBE的同时联产TBA技术进行了认真分析,得到了肯定答案。CN200610104876.6公开了一种用碳四馏分中的异丁烯和甲醇水联产甲基叔丁基醚和叔丁醇的生产方法。但联产的MTBE和TBA混合料产品,主要的去向是采用MTBE/TBA分离塔进行分离,分别得到目标产物MTBE和TBA。
不论是第一种来源还是第二种来源得到的MTBE和TBA混合料,现阶段,将混合料用做制取异丁烯时,基本上均采用将混合料分离后得到较纯的MTBE原料和TBA原料,然后分别在MTBE裂解装置及TBA脱水装置上来分别制异丁烯。
有关MTBE和TBA混合料进行裂解制异丁烯技术,现阶段还是空白。其中一个重要的原因是MTBE裂解装置及TBA脱水装置对催化剂性能的要求不一致。一般认为,MTBE裂解催化剂表面的活性位是以Bronsted酸(B酸)中心为主,而TBA脱水制异丁烯的催化剂为Lewis酸(L酸)催化反应过程。对于单一种类催化剂而言,或者以B酸为主,或者以L酸为主,不能两者兼顾。另一个原因,采用通常的催化剂,两者的反应条件不同,尤其是反应温度,TBA脱水温度较MTBE裂解温度要低一些。因此,如何在同一装置相同反应条件下同时处理MTBE和TBA混合料来制取异丁烯,同时具有较高的活性和选择性,是本领域的一项重要研究课题。
发明内容
为了实现以MTBE和TBA混合料为原料制备异丁烯,本发明提供了一种核壳型无定形硅铝催化剂及其制备方法和应用。该催化剂适用于MTBE和TBA混合料制备异丁烯,不但能实现MTBE与TBA同时反应生成异丁烯,而且MTBE和TBA均具有较高的转化率,异丁烯达到较高的选择性。
本发明所述的核壳型无定形硅铝催化剂的制备方法,包括:先制备无定形硅铝A,然后将无定形硅铝B负载于无定形硅铝A的外表面,形成核壳型无定形硅铝中间体,然后经卤化,得到本发明的核壳型无定形硅铝催化剂。
本发明方法中,所述的卤化优选的条件如下:在温度150℃~600℃,优选200℃~500℃,压力0~0.5MPa,优选0.1~0.3MPa下与卤化氢气体接触1h~12h ,优选2h~5h。
本发明方法中,无定形硅铝A以干基的重量为基准,SiO2含量为65.0wt%~99.0wt%,较好为80.0wt%~95.0wt%,最好是87.0wt%~93.0wt%。
本发明方法中,无定形硅铝B以干基的重量为基准, SiO2含量为25.0wt%~60.0wt%,较好为30.0wt%~55.0wt%,最好是35.0wt%~50.0wt%。
本发明方法中,无定形硅铝A与无定形硅铝B以干基计的重量比为40:1~4:1,优选30:1~6:1。
本发明方法中,无定形硅铝A中优选含有助剂组分M,助剂组分M选自第IIA族和第VIII族金属中的一种或多种,其中第IIA族金属优选为Be、Mg和Ca中的一种或多种,第VIII族金属优选为Ni、Pd和Pt中的一种或多种。助剂组分M以元素计为无定形硅铝A干基重量的0.3wt%~1.5wt%。
本发明方法中,无定形硅铝B中优选含有助剂组分N,助剂组分N选自锌、铁、铌中的一种或多种。助剂组分N以元素计占无定形硅铝B干基重量的0.2wt%~0.8wt%,优选0.3wt%~0.5wt%。
本发明方法中,卤化所用的卤素选自氟、氯、溴中的一种或多种,优选氯。卤素的引入量占核壳型无定形硅铝重量的0.05wt%~0.20wt%,优选0.08wt%~0.15wt%。
本发明方法中,本领域技术人员可以根据实际应用的工艺来对催化剂进行成型,其形状和大小可以根据需要来确定。
本发明方法中,无定形硅铝B负载于无定形硅铝A的外表面可以采用常规的形成核壳结构的方法,比如浸涂法等。
本发明方法中,所述无定形硅铝B中的助剂组分N,可以采用常规方法(比如掺混法)引入B中,比如硅铝成胶过程中引入,也可以在硅铝成胶后引入。
本发明方法优选是先将无定形硅铝A成型,然后再负载壳层B。
本发明方法优选具体的制备过程如下:先将无定形硅铝A成型,经干燥和焙烧,喷浸含助剂组分N的无定形硅铝B浆液后,经干燥和焙烧,再经卤化后得到最终催化剂。该催化剂可采用常规的成型方法,可以根据需要制成适宜的大小和形状,比如球形、条形等。球形催化剂可采用油滴法、转动式造粒法、球形造粒成型法等,其几何直径在1.0mm-5.0mm之间,最好选为2.0mm-3.0mm。本发明方法中,在成型过程中,还可以加入粘结剂和成型助剂,粘结剂可以采用常规的粘结剂,一般为小孔氧化铝,占最终催化剂重量的2.0wt%~20.0wt%。成型助剂如田菁粉或甲基纤维素,占最终催化剂重量的1.5wt%~3.0wt%。
