CN106602014B - 一种智能家居用锂离子电池的制备方法以及电池 - Google Patents

一种智能家居用锂离子电池的制备方法以及电池 Download PDF

Info

Publication number
CN106602014B
CN106602014B CN201611179446.0A CN201611179446A CN106602014B CN 106602014 B CN106602014 B CN 106602014B CN 201611179446 A CN201611179446 A CN 201611179446A CN 106602014 B CN106602014 B CN 106602014B
Authority
CN
China
Prior art keywords
active material
conducting polymer
negative electrode
battery
average grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611179446.0A
Other languages
English (en)
Other versions
CN106602014A (zh
Inventor
常宸
杨清欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changhong Sunpower New Energy Co ltd
Original Assignee
Changhong Sanjie New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changhong Sanjie New Energy Co Ltd filed Critical Changhong Sanjie New Energy Co Ltd
Priority to CN201611179446.0A priority Critical patent/CN106602014B/zh
Publication of CN106602014A publication Critical patent/CN106602014A/zh
Application granted granted Critical
Publication of CN106602014B publication Critical patent/CN106602014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种智能家居用锂离子电池制备方法,发明人发现,使用特定的活性物质组合成二次粒子,并且由导电聚合物原位聚合改性,不仅能够提高二次粒子的导电性,而且能够包覆二次粒子表面,抑制活性物质的溶出以及电解液在其表面副反应的发生,特别是,在真空负压的条件下进行原位聚合,能够使导电聚合物填充到二次粒子的空隙中,增加了材料内部的导电性以及材料结构的稳定性,在长期的充放电循环中能够阻止二次粒子结构的崩塌,提高了循环性能。进一步的,负极采用碳包覆硅材料,通过负压聚合,能够使导电聚合物填充到碳层和硅核心之间的空隙中,有效缓解了硅体积效应的同时,增强了负极材料的结构稳固性,并且进一步提高了负极材料核心的电导率。

Description

一种智能家居用锂离子电池的制备方法以及电池
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种智能家居用锂离子电池的制备方法及其电池。
背景技术
智能家居(英文:smart home,home automation)已经成为目前人们生活的必须品,在人类生活中越来越广泛的应用,而智能家居的电池的工作电流很低,并且需要能够经受长时间的存储而容量不受影响,以及更高的安全性和循环性等。而现有的电池由于电极活性物质与电解液接触产生副反应,或者电极活性物质脱落或自身元素溶出等原因,其长期使用的各种性能并不能满足智能家居的需求。
有鉴于此,如今迫切需要设计一种新的用于智能家居系统锂离子电池,以便克服现有电池存在的上述缺陷。
发明内容
为了解决上述现有技术中存在的问题,本发明提供了一种智能家居用锂离子电池制备方法,发明人发现,使用特定的活性物质组合成二次粒子,并且由导电聚合物原位聚合改性,不仅能够提高二次粒子的导电性,而且能够包覆二次粒子表面,抑制活性物质的溶出以及电解液在其表面副反应的发生,特别是,在真空负压的条件下进行原位聚合,能够使导电聚合物填充到二次粒子的空隙中,增加了材料内部的导电性以及材料结构的稳定性,在长期的充放电循环中能够阻止二次粒子结构的崩塌,提高了循环性能。进一步的,负极采用碳包覆硅材料,通过负压聚合,能够使导电聚合物填充到碳层和硅核心之间的空隙中,有效缓解了硅体积效应的同时,增强了负极材料的结构稳固性,并且进一步提高了负极材料核心的电导率。
具体的方案如下:
一种智能家居用锂离子电池的制备方法,其中包括如下步骤:
1),制备正极,其中正极活性物质包括磷酸铁锂和锰酸锂的复合粒子,将平均粒径为50-100nm的磷酸铁锂和平均粒径为200-500nm的锰酸锂混合,加入可碳化的粘结剂,和分散剂,球磨10-20h,喷雾干燥,制备平均粒径为1-5um的二次粒子,放入管式炉中,在惰性气氛下,350-500摄氏度下烧结5-20小时,将粘结剂碳化,得到复合粒子;将所述复合粒子分散在导电聚合物单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.1~-0.05MPa,使导电聚合物单体在复合粒子的表面和空隙中原位聚合,得到正极活性物质,再将正极活性物质涂布在多孔或网状集电体上,干燥得到正极;
2)制备负极,将平均粒径为50nm~5um的负极活性物质分散在导电聚合物单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.1~-0.05MPa,使导电聚合物单体在负极活性物质的表面和空隙中原位聚合,得到改性的负极活性物质,再将改性的负极活性物质涂布在多孔或网状集电体上,干燥得到负极;
3),将正极,负极间隔隔膜,卷绕得到电池芯;装入壳体,注液,化成,得到锂离子电池。
进一步的,其中还包括制备负极活性物质的步骤,a),将平均粒径为5nm~500nm的硅单质粒子分散在硅酸溶液中,喷雾干燥,并在600~1000摄氏度下烧结6-20h,得到二氧化硅包覆的硅粒子,将得到的产物分散在可碳化的有机溶剂中,喷雾干燥,并在惰性气氛的保护下,600~1200摄氏度下烧结8~20h,得到得到碳,二氧化硅逐层包覆的硅粒子,将得到的产物浸泡在HF溶液中,溶解其中的二氧化硅,得到负极活性物质。
进一步的,所述导电聚合物选自聚吡咯,聚噻吩,聚苯胺及其衍生物。
进一步的,所述聚合催化剂选自过硫酸铵,双氧水,高锰酸钾。
进一步的,其中所述集电体的材料选自金属,碳纤维,导电聚合物。
进一步的,其中所述磷酸铁锂的平均粒径为70nm,锰酸锂的粒径为300nm,所述二次粒子的粒径为2um。
进一步的,其中所述化成包括,将电池以0.1C充电至SOC为50%,并以正负脉冲电流继续充电至SOC为60%,其中正脉冲为0.02C,负脉冲为0.01C,然后以0.5C充电至截至电压,截至电压为4.35~4.45V。
一种锂离子电池,其通前述的方法制造。
一种智能家居,其包括前述的电池。
本发明具有如下有益效果:
(1)使用磷酸铁锂和锰酸锂组合成二次粒子,能够发挥两者的优势,具有良好的充放电和循环特性;
(2)二次粒子由导电聚合物原位聚合改性,不仅能够提高二次粒子的导电性,而且能够包覆二次粒子表面,抑制活性物质的溶出以及电解液在其表面副反应的发生,特别是,在真空负压的条件下进行原位聚合,能够使导电聚合物填充到二次粒子的空隙中,增加了材料内部的导电性以及材料结构的稳定性,在长期的充放电循环中能够阻止二次粒子结构的崩塌,提高了循环性能。
(3)负极采用碳包覆硅材料,通过负压聚合,能够使导电聚合物填充到碳层和硅核心之间的空隙中,有效缓解了硅体积效应的同时,增强了负极材料的结构稳固性,并且进一步提高了负极材料核心的电导率。
(4)通过特定的化成方式,能够充分激活材料内部的电化学活性,并且进一步提高材料的长期循环性能。
具体实施方式
本发明下面将通过具体的实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
实施例1
1),将平均粒径为50nm的磷酸铁锂和平均粒径为200nm的锰酸锂混合,质量比为1:1,加入10wt%可碳化的粘结剂,和分散剂,球磨10h,喷雾干燥,制备平均粒径为1um的二次粒子,放入管式炉中,在惰性气氛下,350摄氏度下烧结5小时,将粘结剂碳化,得到复合粒子;将所述复合粒子分散在0.5mol/L聚噻吩单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.1MPa,使聚噻吩单体在复合粒子的表面和空隙中原位聚合,得到正极活性物质,再将正极活性物质涂布在多孔或网状集电体上,干燥得到正极;
2)制备负极活性物质,a),将平均粒径为5nm的硅单质粒子分散在硅酸溶液中,喷雾干燥,并在600摄氏度下烧结6h,得到二氧化硅包覆的硅粒子,将得到的产物分散在可碳化的有机溶剂中,喷雾干燥,并在惰性气氛的保护下,600摄氏度下烧结8~20h,得到得到碳,二氧化硅逐层包覆的硅粒子,将得到的产物浸泡在HF溶液中,溶解其中的二氧化硅,得到负极活性物质,其实中硅碳质量比为1.5:1。将平均粒径为50nm的负极活性物质分散在0.5mol/L聚噻吩单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.1MPa,使聚噻吩单体在负极活性物质的表面和空隙中原位聚合,得到改性的负极活性物质,再将改性的负极活性物质涂布在多孔或网状集电体上,干燥得到负极;
3),将正极,负极间隔隔膜,卷绕得到电池芯;装入壳体,注液,将电池以0.1C充电至SOC为50%,并以正负脉冲电流继续充电至SOC为60%,其中正脉冲为0.02C,负脉冲为0.01C,然后以0.5C充电至截至电压,截至电压为4.35V,得到锂离子电池。
实施例2
1),将平均粒径为100nm的磷酸铁锂和平均粒径为500nm的锰酸锂混合,质量比为i:1,加入10wt%可碳化的粘结剂,和分散剂,球磨20h,喷雾干燥,制备平均粒径为5um的二次粒子,放入管式炉中,在惰性气氛下,500摄氏度下烧结20小时,将粘结剂碳化,得到复合粒子;将所述复合粒子分散在聚吡咯单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.05MPa,使聚吡咯单体在复合粒子的表面和空隙中原位聚合,得到正极活性物质,再将正极活性物质涂布在多孔或网状集电体上,干燥得到正极;
2)制备负极活性物质,a),将平均粒径为500nm的硅单质粒子分散在硅酸溶液中,喷雾干燥,并在1000摄氏度下烧结20h,得到二氧化硅包覆的硅粒子,将得到的产物分散在可碳化的有机溶剂中,喷雾干燥,并在惰性气氛的保护下,1200摄氏度下烧结20h,得到碳,二氧化硅逐层包覆的硅粒子,将得到的产物浸泡在HF溶液中,溶解其中的二氧化硅,得到负极活性物质。将平均粒径为5um的负极活性物质分散在聚吡咯单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.05MPa,使聚吡咯单体在负极活性物质的表面和空隙中原位聚合,得到改性的负极活性物质,再将改性的负极活性物质涂布在多孔或网状集电体上,干燥得到负极;
3),将正极,负极间隔隔膜,卷绕得到电池芯;装入壳体,注液,将电池以0.1C充电至SOC为50%,并以正负脉冲电流继续充电至SOC为60%,其中正脉冲为0.02C,负脉冲为0.01C,然后以0.5C充电至截至电压,截至电压为4.45V,得到锂离子电池。
实施例3
1),将平均粒径为70nm的磷酸铁锂和平均粒径为300nm的锰酸锂混合,质量比为1:1,加入10wt%可碳化的粘结剂,和分散剂,球磨20h,喷雾干燥,制备平均粒径为2um的二次粒子,放入管式炉中,在惰性气氛下,500摄氏度下烧结20小时,将粘结剂碳化,得到复合粒子;将所述复合粒子分散在0.5mol/L聚苯胺单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.05MPa,使聚苯胺单体在复合粒子的表面和空隙中原位聚合,得到正极活性物质,再将正极活性物质涂布在多孔或网状集电体上,干燥得到正极;
2)制备负极活性物质,a),将平均粒径为500nm的硅单质粒子分散在硅酸溶液中,喷雾干燥,并在1000摄氏度下烧结20h,得到二氧化硅包覆的硅粒子,将得到的产物分散在可碳化的有机溶剂中,喷雾干燥,并在惰性气氛的保护下,1200摄氏度下烧结20h,得到得到碳,二氧化硅逐层包覆的硅粒子,将得到的产物浸泡在HF溶液中,溶解其中的二氧化硅,得到负极活性物质,其中硅碳比为1.5:1。将平均粒径为2um的负极活性物质分散在聚苯胺单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.05MPa,使聚苯胺单体在负极活性物质的表面和空隙中原位聚合,得到改性的负极活性物质,再将改性的负极活性物质涂布在多孔或网状集电体上,干燥得到负极;
3),将正极,负极间隔隔膜,卷绕得到电池芯;装入壳体,注液,将电池以0.1C充电至SOC为50%,并以正负脉冲电流继续充电至SOC为60%,其中正脉冲为0.02C,负脉冲为0.01C,然后以0.5C充电至截至电压,截至电压为4.45V,得到锂离子电池。
对比例1
将50nm和200um的磷酸铁锂和锰酸锂按质量比1:1混合,涂布在铝箔上制备正极,将碳包覆硅颗粒涂布在铜箔上制备负极,组装成电池。
下表为实施例与对比例的测试数据,测试温度为45摄氏度,循环电流为0.5C,充电截止电压4.3V,放电截止电压2.7V,高温存储更能加快电池的老化速度,通过高温能够模拟更长时间的室温使用环境。可见,本发明的电池相比较对比例的电池,循环30次循环容量保持率和对比例持平,但是循环200次以后的循环容量保持率有显著提高,并且500次后也没有明显下降,而比较例的电池在循环315次后报废,推测可能是活性物质结构崩塌导致活性物质脱落导致。
表1
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但是应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (9)

1.一种智能家居用锂离子电池的制备方法,其中包括如下步骤:
1),制备正极,其中正极活性物质包括磷酸铁锂和锰酸锂的复合粒子,将平均粒径为50-100nm的磷酸铁锂和平均粒径为200-500nm的锰酸锂混合,加入可碳化的粘结剂,和分散剂,球磨10-20h,喷雾干燥,制备平均粒径为1-5um的二次粒子,放入管式炉中,在惰性气氛下,350-500摄氏度下烧结5-20小时,将粘结剂碳化,得到复合粒子;将所述复合粒子分散在导电聚合物单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.1~-0.05MPa,使导电聚合物单体在复合粒子的表面和空隙中原位聚合,得到正极活性物质,再将正极活性物质涂布在多孔或网状集电体上,干燥得到正极;
2),制备负极,将平均粒径为50nm~5um的负极活性物质分散在导电聚合物单体的溶液中,放入真空反应釜,加入聚合催化剂,抽真空,真空度为-0.1~-0.05MPa,使导电聚合物单体在负极活性物质的表面和空隙中原位聚合,得到改性的负极活性物质,再将改性的负极活性物质涂布在多孔或网状集电体上,干燥得到负极;
3),将正极、负极间隔隔膜,卷绕得到电池芯;装入壳体,注液,化成,得到锂离子电池。
2.如权利要求1所述的方法,其中还包括制备负极活性物质的步骤:a),将平均粒径为5nm~500nm的硅单质粒子分散在硅酸溶液中,喷雾干燥,并在600~1000摄氏度下烧结6-20h,得到二氧化硅包覆的硅粒子,将得到的产物分散在可碳化的有机溶剂中,喷雾干燥,并在惰性气氛的保护下,600~1200摄氏度下烧结8~20h,得到得到碳,二氧化硅逐层包覆的硅粒子,将得到的产物浸泡在HF溶液中,溶解其中的二氧化硅,得到负极活性物质。
3.如权利要求1所述的方法,所述导电聚合物选自聚吡咯,聚噻吩,聚苯胺及其衍生物。
4.如权利要求1所述的方法,所述聚合催化剂选自过硫酸铵,双氧水,高锰酸钾。
5.如权利要求1所述的方法,其中所述集电体的材料选自金属,碳纤维,导电聚合物。
6.如权利要求1所述的方法,其中所述磷酸铁锂的平均粒径为70nm,锰酸锂的粒径为300nm,所述二次粒子的粒径为2um。
7.如权利要求1所述的方法,其中所述化成包括,将电池以0.1C充电至SOC为50%,并以正负脉冲电流继续充电至SOC为60%,其中正脉冲为0.02C,负脉冲为0.01C,然后以0.5C充电至截至电压,截至电压为4.35~4.45V。
8.一种锂离子电池,其通过权利要求1-7任一项所述的方法制造。
9.一种智能家居,其包括权利要求8所述的电池。
CN201611179446.0A 2016-12-19 2016-12-19 一种智能家居用锂离子电池的制备方法以及电池 Active CN106602014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611179446.0A CN106602014B (zh) 2016-12-19 2016-12-19 一种智能家居用锂离子电池的制备方法以及电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611179446.0A CN106602014B (zh) 2016-12-19 2016-12-19 一种智能家居用锂离子电池的制备方法以及电池

Publications (2)

Publication Number Publication Date
CN106602014A CN106602014A (zh) 2017-04-26
CN106602014B true CN106602014B (zh) 2019-01-29

Family

ID=58601703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611179446.0A Active CN106602014B (zh) 2016-12-19 2016-12-19 一种智能家居用锂离子电池的制备方法以及电池

Country Status (1)

Country Link
CN (1) CN106602014B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119600A (zh) * 2017-06-26 2019-01-01 深圳市比亚迪锂电池有限公司 锂离子电池正极活性材料、其制备方法、正极、其制备方法及电池
CN110707288B (zh) * 2018-07-10 2021-07-02 北京理工大学 硅基负极活性材料及其制备方法和应用
JP7482436B2 (ja) * 2018-12-27 2024-05-14 パナソニックIpマネジメント株式会社 電極活物質の製造方法
CN110010861A (zh) * 2019-03-07 2019-07-12 南方科技大学 硅基复合材料及其制备方法、锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236530A (zh) * 2013-04-26 2013-08-07 奇瑞汽车股份有限公司 硅碳复合材料及其制备方法、含该材料的锂离子电池
CN103715417A (zh) * 2014-01-09 2014-04-09 合肥恒能新能源科技有限公司 一种锂电池正极复合活性物质及其涂布浆料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148015B2 (en) * 2008-03-21 2012-04-03 Byd Company Limited Cathode materials for lithium batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236530A (zh) * 2013-04-26 2013-08-07 奇瑞汽车股份有限公司 硅碳复合材料及其制备方法、含该材料的锂离子电池
CN103715417A (zh) * 2014-01-09 2014-04-09 合肥恒能新能源科技有限公司 一种锂电池正极复合活性物质及其涂布浆料的制备方法

Also Published As

Publication number Publication date
CN106602014A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106602014B (zh) 一种智能家居用锂离子电池的制备方法以及电池
CN102024996B (zh) 一种高性能可充镁电池及其制备方法
CN107611411B (zh) 一种三维分级多孔氮掺杂碳包硅复合材料的制备方法及应用
CN104966822A (zh) 一种锂离子电池多层包覆钛酸锂负极材料及其制备方法
CN101901898A (zh) 一种内部含有三维导电结构的锂电池磷酸铁锂正极材料及其制备方法
CN105789576A (zh) 一种硅基负极材料的制备方法、负极材料和电池
CN103779568B (zh) 一种用于锂离子电池的柱醌正极材料及其应用
CN103904291A (zh) 水系锂离子电池电极及其制备方法、水系锂离子电池
CN103208618A (zh) 锂离子电池碳硫复合正极材料及其制备方法
CN105470480B (zh) 一种锡合金/硅/碳电极材料的制备方法
CN103117374A (zh) 锂离子二次电池的正极极片及其制备方法
CN106784669A (zh) 一种导电高分子聚苯胺改性磷酸钒钠正极材料及其制备方法
CN105280889B (zh) 一种锂离子电池硅复合负极材料及其制备方法
CN104835652A (zh) 锂超级电容电池用嵌锂负极片及制备方法、锂超级电容电池
CN105161770A (zh) 一种铅酸蓄电池铅膏添加剂及其制备方法、应用
CN108199014A (zh) 一种多孔氮掺杂碳/Fe2O3/石墨烯泡沫柔性复合材料、制备方法及其应用
CN107681130A (zh) 一种固体电解质的锂硫电池正极材料的制备方法
TW201638981A (zh) 鋰離子電容器中之聚偏二氟乙烯陽極黏結劑
CN107195885A (zh) 一种碳纳米管聚合物锂离子电池及其制备方法
CN104852017B (zh) 硫掺杂碳纳米线及其三维网络‑硅复合材料及其制备方法
CN109088059A (zh) 一种锂离子电池及其制备方法
CN103022417A (zh) 一种锂离子电芯正极材料
CN103094536A (zh) 高容量锂离子二次电池负极炭材料
CN103078088B (zh) 一种锂离子电池负极材料
CN107572545B (zh) 用于锂硫电池化学诱捕多硫化物的硼化钛制备锂硫电池正极材料的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181204

Address after: 225400 Xingyuan Road, Huangqiao Industrial Park, Taixing, Taizhou, Jiangsu, China

Applicant after: CHANGHONG SUNPOWER NEW ENERGY Co.,Ltd.

Address before: 225400 six village, Hongqiao Town, Taixing City, Taizhou, Jiangsu

Applicant before: Chang Chen

TA01 Transfer of patent application right
CB03 Change of inventor or designer information

Inventor after: Chang Chen

Inventor after: Yang Qingxin

Inventor before: Chang Chen

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method and battery for lithium-ion batteries used in smart homes

Effective date of registration: 20230506

Granted publication date: 20190129

Pledgee: Bank of Nanjing Co.,Ltd. Taizhou Branch

Pledgor: CHANGHONG SUNPOWER NEW ENERGY Co.,Ltd.

Registration number: Y2023320000237

PE01 Entry into force of the registration of the contract for pledge of patent right