CN106591878B - 一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用 - Google Patents

一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用 Download PDF

Info

Publication number
CN106591878B
CN106591878B CN201611064807.7A CN201611064807A CN106591878B CN 106591878 B CN106591878 B CN 106591878B CN 201611064807 A CN201611064807 A CN 201611064807A CN 106591878 B CN106591878 B CN 106591878B
Authority
CN
China
Prior art keywords
zno
solution
zif
fto
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611064807.7A
Other languages
English (en)
Other versions
CN106591878A (zh
Inventor
豆义波
周健
周阿武
谢亚勃
李建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201611064807.7A priority Critical patent/CN106591878B/zh
Publication of CN106591878A publication Critical patent/CN106591878A/zh
Application granted granted Critical
Publication of CN106591878B publication Critical patent/CN106591878B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Abstract

一种多级结构ZnO@Au@ZIF‑8复合光电极的构筑及应用,属于储能电极的技术领域。第一步通过简单的晶种涂敷和水热反应在导电玻璃(FTO)基底上均匀生长ZnO纳米棒阵列,第二步在ZnO表面原位修饰贵金属(Au)和生长Zn‑MOF(金属有机骨架),最终制得ZnO@Au@ZIF‑8复合材料。该复合光电极具有较宽的光响应信号、较高稳定性和优异的光电催化分解水性能,可应用在光电分解水新能源存储与转换领域。

Description

一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用
技术领域
本发明属于储能电极材料的技术领域,技术涉及金属氧化物、贵金属(Au)与金属有机骨架材料(MOFs)构筑的多级结构材料,特别是基于ZnO纳米棒阵列修饰贵金属(Au)并进一步原位生长MOF的构筑。
背景技术
能源消耗和环境恶化己成为阻碍经济和社会发展的障碍之一。太阳能作为一种可以替代不可再生资源(如煤、石油、天然气等)的重要清洁能源引起了人们越来越多的关注,其中以半导体金属氧化物(TiO2、SnO2和ZnO)作为光电极材料用于光电催化体系能够有效的实现太阳能到电能或化学能的转化。这主要是由于它们具有价格优廉,稳定性好和环保无毒等优点。但是该类材料其较宽的能带结构仅仅对可见光具有响应,且对可见光吸收较低,进而极大限制了其光催化效率。因此,如何探索和开发新型光催化剂成为人们研究的热点。
金属有机骨架材料(MOFs)是由金属离子或离子簇和有机配体通过配位作用构筑的多孔骨架材料。由于MOFs自身的比表面积及孔隙率高、孔径及孔表面性质的可调性,其在吸附分离、催化、能源存储等领域都具有潜在的应用价值。近年来,多孔MOFs及衍生物逐渐被应用到电化学储能与转换领域,例如锂离子电池、燃料电池及光电分解水装置等。此外,前人报道部分MOFs作为光电极材料可有效用于光电催化分解水体系。但是MOFs自身易于团聚,导致活性位点流失和催化活性下降。此外,MOFs相对较低的导电性同样抑制了其在光电催化体系中的应用。
发明内容
本发明的目的在于提供了一种在FTO导电玻璃基底生长多级结构ZnO@Au@ZIF-8光电极及制备方法。
一种多级结构ZnO@Au@ZIF-8复合光电极,其特征在于,通过水热反应在FTO基底上均匀生长ZnO纳米棒阵列,进而在ZnO表面原位修饰Au并生长Zn-MOF,最终构筑得到ZnO@Au@ZIF-8复合光电极。
本发明的内容主要分为三步:第一步是在FTO基底上通过简单的水热反应生长ZnO纳米棒;第二步是将通过甲醇还原制得Au纳米颗粒溶液;第三步是将ZnO纳米棒负载Au纳米颗粒且同时生长MOF构筑了多级结构的ZnO@Au@ZIF-8复合电极。
本发明上述复合材料的合成方法,包括以下步骤:
第一步分别用丙酮、乙醇和水超声对FTO预处理,通过简单水热法制备ZnO,具体方法:其将醋酸锌溶于无水乙醇制备5-10mM的醋酸锌乙醇溶液,将上述醋酸锌乙醇溶液旋涂到预处理的FTO上得到一层晶种薄膜,然后在300-400℃下退火30分钟;将生长ZnO晶种的FTO斜搭在含有相同摩尔浓度的30-60mM硝酸锌和30-60mM环六亚甲基四胺溶液的聚四氟乙稀反应釜中,反应温度80-95℃,反应时间5-24小时,冷却至室温,制得的ZnO电极用去离子水冲洗后在空气中干燥。
第二步配置B溶液,具体步骤是将四水合氯金酸溶解到甲醇和水的混合溶剂中,将混合溶液加热至50-80℃搅拌1-3小时至棕红色合成B溶液,每0.01-0.1g四水合氯金酸对应15ml甲醇和100ml水;
第三步将ZnO电极浸入母液C中进行水热反应,母液C是2-甲基咪唑溶水溶液和第二步B溶液的混合溶液;水热反应温度保持60-80℃,优选70℃,时间0.5-3小时,优选1小时。
母液C优选每1.5-3.0g 2-甲基咪唑对应10ml水,并对应10ml B溶液。
本发明制备了有规则的形貌和有序的阵列ZnO@Au@ZIF-8光电极。ZnO为多面体柱;该多级结构光电极具有较宽的光响应信号和较高的电子传输性能,同时具有优异的光电催化分解水产氢性能,可应用在能源存储与转换领域中。本发明制备方法工艺简单、易于实施、产率高,利于批量制备高性能的电极材料。
附图说明
图1为该ZnO的扫描电镜示意图。
图2为该ZnO@Au@ZIF-8复合材料的扫描电镜示意图。
图3为该ZnO@Au@ZIF-8复合材料的透射电镜示意图。
图4为该复合材料光催化分解水的性能示意图。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1
第一步:分别用丙酮、乙醇和水超声10分钟对FTO玻璃预处理,通过简单水热法制备ZnO电极。具体方法:其将醋酸锌溶于无水乙醇制备5mM的醋酸锌乙醇溶液。将上述溶液旋涂到预处理的FTO上得到一层晶种薄膜,然后在350℃下退火30分钟。将生长ZnO晶种的FTO斜搭在装有相同摩尔体积的50mM硝酸锌和50mM环六亚甲基四胺的聚四氟乙稀反应釜中,反应温度80℃,反应时间5小时。冷却至室温,制得的ZnO电极用去离子水冲洗后在空气中干燥。
第二步:0.01g四水合氯金酸溶解到15ml甲醇和100ml水中,将混合溶液加热至60℃搅拌至棕红色得到B溶液。
第三步将ZnO电极浸入母液C进行水热反应。母液C是2.5g 2-甲基咪唑溶于10ml水溶液,并加入制备好的10ml Au溶液混合。水热反应温度保持70℃,时间1小时。
实施例2
分别用丙酮、乙醇和水超声10分钟对FTO预处理,通过简单水热法得到ZnO电极。具体方法:其将醋酸锌溶于无水乙醇制备10mM的醋酸锌乙醇溶液。将上述溶液旋涂到预处理的FTO上得到一层晶种薄膜,然后在350℃下退火30分钟。将生长ZnO晶种的FTO斜搭在装有相同摩尔体积的60mM硝酸锌和60mM环六亚甲基四胺的聚四氟乙稀反应釜中,反应温度95℃,反应时间12小时。冷却至室温,制得的ZnO电极用去离子水冲洗后在空气中干燥。
第二步:0.1g四水合氯金酸溶解到15ml甲醇和100ml水中,将混合溶液加热至70℃搅拌至棕红色得到B溶液。
第三步将ZnO电极浸入母液C进行水热反应。母液C是3.0g 2-甲基咪唑溶于10ml水溶液,并加入制备好的10ml Au溶液混合。水热反应温度保持80℃,时间2小时。
上述实施例所得的材料的测试结果相同,具体见下述:
(1)材料形貌表征:
分别取该ZnO电极、ZnO@Au@ZIF-8复合电极材料的一小块,选用蔡司SIGMA 500/VP型号场发射扫描电子显微镜对其进行表征。结构形貌图见图1、图2。选用日本电子株式会所JEM-2100型号透射电子显微镜对其进行表征,结构形貌图见图3。
(2)材料充放电性能表征:
图4为ZnO@Au@ZIF-8复合电极在0.5M硫酸钠溶液中黑暗和光照条件(光照辐射强度为150mW cm-2)的伏安线性极化曲线。

Claims (5)

1.制备一种多级结构ZnO@Au@ZIF-8复合材料的方法,多级结构ZnO@Au@ZIF-8复合材料为核壳结构,最中心的为ZnO纳米棒,ZnO纳米棒为ZnO多边形纳米柱,ZnO纳米棒的外层负载有零散的分布的Au纳米颗粒,同时在ZnO@Au纳米棒的外层生长有ZIF-8材料层进而构筑的ZnO@Au@ZIF-8多级结构;其特征在于,第一步是在FTO导电玻璃基底上通过水热反应生长ZnO纳米棒;第二步是通过甲醇还原制得Au纳米颗粒溶液;第三步是将Au纳米颗粒负载在ZnO纳米棒上且同时生长MOF构筑了多级结构的ZnO@Au@ZIF-8复合电极。
2.按照权利要求1的方法,其特征在于,具体包括以下步骤:
第一步依次用丙酮、乙醇和水超声对FTO预处理,其将醋酸锌溶于无水乙醇制备5-10mM的醋酸锌乙醇溶液;将醋酸锌乙醇溶液旋涂到预处理的FTO上得到一层晶种薄膜,然后在300-400℃下退火30分钟得到生长ZnO晶种的FTO;将生长ZnO晶种的FTO斜搭在装有溶液A的聚四氟乙稀反应釜中反应,其中溶液A是相同摩尔浓度的硝酸锌和环六亚甲基四胺的水溶液,其中硝酸锌浓度30-60mM,反应温度80-95℃,反应时间5-24小时,然后冷却至室温,制得的ZnO纳米棒用去离子水冲洗后在空气中干燥;
第二步将四水合氯金酸溶解到甲醇中,0.01-0.1g四水合氯金酸溶解于80ml甲醇,将溶液加热至50-80℃搅拌1-3小时至棕红色合成含有金纳米颗粒的B溶液;
第三步将ZnO纳米棒浸入母液C进行水热反应,母液C是2-甲基咪唑水溶液与B溶液的混合液,其中2-甲基咪唑水溶液与B溶液的体积比优选1:1,2-甲基咪唑水溶液为1.5-3.0g 2-甲基咪唑对应10ml水;水热反应温度保持60-80℃,时间0.5-3小时。
3.按照权利要求2的方法,其特征在于,ZnO纳米棒的制备具体方法:其将醋酸锌溶于无水乙醇制备5-10mM的醋酸锌乙醇溶液;将醋酸锌乙醇溶液旋涂到预处理的FTO上得到一层晶种薄膜,然后在300-400℃下退火30分钟得到生长ZnO晶种的FTO;其中溶液A是相同摩尔浓度的硝酸锌和环六亚甲基四胺的水溶液,其中硝酸锌浓度30-60mM,反应温度80-95℃,反应时间5-24小时。
4.按照权利要求2的方法,其特征在于,第二步溶液B的合成,0.01-0.1g四水合氯金酸溶解于80ml甲醇,将溶液加热至50-80℃搅拌1-3小时至棕红色合成含有金纳米颗粒的B溶液。
5.按照权利要求2的方法,其特征在于,第三步水热反应温度70℃,时间1小时。
CN201611064807.7A 2016-11-28 2016-11-28 一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用 Expired - Fee Related CN106591878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611064807.7A CN106591878B (zh) 2016-11-28 2016-11-28 一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611064807.7A CN106591878B (zh) 2016-11-28 2016-11-28 一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用

Publications (2)

Publication Number Publication Date
CN106591878A CN106591878A (zh) 2017-04-26
CN106591878B true CN106591878B (zh) 2018-07-31

Family

ID=58595101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611064807.7A Expired - Fee Related CN106591878B (zh) 2016-11-28 2016-11-28 一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用

Country Status (1)

Country Link
CN (1) CN106591878B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098333A (zh) * 2017-06-05 2017-08-29 北京化工大学 一种交联网状碳纳米材料的制备方法
CN108636455B (zh) * 2018-04-20 2021-04-30 北京工业大学 一种以核壳结构mof为反应容器的负载型贵金属基催化剂的制备及应用
CN109908959B (zh) * 2019-04-03 2021-11-12 中山大学 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
CN110643049B (zh) * 2019-09-25 2021-08-31 福州大学 一种萘二酰亚胺基金属有机框架薄膜的制备方法及其在水合肼检测上的应用
CN113861499B (zh) * 2020-06-30 2023-04-07 中国科学院大连化学物理研究所 一种金属有机框架化合物复合膜的制备方法及其应用
CN111871463B (zh) * 2020-07-14 2022-02-01 南昌航空大学 一种基于ZIF-67和UiO-66双MOF的电催化全分解水材料的制备方法
CN113003604B (zh) * 2021-03-19 2022-06-17 浙江理工大学 一种微米级二氧化钛镂空叶片的制备方法
CN114019001B (zh) * 2021-11-03 2023-10-27 石河子大学 一种MOF/ZnO复合材料及其工作电极的制备方法、应用
CN114720448A (zh) * 2022-02-25 2022-07-08 有研工程技术研究院有限公司 半导体氧化物纳米颗粒修饰贵金属纳米锥阵列结构的表面增强拉曼衬底的制备方法
CN114733574B (zh) * 2022-04-20 2023-02-03 大连理工大学 一种Au纳米棒修饰PCN-222(Cu)催化剂的制备方法
CN114768699B (zh) * 2022-05-13 2023-04-25 昆明学院 一种Si NWs@ZIF-8核壳结构的生长方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400878A (zh) * 2013-07-30 2013-11-20 天津大学 一种氧化锌纳米铅笔阵列电极及其制备方法和应用
CN103981535A (zh) * 2014-04-29 2014-08-13 天津大学 光解水制氢的催化电极及其制备方法
CN104084238A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种ZIF-8膜包覆Pd/ZnO核壳催化剂及其制备方法
CN104174388A (zh) * 2014-08-08 2014-12-03 复旦大学 一种金属有机框架复合材料及其制备方法
CN104549082A (zh) * 2014-12-19 2015-04-29 安徽建筑大学 ZnO@ZIF-8核壳结构微球及其制备方法
CN105498802A (zh) * 2015-12-04 2016-04-20 福州大学 一种氧化锌-金-硫化镉三元复合型光催化剂
CN105839137A (zh) * 2015-01-15 2016-08-10 济南雷诺新能源科技有限公司 一种复合光阳极及其制备方法
CN106057482A (zh) * 2016-06-14 2016-10-26 北京工业大学 一种多级结构LDH@CoS复合电极及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269029B2 (en) * 2008-04-08 2012-09-18 The Board Of Trustees Of The University Of Illinois Water repellent metal-organic frameworks, process for making and uses regarding same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400878A (zh) * 2013-07-30 2013-11-20 天津大学 一种氧化锌纳米铅笔阵列电极及其制备方法和应用
CN103981535A (zh) * 2014-04-29 2014-08-13 天津大学 光解水制氢的催化电极及其制备方法
CN104084238A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种ZIF-8膜包覆Pd/ZnO核壳催化剂及其制备方法
CN104174388A (zh) * 2014-08-08 2014-12-03 复旦大学 一种金属有机框架复合材料及其制备方法
CN104549082A (zh) * 2014-12-19 2015-04-29 安徽建筑大学 ZnO@ZIF-8核壳结构微球及其制备方法
CN105839137A (zh) * 2015-01-15 2016-08-10 济南雷诺新能源科技有限公司 一种复合光阳极及其制备方法
CN105498802A (zh) * 2015-12-04 2016-04-20 福州大学 一种氧化锌-金-硫化镉三元复合型光催化剂
CN106057482A (zh) * 2016-06-14 2016-10-26 北京工业大学 一种多级结构LDH@CoS复合电极及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ZnO@ZIFs纳米材料的合成及其光电性质的研究";何悦;《中国优秀硕士学位论文全文数据库(工程科技I辑)》;20140815;B014-169 *

Also Published As

Publication number Publication date
CN106591878A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106591878B (zh) 一种多级结构ZnO@Au@ZIF-8复合光电极的构筑及应用
Zeng et al. Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: Enhanced charge collection and separation for efficient photocatalysis
He et al. A multifunctional platform by controlling of carbon nitride in the core-shell structure: from design to construction, and catalysis applications
Zhang et al. Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion
Wang et al. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting
Subalakshmi et al. Platinum-free metal sulfide counter electrodes for DSSC applications: Structural, electrochemical and power conversion efficiency analyses
Yang et al. Visible light harvesting and spatial charge separation over the creative Ni/CdS/Co3O4 photocatalyst
Jiang et al. Nickel cobalt sulfide double-shelled hollow nanospheres as superior bifunctional electrocatalysts for photovoltaics and alkaline hydrogen evolution
Qiu et al. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
Liu et al. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn x Bi2S3+ x Sensitized Platelike WO3 Photoelectrodes
Jung et al. Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation
CN106544693A (zh) 一种多级结构ZnO@CoS薄膜电极的制备及其在光电分解水中的应用
Chen et al. M13 virus-enabled synthesis of titanium dioxide nanowires for tunable mesoporous semiconducting networks
Wang et al. Uniform doping of titanium in hematite nanorods for efficient photoelectrochemical water splitting
Zhang et al. Zeolitic imidazolate framework-67-derived P-doped hollow porous Co3O4 as a photocatalyst for hydrogen production from water
Long et al. Layered double hydroxide onto perovskite oxide-decorated ZnO nanorods for modulation of carrier transfer behavior in photoelectrochemical water oxidation
Dang et al. Visible-light-active NiV2O6 films for photoelectrochemical water oxidation
Galán-González et al. Cobalt-doped ZnO nanorods coated with nanoscale metal–organic framework shells for water-splitting photoanodes
Xu et al. Complex-mediated synthesis of tantalum oxyfluoride hierarchical nanostructures for highly efficient photocatalytic hydrogen evolution
Lin et al. Cadmium sulfide 3D photonic crystal with hierarchically ordered macropores for highly efficient photocatalytic hydrogen generation
Sun et al. Increased active sites on irregular morphological α-Fe2O3 nanorods for enhanced photoelectrochemical performance
Wu et al. Effect of ordered TiO2 nanotube array substrate on photocatalytic performance of CdS-sensitized ZnO nanorod arrays
CN103871750B (zh) 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN109092319A (zh) 一种WO3/BiVO4/FeOOH三元体系复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180731

Termination date: 20211128