所述无定形硅铝A优选的制备方法如下:采用常规方法制成硅铝溶胶,经成型,干燥和焙烧后,再用饱和水蒸汽处理,温度为100℃~600℃,时间为1h~10h。所述的无定形硅铝A最好为球形,成球方法,比如油滴法、转动式造粒法、球形造粒成型法、流动床造粒法等。其中助剂组分M可以采用常规的方法(比如浸渍法、掺混法)在硅铝成胶的过程中引入,也可以在成胶后引入,也可以在水蒸汽处理后引入。
本发明方法中,在催化剂制备过程中所涉及到的干燥和焙烧一般采用常规条件进行,比如干燥条件:在80℃~150℃下干燥1h~24h,焙烧条件:在400℃~700℃,优选450℃~600℃下焙烧1h~24h。
本发明还提供了一种由上述方法制备的核壳型无定形硅铝催化剂。
本发明还提供了一种由上述方法制备的核壳型无定形硅铝催化剂用于MTBE和TBA混合料制异丁烯反应中。
本发明所述的核壳型无定形硅铝催化剂,可同时完成MTBE和TBA混合料制异丁烯反应,即MTBE裂解制异丁烯与TBA脱水制异丁烯反应可同时在该核壳型催化剂上完成。
本发明方法制备的核壳型无定形硅铝催化剂,装填在常规反应器中,可以采用原有的MTBE裂解制异丁烯装置或TBA脱水制异丁烯装置。
本发明方法制备的催化剂,特别适合处理MTBE与TBA的重量比为1:1~40:1的混合料,优选MTBE与TBA的重量比为2:1~20:1。混合料中的杂质等于或低于常规MTBE为原料制备异丁烯和TBA为原料脱水制异丁烯时原料中含有的杂质,比如甲基仲丁基醚≤0.2wt%,甲醇≤0.05wt%,异丁烯低聚物≤0.05 wt%,碳四以及碳四以下烃类≤0.1wt%。
本发明提供的MTBE和TBA混合料制异丁烯的制备方法,可以采用固定床工艺,即将上述方法制备的催化剂装填在一固定床反应器中以MTBE和TBA混合料为原料进行反应来制取异丁烯。MTBE和TBA混合料中MTBE与TBA的重量比为1:1~40:1,优选为2:1~20:1。反应条件为:总液时体积空速为0.5h-1~10.0h-1,优选为2.0h-1~5.0h-1;温度为120℃~300℃,优选为150℃~250℃;压力为常压~0.6MPa,优选为常压~0.3MPa。为了抑制反应副产物的生成,可在反应时向混合料中添加一定重量的净水,占混合料重量的1.0 wt%~15.0 wt%。
本发明方法制备的催化剂以无定形硅铝A为核,以无定形硅铝B为壳,然后采用卤化处理,使两者有机地配合,实现了MTBE裂解和TBA脱水两种反应同时进行生成异丁烯,使TBA的转化率和MTBE的转化率均较高,生成异丁烯的选择性也较高,避免了MTBE和TBA混合料的分离过程,并避免分别建设MTBE裂解装置和TBA脱水装置制取异丁烯。
具体实施方式
本发明中,原料纯度及产品组成采用气相色谱法分析,催化剂的孔性质采用低温液氮吸附法测定。元素含量采用无机分析法测定,wt%为质量分数。
对比例1
将无定形硅铝小球XQ1(粒径尺寸2.2mm-2.5mm)浸入Ni(NO3)2水溶液中,浸渍后经400℃焙烧6h得含氧化镍的无定形硅铝小球XQ1-1,再经300℃、6h饱和水蒸汽处理后,得到含氧化镍的无定形硅铝小球XQ1-2。XQ1-2中,镍含量为0.40wt%,SiO2含量86.90wt%,Al2O3含量为12.70wt%。
将硅铝胶GLJ1(以干基计,SiO2含量35.00wt%,Al2O3含量为65.00wt%)喷浸到XQ1-2上,在120℃下干燥4h,500℃下焙烧6h,得到催化剂DB-1,其中核层与壳层的重量比为7:1。具体评价结果见表1。
对比例2
将对比例1中的XQ1-2研磨成为250目-300目的粉末,制成XQ1-3。
在搅拌条件下,向对比例1中的硅铝胶GLJ1中缓慢添加适量碳酸锌和氯化铵溶液混匀,经120℃下干燥4 h,在450℃焙烧后得到GLJ1-1粉末,其中锌的含量以元素计为0.30wt%,氯含量为0.10wt%)。
将XQ1-3与GLJ1-1以重量比7:1均匀混合,然后加入重量占比为10wt%的小孔氧化铝作为粘合剂,以球形造粒成型法成型为粒径尺寸在2.2mm-2.5 mm之间催化剂小球,在120℃下干燥4h,经450℃焙烧12h,得到催化剂DB-2。具体评价结果见表1。
