CN106635954A - 一种基于3d生物打印构建三维血管组织的方法 - Google Patents

一种基于3d生物打印构建三维血管组织的方法 Download PDF

Info

Publication number
CN106635954A
CN106635954A CN201610890439.5A CN201610890439A CN106635954A CN 106635954 A CN106635954 A CN 106635954A CN 201610890439 A CN201610890439 A CN 201610890439A CN 106635954 A CN106635954 A CN 106635954A
Authority
CN
China
Prior art keywords
fibrin
ink
culture
bio
human microvascular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610890439.5A
Other languages
English (en)
Inventor
崔晓峰
高桂芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Feng Lin Technology Co Ltd
Original Assignee
Wuhan Feng Lin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Feng Lin Technology Co Ltd filed Critical Wuhan Feng Lin Technology Co Ltd
Priority to CN201610890439.5A priority Critical patent/CN106635954A/zh
Publication of CN106635954A publication Critical patent/CN106635954A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Vascular Medicine (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种基于3D生物打印构建三维血管组织的方法,依次由人类微血管内皮细胞的培养、生物墨水的配制、生物打印纸的制备、3D打印纤维蛋白通道的制备和微血管系统的培养来完成构建三维血管组织。其优点在于:发明提供的基于3D生物打印构建三维血管组织的方法操作简便、工艺先进,通过将人类微血管内皮细胞配制成生物墨水并用生物打印机打印,生物墨水与生物打印纸发生酶聚合作用形成管道结构,沉积在管道中的内皮细胞通过增殖逐渐填充管道而形成由人类微血管内皮细胞组成的管状网络结构,即微血管系统。无论组织厚薄程度如何,通过该方法利用3D打印技术都可以形成内皮网络结构,实用性较强,适合广泛推广。

Description

一种基于3D生物打印构建三维血管组织的方法
技术领域
本发明涉及组织工程技术领域,特别是一种基于3D生物打印构建三维血管组织的方法。
背景技术
组织工程的目标是通过制造缺失或者损伤的组织和器官替代物,来解决供体器官极度短缺的难题。目前,组织工程已经取得了很多进展,然而这些进展仅局限于相对较薄的组织结构,例如皮肤和膀胱等。这些工程化组织能够依靠周围宿主血管提供营养,但是当工程化组织的厚度超过150-200微米时,就超过了氧气与营养物质扩散的限制。因此为了给组织提供氧气和营养以及移出细胞内的代谢废物,组织工程必须为工程化组织创建一种功能性的血管网络。传统的组织工程无法解决这个难题,然而生物打印技术有希望解决这种关键性的问题。
基于喷墨式打印的生物打印技术是一种非接触性的打印技术,该技术可以实现极小的墨滴在生物材料等基材上的打印构建。
发明内容
本发明的目的是提供一种通过将细胞打印到特定位置,同时发生酶聚合反应而形成支架,在这种细胞支架结构体中形成微米级的纤维蛋白通道,从而在工程化组织中形成微血管网络的基于3D生物打印构建三维血管组织的方法。
本发明采用的技术方案为:
一种基于3D生物打印构建三维血管组织的方法,其创新点在于:依次由人类微血管内皮细胞的培养、生物墨水的配制、生物打印纸的制备、3D打印纤维蛋白通道的制备和微血管系统的培养来完成构建三维血管组织,具体步骤如下:
1)人类微血管内皮细胞的培养:取一百万个人类微血管内皮细胞培养在MCDB131培养基中,培养温度为37℃,培养环境为含5%(v/v)CO2的空气,每2天更换培MCDB131养基,培养10天后传代,传代时将细胞悬液a在1000转/分钟的速度下离心转动5分钟,弃去上层清液,得到人类微血管内皮细胞;
2)生物墨水的配制:将所得到的人类微血管内皮细胞用PBS配置成细胞悬液b,取等体积的细胞悬液b与凝血酶溶液混合即得生物墨水,其中凝血酶溶液中含100酶活力单位/ml的凝血酶和160mmol/L的钙离子,所述得到的生物墨水每毫升含有8百万人类微血管内皮细胞,50酶活力单位的凝血酶, 钙离子浓度为80mmol/L;
3)生物打印纸的制备:将120毫克的纤维蛋白酶原溶液溶于2毫升去离子水中,混合均匀后过滤得到纤维蛋白酶溶液即生物打印纸,其中纤维蛋白酶的浓度为60毫克/毫升;
4)3D打印纤维蛋白通道的制备:打印前将生物打印机进行紫外线杀菌消毒,然后将配制好的生物墨水加入到无菌的生物打印墨盒中,以纤维蛋白酶溶液作为打印纸进行打印,打印过程中,生物墨水与生物打印纸发生酶聚合作用形成3D纤维蛋白通道,而生物墨水中的人类微血管内皮细胞不断沉积并整齐排列在纤维蛋白通道内;
5)微血管系统的培养:将打印好的3D纤维蛋白通道放置在37℃环境下孵育15-20分钟直到凝固产生纤维蛋白支架,然后小心的MCDB131培养基加入到纤维蛋白支架上培养21天,培养温度为37℃,培养环境为含5%(v/v)CO2的空气,且每2天更换一次MCDB131培养基,即可得到微血管系统。
进一步的,所述步骤(1)或(5)中的MCDB131培养基还添加有补充因子,所述补充因子包括胎牛血清、L-谷氨酰胺、皮质醇、人类表皮生长因子和肝素。
本发明的有益效果如下:
发明提供的基于3D生物打印构建三维血管组织的方法操作简便、工艺先进,通过将人类微血管内皮细胞配制成生物墨水并用生物打印机打印,生物墨水与生物打印纸发生酶聚合作用形成管道结构,沉积在管道中的内皮细胞通过增殖逐渐填充管道而形成由人类微血管内皮细胞组成的管状网络结构,即微血管系统。无论组织厚薄程度如何,通过该方法利用3D打印技术都可以形成内皮网络结构,实用性较强,适合广泛推广。
附图说明
下面结合附图和具体实施方式对本发明做进一步详细说明。
图1为通过本发明方法打印出的蛋白纤维通道扫描电镜孔洞图;
图2为通过本发明方法打印出的蛋白纤维通道扫描电镜纤维蛋白支架图;
图3为本发明培养21天后的微血管通道形态图;
图4为本发明打印血管的形态图。
具体实施方式
为使本领域技术人员充分理解本发明的技术方案和有益效果,下面结合附图及具体实施例进行进一步说明。
具体实施例
一种基于3D生物打印构建三维血管组织的方法,依次由人类微血管内皮细胞的培养、生物墨水的配制、生物打印纸的制备、3D打印纤维蛋白通道的制备和微血管系统的培养来完成构建三维血管组织,具体步骤如下:
1)人类微血管内皮细胞的培养:取一百万个人类微血管内皮细胞培养在MCDB131培养基中,培养温度为37℃,培养环境为含5%(v/v)CO2的空气,每2天更换培MCDB131养基,培养10天后传代,传代时将细胞悬液a在1000转/分钟的速度下离心转动5分钟,弃去上层清液,得到人类微血管内皮细胞;
2)生物墨水的配制:将所得到的人类微血管内皮细胞用PBS配置成细胞悬液b,取等体积的细胞悬液b与凝血酶溶液混合即得生物墨水,其中凝血酶溶液中含100酶活力单位/ml的凝血酶和160mmol/L的钙离子,所述得到的生物墨水每毫升含有8百万人类微血管内皮细胞,50酶活力单位的凝血酶, 钙离子浓度为80mmol/L;
3)生物打印纸的制备:将120毫克的纤维蛋白酶原溶液溶于2毫升去离子水中,混合均匀后过滤得到纤维蛋白酶溶液即生物打印纸,其中纤维蛋白酶的浓度为60毫克/毫升;
4)3D打印纤维蛋白通道的制备:打印前将生物打印机进行紫外线杀菌消毒,然后将配制好的生物墨水加入到无菌的生物打印墨盒中,以纤维蛋白酶溶液作为打印纸进行打印,打印过程中,生物墨水与生物打印纸发生酶聚合作用形成3D纤维蛋白通道,而生物墨水中的人类微血管内皮细胞不断沉积并整齐排列在纤维蛋白通道内;
5)微血管系统的培养:将打印好的3D纤维蛋白通道放置在37℃环境下孵育15-20分钟直到凝固产生纤维蛋白支架,然后小心的MCDB131培养基加入到纤维蛋白支架上培养21天,培养温度为37℃,培养环境为含5%(v/v)CO2的空气,且每2天更换一次MCDB131培养基,即可得到微血管系统。
为了对本发明制备的微血管系统样品(三维血管组织)有更充分的认识,对其进行了一系列测试和表征:
a.纤维蛋白支架的电镜表征:取适量孵育好的纤维蛋白支架置于4℃体积分数为100%的乙醇中过夜干燥,接着在真空和CO2条件下进一步干燥。将干燥后的纤维蛋白支架切片或制样后在扫描电镜下观察,结果如图1所示,图中的孔洞用于可细胞的种植和增殖,而图2中显示的支架上的纳米级纤维有利于细胞的粘附与增殖。
b.纤维蛋白支架机械性能的测试:在室温下用MTS电机学测试系统拉住纤维蛋白支架,并对其进行单一轴向张力测试,使样品以5毫米/分钟的速度持续发生拉伸形变,获得弹性模量2.9 MPa和最大拉伸长度数据1.7 MPa。
c.微血管结构的荧光染色和观察:通过对纤维蛋白支架中的人类微血管内皮细胞进行荧光染色来分析其在生物打印的微血管系统中的增殖进度;在室温避光条件下,将荧光染色的微血管结构样品静置30-45分钟,由ImageJ软件将共聚焦显微镜在5微米间隙下所获得的z轴方向的系列荧光图合成为3D影像来展示所打印的血管结构,如图3所示,所构建的血管具有中空结构,并和所打印的图像吻合。
d.微血管系统的完整性检测:用浓度为10微克/毫升的荧光标定葡聚糖粒子对血管进行标记,37℃避光40分钟之后用荧光显微镜观察其血管的完整性,如图4所示,结果表明所打印血管的完整性良好,没有发现渗漏情况。
以上所述是本发明的优选实施方式,不能以此来限定本发明之权利范围。应当指出,对于本技术领域的普通技术人员来说,对本发明的技术方案进行修改或者等同替换,都不脱离本发明的保护范围。

Claims (2)

1.一种基于3D生物打印构建三维血管组织的方法,其特征在于:依次由人类微血管内皮细胞的培养、生物墨水的配制、生物打印纸的制备、3D打印纤维蛋白通道的制备和微血管系统的培养来完成构建三维血管组织,具体步骤如下:
人类微血管内皮细胞的培养:取一百万个人类微血管内皮细胞培养在MCDB131培养基中,培养温度为37℃,培养环境为含5%(v/v)CO2的空气,每2天更换培MCDB131养基,培养10天后传代,传代时将细胞悬液a在1000转/分钟的速度下离心转动5分钟,弃去上层清液,得到人类微血管内皮细胞;
生物墨水的配制:将所得到的人类微血管内皮细胞用PBS配置成细胞悬液b,取等体积的细胞悬液b与凝血酶溶液混合即得生物墨水,其中凝血酶溶液中含100酶活力单位/ml的凝血酶和160mmol/L的钙离子,所述得到的生物墨水每毫升含有8百万人类微血管内皮细胞,50酶活力单位的凝血酶, 钙离子浓度为80mmol/L;
生物打印纸的制备:将120毫克的纤维蛋白酶原溶液溶于2毫升去离子水中,混合均匀后过滤得到纤维蛋白酶溶液即生物打印纸,其中纤维蛋白酶的浓度为60毫克/毫升;
3D打印纤维蛋白通道的制备:打印前将生物打印机进行紫外线杀菌消毒,然后将配制好的生物墨水加入到无菌的生物打印墨盒中,以纤维蛋白酶溶液作为打印纸进行打印,打印过程中,生物墨水与生物打印纸发生酶聚合作用形成3D纤维蛋白通道,而生物墨水中的人类微血管内皮细胞不断沉积并整齐排列在纤维蛋白通道内;
微血管系统的培养:将打印好的3D纤维蛋白通道放置在37℃环境下孵育15-20分钟直到凝固产生纤维蛋白支架,然后小心的MCDB131培养基加入到纤维蛋白支架上培养21天,培养温度为37℃,培养环境为含5%(v/v)CO2的空气,且每2天更换一次MCDB131培养基,即可得到微血管系统。
2.根据权利要求1所述的一种基于3D生物打印构建三维血管组织的方法,其特征在于:所述步骤(1)或(5)中的MCDB131培养基还添加有补充因子,所述补充因子包括胎牛血清、L-谷氨酰胺、皮质醇、人类表皮生长因子和肝素。
CN201610890439.5A 2016-10-12 2016-10-12 一种基于3d生物打印构建三维血管组织的方法 Pending CN106635954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610890439.5A CN106635954A (zh) 2016-10-12 2016-10-12 一种基于3d生物打印构建三维血管组织的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610890439.5A CN106635954A (zh) 2016-10-12 2016-10-12 一种基于3d生物打印构建三维血管组织的方法

Publications (1)

Publication Number Publication Date
CN106635954A true CN106635954A (zh) 2017-05-10

Family

ID=58855639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610890439.5A Pending CN106635954A (zh) 2016-10-12 2016-10-12 一种基于3d生物打印构建三维血管组织的方法

Country Status (1)

Country Link
CN (1) CN106635954A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108130313A (zh) * 2017-12-28 2018-06-08 杭州枫霖科技有限公司 一种基于生物3d打印构建三维胶质瘤组织的方法
CN110408539A (zh) * 2019-07-30 2019-11-05 中国人民解放军陆军军医大学第一附属医院 大体积组织工程组织器官内部仿生血管网的构筑方法
CN110938585A (zh) * 2019-12-10 2020-03-31 清华大学 基于细胞团簇3d打印的血管化组织构建方法及其应用
CN111471641A (zh) * 2020-02-03 2020-07-31 东华大学 多片层单元水凝胶包被的仿生毛细血管网的3d打印制法
CN111733125A (zh) * 2020-02-03 2020-10-02 东华大学 基于3d打印技术的浇筑成型仿生毛细血管网的制法
CN112206074A (zh) * 2019-06-24 2021-01-12 杭州捷诺飞生物科技股份有限公司 管状类组织结构体及其构建方法
WO2021099582A1 (en) * 2019-11-22 2021-05-27 Sorbonne Universite Process for the preparation of fibrinogen-based materials and fibrinogen-based materials obtained by said process
WO2021099581A1 (en) * 2019-11-22 2021-05-27 Sorbonne Universite Process for the preparation of fibrin-based materials and fibrin-based materials obtained by said process
US11480560B2 (en) 2018-06-11 2022-10-25 The Regents Of The University Of Colorado, A Body Corporate Delivery of aerosolized respiratory pathogens
US11499128B2 (en) 2017-09-22 2022-11-15 The Regents Of The University Of Colorado Organ-on-chip microphysiological system
US11679546B2 (en) 2018-02-09 2023-06-20 The Regents Of The University Of Colorado, A Body Corporate Bioprinter and methods of manufacturing an organomimetic device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI X等: "Human microvasculature fabrication using thermal inkjet printing technology", 《BIOMATERIALS》 *
DUONG H等: "Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen-thrombin compositions and by extrinsic cellular activity", 《TISSUE ENG PART A》 *
王璐等: "3D打印与组织工程心肌、心脏瓣膜、大血管及血管网的构建", 《中国组织工程研究》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499128B2 (en) 2017-09-22 2022-11-15 The Regents Of The University Of Colorado Organ-on-chip microphysiological system
CN108130313B (zh) * 2017-12-28 2021-04-30 杭州枫霖科技有限公司 一种基于生物3d打印构建三维胶质瘤组织的方法
CN108130313A (zh) * 2017-12-28 2018-06-08 杭州枫霖科技有限公司 一种基于生物3d打印构建三维胶质瘤组织的方法
US11679546B2 (en) 2018-02-09 2023-06-20 The Regents Of The University Of Colorado, A Body Corporate Bioprinter and methods of manufacturing an organomimetic device
US11480560B2 (en) 2018-06-11 2022-10-25 The Regents Of The University Of Colorado, A Body Corporate Delivery of aerosolized respiratory pathogens
CN112206074B (zh) * 2019-06-24 2024-01-02 杭州捷诺飞生物科技股份有限公司 管状类血管结构体及其构建方法
CN112206074A (zh) * 2019-06-24 2021-01-12 杭州捷诺飞生物科技股份有限公司 管状类组织结构体及其构建方法
CN110408539B (zh) * 2019-07-30 2022-07-12 中国人民解放军陆军军医大学第一附属医院 大体积组织工程组织器官内部仿生血管网的构筑方法
CN110408539A (zh) * 2019-07-30 2019-11-05 中国人民解放军陆军军医大学第一附属医院 大体积组织工程组织器官内部仿生血管网的构筑方法
WO2021099581A1 (en) * 2019-11-22 2021-05-27 Sorbonne Universite Process for the preparation of fibrin-based materials and fibrin-based materials obtained by said process
WO2021099582A1 (en) * 2019-11-22 2021-05-27 Sorbonne Universite Process for the preparation of fibrinogen-based materials and fibrinogen-based materials obtained by said process
CN110938585B (zh) * 2019-12-10 2021-11-12 清华大学 基于细胞团簇3d打印的血管化组织构建方法及其应用
CN110938585A (zh) * 2019-12-10 2020-03-31 清华大学 基于细胞团簇3d打印的血管化组织构建方法及其应用
CN111733125B (zh) * 2020-02-03 2021-11-26 东华大学 基于3d打印技术的浇筑成型仿生毛细血管网的制法
CN111471641B (zh) * 2020-02-03 2021-11-05 东华大学 多片层单元水凝胶包被的仿生毛细血管网的3d打印制法
CN111733125A (zh) * 2020-02-03 2020-10-02 东华大学 基于3d打印技术的浇筑成型仿生毛细血管网的制法
CN111471641A (zh) * 2020-02-03 2020-07-31 东华大学 多片层单元水凝胶包被的仿生毛细血管网的3d打印制法

Similar Documents

Publication Publication Date Title
CN106635954A (zh) 一种基于3d生物打印构建三维血管组织的方法
Sharma et al. Bacterial nanocellulose: Present status, biomedical applications and future perspectives
Sidar et al. Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip)
Song et al. Three‐dimensional fabrication of engineered bone with human bio‐derived bone scaffolds in a rotating wall vessel bioreactor
CN110087459A (zh) 对在包含纳米原纤纤维素的水凝胶中的细胞进行冷冻干燥的方法以及在包含纳米原纤纤维素的气凝胶中的冷冻干燥的细胞
CN101384658B (zh) 用于制造长中空纤维体的方法
CN106916781A (zh) 一种体外三维人体肝组织的构建方法及其应用
CN104356402A (zh) 功能性自组装纳米多肽水凝胶
CN107849530A (zh) 血管化组织、皮肤或黏膜等效物
CN102952279A (zh) 用于肿瘤细胞三维培养的水凝胶及应用
US20110003359A1 (en) Biodevice
CN106512065A (zh) 一种用于细胞培养的三维支架及其制备方法
CN107164308A (zh) 一种黑素细胞均匀生长的培养方法
CN110004116A (zh) 一种制备三维生物构建体的方法、三维生物构建体及其用途
CN104548196A (zh) 一种基于乙烯基-巯基交联的组织工程支架材料及其制备方法
CN115491307B (zh) 一种细胞和基因治疗中用于细胞培养的pet膜及应用
Song et al. Three-dimensional expansion: in suspension culture of SD rat's osteoblasts in a rotating wall vessel bioreactor
CN111175112A (zh) 一种改良的微载体活细胞荧光染色方法
CN103048298B (zh) 一种甘氨酸修饰的量子点探针标记活细胞的方法
CN101927036A (zh) 一种温敏凝胶引导组织再生屏障膜及其制备方法
CN105754026A (zh) 实现细胞膜修饰的糖胺聚糖类似物及其合成方法及其体外诱导干细胞定向分化的应用方法
CN205473829U (zh) 细胞培养和细胞间相互作用的共培养装置
CN112522345B (zh) 一种发酵、工业化生产细菌纤维素的方法
CN100554408C (zh) 体外血管再生模型及其在生物材料血管化功能评价中的应用
CN101948745A (zh) 人工口腔模拟装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication