CN106602038B - 一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法 - Google Patents

一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法 Download PDF

Info

Publication number
CN106602038B
CN106602038B CN201710043381.5A CN201710043381A CN106602038B CN 106602038 B CN106602038 B CN 106602038B CN 201710043381 A CN201710043381 A CN 201710043381A CN 106602038 B CN106602038 B CN 106602038B
Authority
CN
China
Prior art keywords
source
lithium
phosphoric acid
carbon composite
composite anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710043381.5A
Other languages
English (en)
Other versions
CN106602038A (zh
Inventor
张露露
丁晓凯
蒋隆荣
杨学林
王吉青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI YU LONG NEW ENERGY CO Ltd
China Three Gorges University CTGU
Original Assignee
HUBEI YU LONG NEW ENERGY CO Ltd
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI YU LONG NEW ENERGY CO Ltd, China Three Gorges University CTGU filed Critical HUBEI YU LONG NEW ENERGY CO Ltd
Priority to CN201710043381.5A priority Critical patent/CN106602038B/zh
Publication of CN106602038A publication Critical patent/CN106602038A/zh
Application granted granted Critical
Publication of CN106602038B publication Critical patent/CN106602038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料,具体将锂源、钒源和磷源以无水乙醇为介质球磨后迅速转移到容器中,搅拌,加入螯合剂,得到黄色悬浊液;再放在油浴中,加热得到蓝色悬浊液,转移到反应釜中,超声在175~190℃下保温20~28得到浓缩前驱体;进一步研磨成粉末,并加入碳源,球磨得到混合粉末;在管式炉中,氮气或氩气气氛下烧结8~12小时,研磨、过筛,得到具有粒棒混合形貌的碳包覆磷酸钒锂/碳复合正极材料。本发明充分利用溶胶法使原材料达到分子水平的均匀混合,结合溶剂热法反应条件温和且易于控制的优势,通过碳热还原获得具有纳米棒和颗粒混合形貌的磷酸钒锂/碳复合正极材料。

Description

一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合 正极材料及其制备方法
技术领域
本发明涉及一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法,属于电化学电源领域。
背景技术
锂离子电池由于具有高的能量密度、良好的充放电性能和安全性高而被广泛应用于电动车和混合电动车等领域。同时,新型动力锂离子电池在未来电网调峰、太阳能和风能蓄电等领域也显示出了非常广阔的应用前景。
影响锂离子电池性能的主要因素之一是电极材料,其中正极材料对锂离子电池未来的发展有着至关重要的作用。目前商用锂离子电池正极材料主要有:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)等。LiCoO2是最早被商业化的锂离子电池正极材料,但Co毒性大,环境污染较严重,加之全球的Co储量有限,价格昂贵,所以其应用受到了一定的限制。LiMn2O4的工作电压虽然高(4 V),但其容量不高(理论容量为148 mAh g-1,实际容量仅120 mAh g-1),而且高温下的循环性能差,所以LiMn2O4在锂离子电池市场上只得到了小规模的应用。此外,LiCoO2、LiMn2O4等氧化物类正极材料还存在安全性问题,即在过充或高温条件下,LiCoO2、LiMn2O4等氧化物分解生成的氧气与电解液中的有机溶剂发生反应而造成安全隐患。自1997年Padhi等首次报道了LiFePO4可用于锂离子电池正极材料以来,LiFePO4因具有无毒、无污染、安全性能好、原料来源广泛、价格便宜、寿命长等优点,而逐渐被国际上公认为是高能动力电池的最具潜力的新型正极材料之一。然而,由于LiFePO4自身结构而引起的电导率低(10-10-10-9 S cm-1)和锂离子扩散缓慢(10-14-10-16 cm2 s-1)问题,导致该材料在大电流充放电时容易产生容量损失,因此必须对它进行改性才可能应用于实际中。虽然改性后的LiFePO4在大电流下的实际容量有望达到160 mAh g-1,高于已经商业化的LiCoO2(140 mAh g-1),但其堆积密度相对较低,不利于电池的小型化发展,而且难以避开各种专利纠纷,所以磷酸铁锂至今仍未达到LiCoO2的应用规模。然而,作为新一代的锂离子正极材料,磷酸钒锂不仅具有聚阴离子型正极材料的结构稳定和安全性高等优点外,还具有比LiFePO4更高的理论容量(197 mAh g-1)。但是,与其他聚阴离子型正极材料一样,磷酸钒锂低的电导率和锂离子扩散系数使其在大电流充放电时容量衰减迅速,高倍率性能较差,因此其实际应用受到了限制。此外,为使Li3V2(PO4)3的三个锂离子全部脱出以获得高容量,必须充电至4.8 V,在此高电压下,一方面电解液容易发生分解,另一方面钒离子容易溶解在电解液中,从而导致磷酸钒锂的循环稳定性变差。目前,主要的改性方法包括:(1)制备纳米磷酸钒锂以缩短锂离子的传输路径;(2)采用碳或其他导电性好的无机材料来提高磷酸钒锂的导电性;(3)通过金属离子掺杂以提高磷酸钒锂材料的本征电导率;(4)优化材料的合成工艺,获得特殊形貌的磷酸钒锂,增大材料与电解液的接触面,改善锂离子的脱嵌环境等。目前研究最成熟的包覆手段是碳包覆。碳的包覆不仅使材料的电子电导率得到提高,同时也能细化晶粒。但是,单纯的碳包覆很难在 Li3V2(PO4)3颗粒表面生成连续、均匀、完整的包覆层。而且碳包覆量不宜过大,不然会降低材料的振实密度,进而降低电池的能量密度。此外,众多研究者发现合成工艺对电极材料的性能影响极大。目前制备材料的方法主要有:固相法、溶胶凝胶法、溶剂热法、碳热还原法等。固相法因其工艺简单,在工业化生产中已广泛应用,但合成温度高、能耗大,且所得材料颗粒尺寸较大。溶胶凝胶法能够使原材料在液相均匀混合,通过水解、缩合反应,在溶液中形成稳定的溶胶,经陈化胶粒间缓慢聚合,形成三维网络结构的凝胶,凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料,但由于凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩,不利于实际生产。溶剂热法是在一定的温度下,利用溶液的自生压力在密闭体系中进行反应的一种合成方法,反应条件温和且易于控制,还可有效防止有毒物质的挥发,已成为制备材料的一种重要方法。本发明所采用的溶胶辅助溶剂热法,利用溶胶法使原材料达到分子水平的均匀混合,结合溶剂热法反应条件温和且于易控制的优势,通过碳热还原获得具有纳米棒和颗粒混合形貌的磷酸钒锂/碳复合正极材料。
发明内容
本发明的目的在于提供一种具有粒棒混合形貌的磷酸钒锂/碳复合正极材料(标记为Li3V2(PO4)3/C)。所涉及的Li3V2(PO4)3/C正极材料其合成原料为锂源(Li2CO3或LiOH)、钒源(NH4VO3或V2O5)、磷源(NH4H2PO4或H3PO4)、碳源(葡萄糖或蔗糖)和螯合剂(草酸或柠檬酸)。
所述的锂源、钒源、磷源的摩尔质量比为3.5~3.0:2.0:3.0;NH4VO3与草酸或柠檬酸的摩尔质量比为1:3(或V2O5与草酸或柠檬酸的摩尔质量比为1:1.5);碳源占锂盐、钒源、磷源总质量的7~19%。
所述的锂源、钒源、磷源、碳源和螯合剂的纯度均大于98%。
本发明所述的具有纳米棒和颗粒混合形貌的磷酸钒锂/碳复合正极材料具有以下优势:
(1)磷酸钒锂/碳复合材料中的纳米棒(宽度约40~70 nm)分布于颗粒表面,材料中这种纳米棒与颗粒的混合形貌,有利于电极片压实后在颗粒间留出一定的空间,以便为电极材料在循环过程中发生的体积效应预留出变化空间,缓和在反复充放电过程中颗粒间产生的应力,提高材料的结构稳定性,从而改善材料的循环性能。
(2)纳米棒结构一方面有利于缩短磷酸钒锂中锂离子的扩散路径,另一方面纳米棒还能增加材料的比表面积,有利于材料与电解液充分接触,从而提升材料的动力学性能。
(3)包覆在磷酸钒锂表面的无定形碳层可改善提高材料的导电性,从而提高材料的电化学性能。
本发明的另一目的在于提供一种粒棒混合形貌磷酸钒锂/碳复合正极材料的制备方法。充分利用溶胶法使原材料达到分子水平的均匀混合,结合溶剂热法反应条件温和且易于控制的优势,通过碳热还原获得具有纳米棒和颗粒混合形貌的磷酸钒锂/碳复合正极材料。
具体的制备方法为将锂源、钒源和磷源以无水乙醇为介质球磨6~12小时,得到乳白色或淡黄色浆料;将上述浆料迅速转移到烧杯中,充分搅拌30分钟后,缓慢加入螯合剂,得到黄色悬浊液;将该黄色悬浊液在70~90℃的油浴中保温5小时,得到蓝色悬浊液;将上述蓝色悬浊液继续搅拌直至冷却到室温,转移到反应釜中,超声20~60分钟,得到均匀悬浊液;将上述反应釜转移到恒温烘箱中,在175~190℃下保温20~28小时,并自然冷却到室温,得到浓缩的前驱体并转移到烧杯干燥,得到浓缩前驱体;将浓缩前驱体研磨成粉末,并加入适量的碳源,以无水乙醇为介质进行行星球磨6小时,烘干,得到混合粉末;混合粉末在管式炉中进行气氛烧结后,研磨、过筛,得到具有混合形貌的磷酸钒锂/碳复合正极材料。将该磷酸钒锂/碳复合正极材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为70~80:12~17:8~12在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成磷酸钒锂正极材料极片。
附图说明
图1 为实施例2中样品Li3V2(PO4)3/C的X射线衍射图谱。
图2 为实施例2中样品Li3V2(PO4)3/C的SEM照片。
图3(a)实施例2中Li3V2(PO4)3/C电极第1和2次充放电电压曲线,(b)Li3V2(PO4)3/C电极循环性能曲线。
具体实施方式
下面通过实施例的描述,进一步阐述本发明的实质性特点和优势。
实施例1
将1.1420克Li2CO3、2.3632克NH4VO3和3.5212克NH4H2PO4以无水乙醇(50ml)为介质球磨10小时,得到乳白色或淡黄色浆料;将上述浆料迅速转移到烧杯中,充分搅拌30分钟后,并缓慢加入3.8202克草酸,得到黄色悬浊液;将该黄色悬浊液在80℃的油浴中保温并持续搅拌5小时,使无水乙醇挥发,得到蓝色悬浊液;将上述蓝色悬浊液继续搅拌直至冷却到室温,转移到反应釜中,并超声40分钟,得到均匀悬浊液;将上述反应釜转移到恒温烘箱中,在180℃下保温24小时,并自然冷却到室温,得到浓缩的前驱体并转移到烧杯干燥,得到浓缩前驱体;将浓缩前驱体研磨成粉末,并加入占Li2CO3、NH4VO3、NH4H2PO4总质量的13 wt.%的葡萄糖,以无水乙醇(50ml)为介质进行行星球磨6小时,烘干,得到混合粉末;将混合粉末置于管式炉中在氮气气氛保护下700℃保温10小时(升温速率为3℃/分钟),烧结后,研磨、过筛,得到具有混合形貌的磷酸钒锂/碳复合正极材料。将具有混合形貌的磷酸钒锂正极材料/碳复合材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂为对电极,聚丙烯膜为隔膜,1M LiPF6/(EC+DMC) (1:1)为电解液组装成电池进行恒流充放电测试,电压范围在3.0~4.8 V之间。材料1 C首次放电电容量为156.4 mAh g-1,经过80次循环后放电容量为130.4 mAh g-1
实施例2
将1.1420克Li2CO3、2.3632克NH4VO3和3.5212克NH4H2PO4以无水乙醇(50ml)为介质球磨10小时,得到乳白色或淡黄色浆料;将上述浆料迅速转移到烧杯中,充分搅拌30分钟后,并缓慢加入3.8202克草酸,得到黄色悬浊液;将该黄色悬浊液在80℃的油浴中保温并持续搅拌5小时,使无水乙醇挥发,得到蓝色悬浊液;将上述蓝色悬浊液继续搅拌直至冷却到室温,转移到反应釜中,并超声40分钟,得到均匀悬浊液;将上述反应釜转移到恒温烘箱中,在180℃下保温24小时,并自然冷却到室温,得到浓缩的前驱体并转移到烧杯干燥,得到浓缩前驱体;将浓缩前驱体研磨成粉末,并加入占Li2CO3、NH4VO3、NH4H2PO4总质量的15 wt.%的葡萄糖,以无水乙醇(50ml)为介质进行行星球磨6小时,烘干,得到混合粉末;将混合粉末置于管式炉中在氮气气氛保护下700℃保温10小时(升温速率为3℃/分钟),烧结后,研磨、过筛,得到具有混合形貌的磷酸钒锂/碳复合正极材料。将具有混合形貌的磷酸钒锂正极材料/碳复合材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂为对电极,聚丙烯膜为隔膜,1M LiPF6/(EC+DMC) (1:1)为电解液组装成电池进行恒流充放电测试,电压范围在3.0~4.8 V之间。材料1 C首次放电电容量为165.9 mAh g-1,经过80次循环后放电容量为133.2 mAh g-1
实施例3
将1.1420克Li2CO3、2.3632克NH4VO3和3.5212克NH4H2PO4以无水乙醇(50ml)为介质球磨10小时,得到乳白色或淡黄色浆料;将上述浆料迅速转移到烧杯中,充分搅拌30分钟后,并缓慢加入3.8202克草酸,得到黄色悬浊液;将该黄色悬浊液在80℃的油浴中保温并持续搅拌5小时,使无水乙醇挥发,得到蓝色悬浊液;将上述蓝色悬浊液继续搅拌直至冷却到室温,转移到反应釜中,并超声40分钟,得到均匀悬浊液;将上述反应釜转移到恒温烘箱中,在180℃下保温24小时,并自然冷却到室温,得到浓缩的前驱体并转移到烧杯干燥,得到浓缩前驱体;将浓缩前驱体研磨成粉末,并加入占Li2CO3、NH4VO3、NH4H2PO4总质量的17 wt.%的葡萄糖,以无水乙醇(50ml)为介质进行行星球磨6小时,烘干,得到混合粉末;将混合粉末置于管式炉中在氮气气氛保护下700℃保温10小时(升温速率为3℃/分钟),烧结后,研磨、过筛,得到具有混合形貌的磷酸钒锂/碳复合正极材料。将具有混合形貌的磷酸钒锂正极材料/碳复合材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂为对电极,聚丙烯膜为隔膜,1M LiPF6/(EC+DMC) (1:1)为电解液组装成电池进行恒流充放电测试,电压范围在3.0~4.8 V之间。材料1 C首次放电电容量为161.9 mAh g-1,经过80次循环后放电容量为132.1 mAh g-1

Claims (5)

1.一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料的制备方法,其特征在于:
(1)将锂源、钒源和磷源以无水乙醇为介质球磨6~12小时,得到乳白色或淡黄色浆料,迅速转移到容器中,充分搅拌30分钟后,加入螯合剂,得到黄色悬浊液;
(2)将上述盛放黄色悬浊液的容器放在油浴中,加热到70~90℃保温5小时,得到蓝色悬浊液,搅拌并自然冷却到室温,转移到反应釜中,并超声20~60分钟后转移到恒温烘箱中175~190℃下保温20~28小时,并自然冷却到室温,得到浓缩前驱体;
(3)将上述浓缩前驱体转移到烧杯中自然干燥,得到干燥的浓缩前驱体;将干燥的浓缩前驱体研磨成粉末,并加入碳源,以无水乙醇为介质进行行星球磨4~6小时,烘干,得到混合粉末;
将上述混合粉末在管式炉中,在氮气或氩气气氛下以650~750℃下烧结8~12小时,研磨、过筛,得到具有粒棒混合形貌的碳包覆磷酸钒锂/碳复合正极材料;
上述中,所述的锂源为Li2CO3或LiOH,钒源为NH4VO3或V2O5,磷源为NH4H2PO4或H3PO4,碳源为葡萄糖或蔗糖,螯合剂为草酸或柠檬酸。
2.根据权利要求1所述的溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料的制备方法,其特征在于:锂源、钒源、磷源的摩尔质量比为3.5~3.0:2.0:3.0。
3.根据权利要求1所述的溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料的制备方法,其特征在于:钒源为NH4VO3时,NH4VO3与草酸或柠檬酸的摩尔质量比为1:3;钒源为V2O5时,V2O5与草酸或柠檬酸的摩尔质量比为1:1.5。
4.根据权利要求1所述的溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料的制备方法,其特征在于:碳源占锂源、钒源、磷源总质量的3~15%。
5.根据权利要求1所述的溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料的制备方法,其特征在于:锂源、钒源、磷源、碳源、螯合剂的纯度均大于98%。
CN201710043381.5A 2017-01-21 2017-01-21 一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法 Active CN106602038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710043381.5A CN106602038B (zh) 2017-01-21 2017-01-21 一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710043381.5A CN106602038B (zh) 2017-01-21 2017-01-21 一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106602038A CN106602038A (zh) 2017-04-26
CN106602038B true CN106602038B (zh) 2018-04-20

Family

ID=58586415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710043381.5A Active CN106602038B (zh) 2017-01-21 2017-01-21 一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106602038B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845790A (zh) * 2017-10-13 2018-03-27 郑州大学 一种LiFePO4/C复合材料的溶胶‑溶剂热制备方法及应用
CN109755514B (zh) * 2018-12-27 2021-10-26 大连博融新材料有限公司 一种碳包覆氟磷酸钒锂锂离子电池正极材料及其制备方法
CN109911879B (zh) * 2019-03-29 2022-08-05 北海艾米碳材料技术研发有限公司 超低电阻率储电多孔炭材料的制造方法
CN113072050A (zh) * 2021-03-26 2021-07-06 天津斯科兰德科技有限公司 一种磷酸钒锂正极材料的制备方法
CN114094082A (zh) * 2021-11-22 2022-02-25 湖南裕能新能源电池材料股份有限公司 磷酸钒锂-碳复合正极材料及其制备方法、锂离子电池和涉电设备
CN116119640A (zh) * 2022-12-08 2023-05-16 攀钢集团攀枝花钢铁研究院有限公司 一种提高锂电正极材料磷酸钒锂材料振实密度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106194A (zh) * 2007-07-12 2008-01-16 深圳市贝特瑞电子材料有限公司 锂离子电池正极材料磷酸钒锂及其制备方法
CN102664263A (zh) * 2012-05-24 2012-09-12 陕西科技大学 锂离子电池正极材料碳包覆柱状磷酸钒锂的制备方法
CN104282891A (zh) * 2014-09-05 2015-01-14 中南大学 一种一步溶胶凝胶法合成磷酸钒锂/碳复合材料的方法
CN105304875A (zh) * 2015-09-30 2016-02-03 苏州大学 一种锂离子电池复合正极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106194A (zh) * 2007-07-12 2008-01-16 深圳市贝特瑞电子材料有限公司 锂离子电池正极材料磷酸钒锂及其制备方法
CN102664263A (zh) * 2012-05-24 2012-09-12 陕西科技大学 锂离子电池正极材料碳包覆柱状磷酸钒锂的制备方法
CN104282891A (zh) * 2014-09-05 2015-01-14 中南大学 一种一步溶胶凝胶法合成磷酸钒锂/碳复合材料的方法
CN105304875A (zh) * 2015-09-30 2016-02-03 苏州大学 一种锂离子电池复合正极材料的制备方法

Also Published As

Publication number Publication date
CN106602038A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106602038B (zh) 一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法
Wang et al. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance
Yang et al. Morphology-controlled solvothermal synthesis of LiFePO 4 as a cathode material for lithium-ion batteries
CN105692576B (zh) 一种利用工业含铁废弃物制备电池级磷酸铁的方法
CN101826634B (zh) 一种锂离子电池及其制作方法
Gong et al. In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries
CN101800311B (zh) 超声共沉淀合成高放电倍率的磷酸铁锂的制备方法
CN102034971B (zh) 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
CN101420034A (zh) 碳包覆粒度可控球形磷酸铁锂复合正极材料及其制备方法
JP2011181452A (ja) リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池
CN102074686A (zh) 锂离子电池正极材料磷酸锰锂/碳的合成方法
CN108682855A (zh) 一种可控制备氟磷酸钒钠正极材料的方法
CN104577123A (zh) 一种锂离子电池正极材料的制备方法
CN103413918B (zh) 一种锂离子电池用正极材料磷酸钴锂的合成方法
CN102024989A (zh) 一种高电压锂离子电池的制备方法
Li et al. Influence of synthesis method on the performance of the LiFePO4/C cathode material
CN103022487A (zh) 一种锂电池纳米磷酸锰锂正极材料的制备方法
CN107069029A (zh) 一种锂电池用高电压正极材料及其制备方法
CN102267692B (zh) 一种自牺牲模板法制备纳米级磷酸亚铁锂的方法
CN102769134B (zh) 一种锂离子电池正极复合材料LiFePO4/C的制备方法
CN109980221A (zh) 一种高压锂离子电池正极材料及其制备方法和应用
CN104332612B (zh) 磷改性碳包覆锂离子电池正极复合材料及制备方法及用途
CN104167548B (zh) 一种锂离子电池正极材料及其制备方法
Liu et al. Electrochemical characterization for lithium vanadium phosphate with different calcination temperatures prepared by the sol–gel method
CN109449378A (zh) 一种锂离子电池复合正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20220324

Granted publication date: 20180420

PP01 Preservation of patent right
PD01 Discharge of preservation of patent
PD01 Discharge of preservation of patent

Date of cancellation: 20220924

Granted publication date: 20180420

PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20220924

Granted publication date: 20180420

PD01 Discharge of preservation of patent
PD01 Discharge of preservation of patent

Date of cancellation: 20230324

Granted publication date: 20180420