对比例3
将对比例1中的硅铝胶GLJ1,经120℃下干燥4 h,在450℃焙烧后得到的粉末中加入重量占比为15wt%的小孔氧化铝作为粘合剂,以球形造粒成型法成型为粒径尺寸在2.2mm-2.5mm之间催化剂小球,在120℃下干燥4h,经400℃焙烧16h,得到催化剂DB-3。其TBA裂解评价结果见表2。
对比例4
将对比例2中的GLJ1-1粉末中加入重量占比为15wt%的小孔氧化铝作为粘合剂,以球形造粒成型法成型为粒径尺寸在2.2mm-2.5 mm之间催化剂小球,在120℃下干燥4h,经400℃焙烧16h,得到催化剂DB-4。其TBA裂解评价结果见表2。
对比例5
将对比例1中得到的无定形硅铝小球XQ1-2,用于MTBE裂解反应中,其评价结果见表3。
实施例1
按照对比例1的方法将无定形硅铝小球XQ1制得XQ1-2。XQ1-2中,镍的含量为0.40wt%,SiO2含量86.90wt%,Al2O3含量为12.70wt%。
将对比例1中的硅铝胶GLJ1中添加适量碳酸锌溶液混匀,喷浸到XQ1-2上,在120℃下干燥4 h,500℃下焙烧6h,得到核壳结构SL-1催化剂中间体。核层A与壳层B的重量比为7:1,壳层B中,SiO2含量为34.80wt%,氧化铝含量为64.90wt%,锌含量为0.30wt%。将上述催化剂中间体进行氯化,在温度300℃,压力0.2MPa下与氯化氢气体接触2h,得到催化剂SL-1。该催化剂中,氯含量为0.10wt%。具体评价结果见表1。
实施例2
将对比例1中的无定形硅铝小球XQ1浸入Ca(NO3)2水溶液中,浸渍后经600℃焙烧3h得含钙的无定形硅铝小球XQ1-4,再经500℃、1.5h饱和水蒸汽处理后,得到XQ1-5。XQ1-5中,钙的含量为0.80wt%,SiO2含量86.50wt%,Al2O3含量为12.70wt%。
将对比例1中的硅铝胶GLJ1中添加适量硝酸铁溶液混匀,喷浸到(XQ1-5)上,在110℃下干燥4 h,500℃下焙烧5h,得到核壳结构SL-2催化剂中间体。核层A与壳层B的重量比为10:1;壳层B中,氧化硅含量为34.84wt%,氧化铝含量为64.75wt%,铁含量为0.41wt%。将上述催化剂中间体进行溴化,在温度400℃,常压下与溴化氢气体接触4h,得到催化剂SL-2。该催化剂中,溴含量为0.12wt%。具体评价结果见表1。
实施例3
将一定量无定形硅铝小球XQ2(粒径尺寸2.6mm-2.9mm)浸入Be(NO3)2水溶液中,浸渍后经500℃焙烧5h得含铍的无定形硅铝XQ2-1,再经200℃、4h饱和水蒸汽处理后,得到XQ2-2。XQ2-2中,铍的含量为0.95wt%,SiO2含量81.22wt%,Al2O3含量为17.83wt%。
在硅铝胶GLJ2中添加适量醋酸锌溶液混匀,喷浸到XQ2-2上,在120℃下干燥2h,450℃下焙烧5h,得到核壳结构SL-3催化剂中间体。核层A与壳层B的重量比为6:1,壳层B中,氧化硅含量为44.90wt%,氧化铝含量为54.85wt%,锌含量为0.25wt%。将上述催化剂中间体进行溴化,在温度250℃,压力0.3MPa下与溴化氢气体接触3h,得到催化剂SL-3。该催化剂中,溴含量为0.08wt%。具体评价结果见表1。
实施例4
将实施例3中的无定形硅铝小球XQ2浸入Ni(NO3)2水溶液中,浸渍后经400℃焙烧3h得含镍的无定形硅铝小球XQ2-3,再经300℃、4.5h饱和水蒸汽处理后,得到XQ2-4。XQ2-4中,镍的含量为0.36wt%,SiO2含量81.70wt%,Al2O3含量为17.94wt%。
将实施例3中的硅铝胶GLJ2中添加适量草酸铌溶液混匀,喷浸到XQ2-4上,在100℃下干燥3 h,500℃下焙烧3h,得到核壳结构SL-4催化剂中间体。核层A与壳层B的重量比为10:1;壳层B中,氧化硅含量为44.71wt%,氧化铝含量为54.51wt%,铌含量为0.78wt%。将上述催化剂中间体进行氯化,在温度450℃,常压下与氯化氢气体接触5h,得到催化剂SL-4。该催化剂中,氯含量为0.12wt%。具体评价结果见表1。
表1 对比例1-2及实施例1-4所制备催化剂的评价结果
评价条件及结果 对比例1 对比例2
催化剂 DB-1 DB-2
总液时体积空速,h<sup>-1</sup> 3 3
MTBE液时体积空速,h<sup>-1</sup> 2 2
TBA液时体积空速,h<sup>-1</sup> 1 1
反应温度,℃ 210 210
反应压力,MPa 0.2 0.2
MTBE转化率,wt% 92.0 98.6
TBA转化率,wt% 93.1 97.5
异丁烯选择性,wt% 94.4 99.5
续表1
评价条件及结果 实施例1 实施例2 实施例3 实施例4
催化剂 SL-1 SL-2 SL-3 SL-4
总液时体积空速,h<sup>-1</sup> 5 3 2 1
MTBE液时体积空速,h<sup>-1</sup> 4.6 2 1.5 0.5
TBA液时体积空速,h<sup>-1</sup> 0.4 1 0.5 0.5
反应温度,℃ 250 210 150 130
反应压力,MPa 0.3 0.1 0.1 常压
MTBE转化率,wt% 99.6 99.7 99.7 99.3
TBA转化率,wt% 99.9 99.8 99.5 99.6
异丁烯选择性,wt% 99.8 99.9 99.8 99.7
由表1可以看出,本发明催化剂以无定形硅铝A为核,以含助剂组分N的无定形硅铝B为壳的催化剂,通过两者有机地配合,再经卤化处理后,可实现MTBE裂解和TBA脱水两种反应同时进行生成异丁烯反应过程。对比例1中仅仅以未改性的无定形硅铝为壳制成的催化剂,其MTBE及TBA转化率均不高,异丁烯的选择性也较差。即使采用对比例2的混捏法制备的催化剂,虽然MTBE及TBA的转化率、异丁烯选择性有所提高,但仍不理想。
表2 对比例3、4的TBA裂解评价条件及结果
对比例3 对比例3 对比例4 对比例4
催化剂 DB-3 DB-3 DB-4 DB-4
TBA液时体积空速,h<sup>-1</sup> 1 1 1 1
反应温度,℃ 250 150 250 150
反应压力,MPa 0.1 0.1 0.1 0.1
TBA转化率,wt% 92.2 86.8 99.5 90.4
异丁烯的选择性,wt% 93.9 92.9 95.8 93.8
由表2可以看出,DB-3和DB-4作为TBA裂解催化剂时,反应温度为250℃时的催化性能明显好于反应温度为150℃时的催化性能。再有,经过锌和氯改性后的无定形硅铝用于TBA裂解反应时,TBA的转化率有较明显提高,但选择性不理想。
表3 对比例5的MTBE裂解评价条件及结果
催化剂 DB-7 DB-7
MTBE液时体积空速,h<sup>-1</sup> 2.5 2.5
水液时体积空速,h<sup>-1</sup> 0.08 0.08
反应温度,℃ 230 180
反应压力,MPa 常压 0.05
MTBE转化率,wt% 99.7 96.3
异丁烯的选择性,wt% 99.6 98.1
由表3可以看出,DB-5用于MTBE裂解时,反应温度为230℃时的催化性能明显好于反应温度为180℃时的催化性能。

Claims (23)

1.一种核壳型无定形硅铝催化剂的制备方法,包括:先制备无定形硅铝A,然后将无定形硅铝B负载于无定形硅铝A的外表面,然后经卤化,得到核壳型无定形硅铝催化剂。
2.按照权利要求1所述的方法,其特征在于:所述的卤化过程如下:在温度150℃~600℃,压力0~0.5MPa下与卤化氢气体接触1h~12h。
3.按照权利要求2所述的方法,其特征在于:所述卤化的条件如下:温度为200℃~500℃,压力为0.1~0.3MPa,时间为2h~5h。
4.按照权利要求1所述的方法,其特征在于:无定形硅铝A以干基的重量为基准,SiO2含量为65.0wt%~99.0wt%;无定形硅铝B以干基的重量为基准, SiO2含量为25.0wt%~60.0wt%。
5.按照权利要求4所述的方法,其特征在于:无定形硅铝A以干基的重量为基准,SiO2含量为80.0wt%~95.0wt%;无定形硅铝B以干基的重量为基准, SiO2含量为30.0wt%~55.0wt%。
6.按照权利要求1所述的方法,其特征在于:无定形硅铝A与无定形硅铝B以干基计的重量比为40:1~4:1。
7.按照权利要求6所述的方法,其特征在于:无定形硅铝A与无定形硅铝B以干基计的重量比为30:1~6:1。
8.按照权利要求1所述的方法,其特征在于: 无定形硅铝A中含有助剂组分M,助剂组分M选自第IIA族和第VIII族金属中的一种或多种,其中第IIA族金属为Be、Mg和Ca中的一种或多种,第VIII族金属为Ni、Pd和Pt中的一种或多种;助剂组分M以元素计为无定形硅铝A干基重量的0.3wt%~1.5wt%。
9.按照权利要求1或8所述的方法,其特征在于:无定形硅铝B中含有助剂组分N,助剂组分N选自锌、铁、铌中的一种或多种;助剂组分N以元素计占无定形硅铝B干基重量的0.2wt%~0.8wt%。
10.按照权利要求9所述的方法,其特征在于:助剂组分N以元素计占无定形硅铝B干基重量的0.3wt%~0.5wt%。
11.按照权利要求1所述的方法,其特征在于:卤素选自氟、氯、溴中的一种或多种;卤素的引入量占催化剂重量的0.05wt%~0.20wt%。
12.按照权利要求11所述的方法,其特征在于:卤素选自氯,卤素的引入量占催化剂重量的0.08wt%~0.15wt%。
13.按照权利要求9所述的方法,其特征在于:先将无定形硅铝A成型,经干燥和焙烧,喷浸含助剂组分N的无定形硅铝B浆液,经干燥和焙烧后,再经卤化,得到最终催化剂。
14.按照权利要求1或13所述的方法,其特征在于:所述无定形硅铝A的制备方法如下:采用常规方法制成硅铝溶胶,经成型,干燥和焙烧后,再用饱和水蒸汽处理,温度为100℃~600℃,时间为1h~10h。
15.按照权利要求1所述的方法,其特征在于:所述核壳型无定形硅铝催化剂呈球形,几何直径在1.0mm-5.0mm。
16.一种核壳型无定形硅铝催化剂,采用权利要求1~15任一所述方法制备。
17.一种MTBE和TBA混合料制异丁烯的方法,其特征在于采用权利要求16所述的催化剂。
18.按照权利要求17所述的方法,其特征在于: MTBE与TBA混合料中,MTBE与TBA的重量比为1:1~40:1。
19.按照权利要求18所述的方法,其特征在于: MTBE与TBA的重量比为2:1~20:1。
20.按照权利要求18所述的方法,其特征在于:混合料中甲基仲丁基醚≤0.2wt%,甲醇≤0.05wt%,异丁烯低聚物≤0.05 wt%,碳四以下烃类≤0.1wt%。
21.按照权利要求17所述的方法,其特征在于:采用固定床工艺,反应条件为:总液时体积空速为0.5h-1~10.0h-1,温度为120℃~300℃,压力为常压~0.6MPa。
22.按照权利要求17所述的方法,其特征在于:采用固定床工艺,反应条件如下:总液时体积空速为2.0h-1~5.0h-1,温度为150℃~250℃,压力为常压~0.3MPa。
23.按照权利要求17~22任一所述的方法,其特征在于:在反应时向混合料中添加净水,占混合料重量的1.0 wt%~15.0 wt%。
CN201510758567.XA 2015-11-10 2015-11-10 一种核壳型无定形硅铝催化剂及其制备方法和应用 Active CN106669683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510758567.XA CN106669683B (zh) 2015-11-10 2015-11-10 一种核壳型无定形硅铝催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510758567.XA CN106669683B (zh) 2015-11-10 2015-11-10 一种核壳型无定形硅铝催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106669683A CN106669683A (zh) 2017-05-17
CN106669683B true CN106669683B (zh) 2019-05-21

Family

ID=58864287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510758567.XA Active CN106669683B (zh) 2015-11-10 2015-11-10 一种核壳型无定形硅铝催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106669683B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617736B (zh) * 2020-04-20 2022-11-22 内江师范学院 空包结构Cu基-分子筛CO吸附剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853772A (zh) * 2005-04-27 2006-11-01 中国石油化工股份有限公司 用于甲基叔丁基醚裂解制异丁烯的催化剂
CN101134169A (zh) * 2006-08-29 2008-03-05 奥克森诺奥勒芬化学股份有限公司 制备异烯烃的催化剂和方法
CN102451674A (zh) * 2010-10-15 2012-05-16 中国石油化工股份有限公司 甲基叔丁基醚裂解制异丁烯催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853772A (zh) * 2005-04-27 2006-11-01 中国石油化工股份有限公司 用于甲基叔丁基醚裂解制异丁烯的催化剂
CN101134169A (zh) * 2006-08-29 2008-03-05 奥克森诺奥勒芬化学股份有限公司 制备异烯烃的催化剂和方法
CN102451674A (zh) * 2010-10-15 2012-05-16 中国石油化工股份有限公司 甲基叔丁基醚裂解制异丁烯催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106669683A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN1021636C (zh) 用于醛加氢的改性的铜-氧化锌催化剂
WO2013125389A1 (ja) 1,3-ブタジエンの製造方法
CN103752316A (zh) 正丁烯氧化脱氢制丁二烯的铁催化剂及其制备方法和应用
CN106669683B (zh) 一种核壳型无定形硅铝催化剂及其制备方法和应用
CN103043677A (zh) 一种改性镁碱沸石及其制备方法和应用
CN105712830B (zh) 一种异丁烯的制备方法
CN105712818B (zh) 一种mtbe和tba混合料制备异丁烯的方法
CN106179373A (zh) 一种用于癸烯醛液相加氢制异癸醇的催化剂及其制备方法
CN106673947B (zh) 一种异丁烯的制备方法
CN106673948B (zh) Mtbe和tba混合料制备异丁烯的方法
CN106669746B (zh) 一种核壳型无定形硅铝催化剂及其制备方法
CN106673931B (zh) 一种甲基叔丁基醚和叔丁醇混合料制异丁烯的方法
CN106673946B (zh) 一种mtbe和tba混合料制备异丁烯的方法
CN107955639A (zh) 碳六烷烃裂解的方法
CN105709715B (zh) 一种用于制备异丁烯的催化剂及其制备方法
CN103274887B (zh) 用Bi/Mo/Ce三组分复合氧化物催化剂合成1,3-丁二烯的方法
JP6722185B2 (ja) 触媒およびその調製方法、ならびに当該触媒を利用することによるイソブチレンの調製方法
CN105712829B (zh) Mtbe和tba混合料制备异丁烯的方法
CN105712831A (zh) 一种甲基叔丁基醚和叔丁醇混合料制异丁烯的方法
CN106866336A (zh) 一种制备汽油组分及丁二烯的方法
CN103071519B (zh) 甲基叔丁基醚裂解制异丁烯催化剂及其制备方法
CN104338549A (zh) 大孔径介孔分子筛催化剂、其制备方法及应用
CN106946675A (zh) 乙醛一步法合成丁烯醛的新工艺及其固体催化剂
CN103071520A (zh) 甲基叔丁基醚裂解制异丁烯催化剂的制备方法
CN105944764A (zh) 一种丙烷生产丙烯酸催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant