CN106575017B - 平面波束形成和操纵的光学相控阵列芯片以及使用其的方法 - Google Patents
平面波束形成和操纵的光学相控阵列芯片以及使用其的方法 Download PDFInfo
- Publication number
- CN106575017B CN106575017B CN201580043763.7A CN201580043763A CN106575017B CN 106575017 B CN106575017 B CN 106575017B CN 201580043763 A CN201580043763 A CN 201580043763A CN 106575017 B CN106575017 B CN 106575017B
- Authority
- CN
- China
- Prior art keywords
- optical
- steering
- actuation
- phased array
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/292—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4813—Housing arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Optical Integrated Circuits (AREA)
- Plasma & Fusion (AREA)
Abstract
一维平面波束形成和操纵光学相控阵列芯片是二维波束形成和操纵固态激光雷达的简单构建模块,使得能够通过使用多个所述芯片以高产量和低成本制造所述激光雷达。遵循制造设计规则的新兴光子集成电路芯片架构使得所述构建模块成为可能。
Description
相关申请的交叉引用
本申请要求于2014年6月30日提交的美国专利申请No.14/318716的优先权,其内容通过引用并入本文。
技术领域
本发明总体上涉及环境感测领域,并且更具体地涉及飞行时间(ToF)激光雷达传感器的使用,用于实时三维绘图和物体检测、跟踪、识别和/或分类。
背景技术
激光雷达传感器是光检测和测距传感器。它是光学远程感测模块,通过使用来自激光器的脉冲(或替代地调制信号)用光照射目标或场景并测量光子行进到所述目标或场景并且在反射之后返回到激光雷达模块中的接收器的时间,其可以测量到场景中的目标或物体的距离。反射脉冲(或调制信号)被检测,其中飞行时间和脉冲(或调制信号)的强度分别是感测物体的距离和反射率的测量。
传统的激光雷达传感器利用机械移动部件来扫描激光束。在一些系统中,包括在汽车应用中使用的某些系统,例如高级驾驶员辅助系统(ADAS)和自动驾驶系统,由于各种潜在的优点,包括但不限于更高的传感器可靠性、更长的传感器寿命、更小的传感器尺寸、更低的传感器重量和更低的传感器成本,优选地使用固态传感器。
几十年前,用于创建雷达相控阵列的射频(RF)延迟线被用于雷达信号的固态操纵。二十年前,使用基于光子集成电路(PIC)的延迟线与检测器和RF天线阵列组合来提高雷达信号的固态操纵中的延迟的精度。具有微米级和纳米级器件的PIC可以用于产生用于激光束的固态操纵的光学相控阵列(OPA),包括可调谐光学延迟线和光学天线。
到目前为止生产的光学领域中的相控阵列是复杂的、昂贵的和/或具有与波束形成和波束操纵不同的目的;一些组合了空间滤波器、光放大器和环形激光器(US 7,339,727),一些涉及多个光输入光束(US 7,406,220),一些涉及体积衍射光栅和多个输入方向(US 7,428,100),一些组合了多个波长的波束(US 7,436,588),一些具有光学相位参考源和增益元件(US 7,489,870),一些具有视场中的预定区域和多个波束形成元件(US 7,532,311),并且一些具有多个频率和多个光学相位参考源(US 7,555,217)。
到目前为止生产的光学领域中的二维波束形成和操纵相控阵列具有低产量并且是昂贵的,因为它们在二维中以复杂的二维像素阵列操纵。
发明内容
一维(1D)平面波束形成和操纵光学相控阵列芯片是二维(2D)波束形成和操纵固态激光雷达的简单构建模块,使得能够通过使用多个所述芯片以高产量和低成本制造所述激光雷达。遵循制造设计(DFM)规则的新型光子集成电路(PIC)芯片架构使得所述构建模块成为可能。
附图说明
下面的附图是本发明的实施例的说明,并且不旨在限制由形成本申请的一部分的权利要求所包括的本发明。
图1的示意图描绘了1D平面波束形成和操纵光学相控阵列芯片的分路部分,所述分路部分包括1xL个Y分支树20,其后是1xM个多模干涉耦合器30,产生了1xN个分路器(其中LxM=N,例如8x128=1024)。
图2的示意图描绘了1D平面波束成形和操纵光学相控阵列芯片,所述芯片包括激光器10、包括Y分支树20和多模干涉耦合器30的分路部分、光学移相器40和以一维像素阵列配置布置的面外光耦合器120。渐变折射率(GRIN)透镜140用于减小垂直于操纵方向的尺寸中的光斑尺寸。可替代地,可以使用标准几何折射透镜、衍射光学元件(DOE)、全息光学元件(HOE)或片上光栅来实现所述光斑尺寸减小。
图3的示意图描绘了1D平面波束成形和操纵光学相控阵列芯片,所述芯片包括激光器10、包括Y分支树20和多模干涉耦合器30的分路部分、以推拉配置的两个分组线性欧姆加热电极40的形式的光学移相器和面外光学耦合器120。
图4的示意图描绘了1D平面波束成形和操纵光学相控阵列芯片,所述芯片包括激光器10、包括Y分支树20和多模干涉耦合器30的分路部分、以推拉配置的两组线性欧姆加热电极50的形式的光学移相器和面外光学耦合器120。
图5的示意图描绘了1D平面波束成形和操纵光学相控阵列芯片,所述芯片包括激光器10、包括Y分支树20和多模干涉耦合器30的分路部分、两个分组的线性欧姆加热电极40形式的光学移相器和两个分组的非线性欧姆加热电极60形式的光学移相器(线性和非线性加热电极都具有推拉配置),以及面外光学耦合器120。
图6的示意图描绘了1D平面波束成形和操纵光学相控阵列芯片,所述芯片包括激光器10、包括Y分支树20和多模干涉耦合器30的分路部分、两对分组的线性欧姆加热电极形式的光移相器(一对40用于粗略相位调节,一对70用于精细相位调节,所述电极对都具有推拉配置)、一个相偏移电极80,以及面外光学耦合器120。
图7的示意图描绘了1D平面波束成形和操纵光学相控阵列芯片,所述芯片包括激光器10、包括Y分支树20和多模干涉耦合器30的分路部分、两对分组的线性欧姆加热电极形式的光移相器(每个欧姆加热器包括串联的线性加热器,一对90用于粗相位调节,一对100用于精细相位调节,所述电极对都具有推拉配置)、一组相偏移电极110,以及面外光学耦合器120。
图8的示意图类似于图7的示意图,具有用于延伸操纵范围的附加凹透镜130。
图9的示意图包括多个图7中所示的光子集成电路(PIC),其中激光器在两个PIC之间共享。可替代地,每个PIC可以提供有单独的激光器。
具体实施方式
基于激光雷达的设备和方法用于使用光子集成电路(PIC)的激光束的固态操纵。集成光学设计和制造微米和纳米技术用于生产芯片级光分路器,其将来自激光器的光信号基本均匀地分配到像素阵列,所述像素包括可调光学延迟线和光学天线。所述天线实现光的面外耦合。
当所述阵列中的所述包含天线的像素的延迟线被调谐时,每个天线发射特定相位的光,以通过这些发射的干涉形成期望的远场辐射图案。所述阵列用作固态光学相控阵列(OPA)的功能。
通过结合大量天线,可以通过OPA实现高分辨率远场图案,支持固体晶状体中需要的辐射图形波束形成和操控,以及在三维全息术、光学存储器、用于光学空间分割复用的模式匹配、自由空间通信和生物医学科学中所需要的任意辐射图案的产生。来自阵列的成像通常通过像素的强度传输,OPA允许通过控制从单个源接收相干光波的像素的光学相位来进行成像。
一维(1D)平面波束形成和操纵的光学相控阵列芯片是固态激光雷达的简单构建模块,使得能够以低成本制造激光雷达。
光斑尺寸的垂直尺寸(即垂直于操纵方向的尺寸)用至少一个片上光栅或至少一个片外透镜减小。
所述片外透镜的类型包括但不限于:
-折射透镜
-渐变折射率(GRIN)透镜
-衍射光学元件(DOE)
-全息光学元件(HOE)
一个或多个1D波束形成和操纵电路可以用于实现期望的水平视场(FOV)或操纵范围。
用分束光学装置的任何子集实现波束分路,包括但不限于:
-Y分支
-定向耦合器
-多模干涉(MMI)耦合器
用于分束的优选实施例包括后面有MMI耦合器的Y分支分路器。
相位偏移用移相光学装置的任何子集进行控制,包括但不限于:
-增益元件
-全通滤波器
-布拉格光栅
-分散材料
-波长调谐
-相位调谐
当使用相位调谐时,用于调谐所述延迟线的致动机构以及当它们可调谐时的所述光分路器可以是多种机制中的任一种,包括但不限于:
-热光致动
-电光致动
-电吸收致动
-自由载流子吸收致动
-磁光致动
-液晶致动
-全光学致动
每个像素可以具有独立的相位控制,用于最大灵活性和对远场辐射图案的最佳控制,或者分组(有时称为带化)可以用于利用一个控制信号向多个像素提供相位调谐,以简化设计、制造、测试、控制和操作。
分组相移用以下任何子集控制:
-一个或多个线性(三角形)电极-串联或并联;相同或粗略和精细调节电极
-一个或多个非线性(子线性或超线性)电极-串联或并联;相同或粗略和精细调节电极
一个或多个多边形形状(例如矩形)的相位偏移电极-串联或并联;相同或粗略和精细调节电极-加或减;推-推或推-拉配置。
光学天线可以是可以将光耦合到PIC平面之外的各种纳米结构中的任何一种,包括但不限于:
-光栅
-全息光学元件(HOE)
-反射镜
-全内反射(TIR)界面
-透镜
包含OPA PIC的芯片优选地与互补金属氧化物半导体(CMOS)工艺兼容。
Claims (13)
1.一种基于光学相控阵列的一维波束形成和操纵设备,包括:
具有第一视场操纵范围的第一光学相控阵列一维波束形成和操纵集成电路,其邻近于具有第二视场操纵范围的第二光学相控阵列一维波束形成和操纵集成电路,所述第一视场操纵范围和第二视场操纵范围在共同方向上建立增大的水平视场操纵范围,第一光学相控阵列一维波束形成和操纵集成电路和第二光学相控阵列一维波束形成和操纵集成电路每个都是固态激光雷达的构建模块,并且每个都包括:
至少一个光学功率分路器;以及
至少一个光学移相器,该至少一个光学移相器由至少一个移相装置控制,所述至少一个移相装置从以下中选出:增益元件、全通滤波器、布拉格光栅、分散材料、波长调谐装置和相位调谐装置。
2.根据权利要求1所述的设备,还包括至少一个片上光栅或至少一个片外透镜。
3.根据权利要求2所述的设备,其中,所述至少一个片外透镜从以下中选出:折射透镜、渐变折射率透镜、衍射光学元件、以及全息光学元件。
4.根据权利要求1所述的设备,其中,所述至少一个光学功率分路器由功率分路光学装置的任何子集实现,从以下中选出:Y分支、定向耦合器,以及多模干涉耦合器。
5.根据权利要求4所述的设备,其中,所述光学功率分路是利用后面有多模干涉耦合器的Y分支实现的。
6.根据权利要求1所述的设备,其中,所述相位调谐的致动机制利用致动机制的子集,其从以下中选出:热光致动、电光致动、电吸收致动、自由载流子吸收致动、磁光致动、液晶致动、全光学致动。
7.根据权利要求1所述的设备,还包括以一维像素阵列配置布置的面外光耦合器,其中,其中,每个像素具有与其相关联的独立移相器。
8.根据权利要求7所述的设备,其中,多个所述像素通过具有组合移相器来对进行带化。
9.根据权利要求8所述的设备,其中,像素的带化控制是用控制元件实现的,所述控制元件包括从以下中选出的一个或多个:线性电极、非线性电极,以及相位偏移电极。
10.根据权利要求9所述的设备,其中,存在来自线性、非线性和相位偏移电极的集合的至少一种类型的多个电极,并且其中,以复数数量存在的电极以下列方式中的至少一种方式设置:串联、并联、加,以及减。
11.根据权利要求1所述的设备,其与至少一个面外耦合器组合,所述至少一个面外耦合器用光学元件实现,该光学元件从以下中选出:光栅、全息光学元件、反射镜、全内反射界面、透镜。
12.根据权利要求1所述的设备,其与透镜设备组合以延伸所述操纵范围。
13.根据权利要求1所述的设备,其中,所述集成电路与互补金属氧化物半导体制造工艺兼容。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/318,716 US9753351B2 (en) | 2014-06-30 | 2014-06-30 | Planar beam forming and steering optical phased array chip and method of using same |
US14/318,716 | 2014-06-30 | ||
PCT/US2015/037246 WO2016022220A2 (en) | 2014-06-30 | 2015-06-23 | Planar beam forming and steering optical phased array chip and method of using same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106575017A CN106575017A (zh) | 2017-04-19 |
CN106575017B true CN106575017B (zh) | 2020-01-14 |
Family
ID=54930334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580043763.7A Active CN106575017B (zh) | 2014-06-30 | 2015-06-23 | 平面波束形成和操纵的光学相控阵列芯片以及使用其的方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US9753351B2 (zh) |
EP (1) | EP3161533A4 (zh) |
JP (1) | JP2017521734A (zh) |
KR (1) | KR102017474B1 (zh) |
CN (1) | CN106575017B (zh) |
SG (1) | SG11201610963XA (zh) |
TW (1) | TWI647469B (zh) |
WO (1) | WO2016022220A2 (zh) |
Families Citing this family (204)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10132928B2 (en) * | 2013-05-09 | 2018-11-20 | Quanergy Systems, Inc. | Solid state optical phased array lidar and method of using same |
US10126412B2 (en) | 2013-08-19 | 2018-11-13 | Quanergy Systems, Inc. | Optical phased array lidar system and method of using same |
US10203399B2 (en) | 2013-11-12 | 2019-02-12 | Big Sky Financial Corporation | Methods and apparatus for array based LiDAR systems with reduced interference |
US9360554B2 (en) | 2014-04-11 | 2016-06-07 | Facet Technology Corp. | Methods and apparatus for object detection and identification in a multiple detector lidar array |
US9575341B2 (en) | 2014-06-28 | 2017-02-21 | Intel Corporation | Solid state LIDAR circuit with waveguides tunable to separate phase offsets |
US9753351B2 (en) * | 2014-06-30 | 2017-09-05 | Quanergy Systems, Inc. | Planar beam forming and steering optical phased array chip and method of using same |
US9869753B2 (en) | 2014-08-15 | 2018-01-16 | Quanergy Systems, Inc. | Three-dimensional-mapping two-dimensional-scanning lidar based on one-dimensional-steering optical phased arrays and method of using same |
US10036803B2 (en) | 2014-10-20 | 2018-07-31 | Quanergy Systems, Inc. | Three-dimensional lidar sensor based on two-dimensional scanning of one-dimensional optical emitter and method of using same |
US9921307B2 (en) * | 2015-01-30 | 2018-03-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Combined RADAR sensor and LIDAR sensor processing |
US10036801B2 (en) | 2015-03-05 | 2018-07-31 | Big Sky Financial Corporation | Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array |
CN104933966B (zh) * | 2015-07-23 | 2018-01-26 | 京东方科技集团股份有限公司 | 一种显示面板及其驱动方法、显示装置 |
US10063849B2 (en) | 2015-09-24 | 2018-08-28 | Ouster, Inc. | Optical system for collecting distance information within a field |
US9992477B2 (en) | 2015-09-24 | 2018-06-05 | Ouster, Inc. | Optical system for collecting distance information within a field |
US10557939B2 (en) | 2015-10-19 | 2020-02-11 | Luminar Technologies, Inc. | Lidar system with improved signal-to-noise ratio in the presence of solar background noise |
CN108369274B (zh) | 2015-11-05 | 2022-09-13 | 路明亮有限责任公司 | 用于高分辨率深度映射的具有经改进扫描速度的激光雷达系统 |
EP3411660A4 (en) | 2015-11-30 | 2019-11-27 | Luminar Technologies, Inc. | LIDAR SYSTEM WITH DISTRIBUTED LASER AND MULTIPLE SENSOR HEADS AND PULSED LASER FOR LIDAR SYSTEM |
WO2017151843A1 (en) * | 2016-03-02 | 2017-09-08 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy Naval | Chip-scale two-dimensionai optical phased array with simplified controls |
US9866816B2 (en) | 2016-03-03 | 2018-01-09 | 4D Intellectual Properties, Llc | Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis |
WO2017189857A1 (en) * | 2016-04-28 | 2017-11-02 | Analog Photonics LLC | Optical phase shifter device |
US10838062B2 (en) | 2016-05-24 | 2020-11-17 | Veoneer Us, Inc. | Direct detection LiDAR system and method with pulse amplitude modulation (AM) transmitter and quadrature receiver |
KR102559580B1 (ko) * | 2016-08-17 | 2023-07-25 | 삼성전자주식회사 | 광 조향용 OPA, 및 그 OPA를 구비한 LiDAR 시스템 |
CA3035094A1 (en) | 2016-08-24 | 2018-03-01 | Ouster, Inc. | Optical system for collecting distance information within a field |
WO2018128662A2 (en) | 2016-10-14 | 2018-07-12 | Analog Photonics LLC | Large scale optical phased array |
US10731964B2 (en) | 2016-11-03 | 2020-08-04 | The Charles Stark Draper Laboratory, Inc. | Photonic imaging array |
KR102587956B1 (ko) | 2016-11-11 | 2023-10-11 | 삼성전자주식회사 | 빔 스티어링 소자 및 이를 적용한 시스템 |
US10942257B2 (en) | 2016-12-31 | 2021-03-09 | Innovusion Ireland Limited | 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices |
US10763290B2 (en) | 2017-02-22 | 2020-09-01 | Elwha Llc | Lidar scanning system |
EP3589974A2 (en) * | 2017-03-01 | 2020-01-08 | Pointcloud Inc. | Modular three-dimensional optical sensing system |
US9810775B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Q-switched laser for LIDAR system |
US9810786B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Optical parametric oscillator for lidar system |
US9905992B1 (en) | 2017-03-16 | 2018-02-27 | Luminar Technologies, Inc. | Self-Raman laser for lidar system |
US9869754B1 (en) | 2017-03-22 | 2018-01-16 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US10114111B2 (en) | 2017-03-28 | 2018-10-30 | Luminar Technologies, Inc. | Method for dynamically controlling laser power |
US10545240B2 (en) | 2017-03-28 | 2020-01-28 | Luminar Technologies, Inc. | LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity |
US11119198B2 (en) | 2017-03-28 | 2021-09-14 | Luminar, Llc | Increasing operational safety of a lidar system |
US10732281B2 (en) | 2017-03-28 | 2020-08-04 | Luminar Technologies, Inc. | Lidar detector system having range walk compensation |
US10061019B1 (en) | 2017-03-28 | 2018-08-28 | Luminar Technologies, Inc. | Diffractive optical element in a lidar system to correct for backscan |
US10254388B2 (en) | 2017-03-28 | 2019-04-09 | Luminar Technologies, Inc. | Dynamically varying laser output in a vehicle in view of weather conditions |
US10121813B2 (en) | 2017-03-28 | 2018-11-06 | Luminar Technologies, Inc. | Optical detector having a bandpass filter in a lidar system |
US10267899B2 (en) | 2017-03-28 | 2019-04-23 | Luminar Technologies, Inc. | Pulse timing based on angle of view |
US10209359B2 (en) | 2017-03-28 | 2019-02-19 | Luminar Technologies, Inc. | Adaptive pulse rate in a lidar system |
US10007001B1 (en) | 2017-03-28 | 2018-06-26 | Luminar Technologies, Inc. | Active short-wave infrared four-dimensional camera |
US10139478B2 (en) | 2017-03-28 | 2018-11-27 | Luminar Technologies, Inc. | Time varying gain in an optical detector operating in a lidar system |
US10088559B1 (en) | 2017-03-29 | 2018-10-02 | Luminar Technologies, Inc. | Controlling pulse timing to compensate for motor dynamics |
US10969488B2 (en) | 2017-03-29 | 2021-04-06 | Luminar Holdco, Llc | Dynamically scanning a field of regard using a limited number of output beams |
WO2018183715A1 (en) | 2017-03-29 | 2018-10-04 | Luminar Technologies, Inc. | Method for controlling peak and average power through laser receiver |
US10976417B2 (en) | 2017-03-29 | 2021-04-13 | Luminar Holdco, Llc | Using detectors with different gains in a lidar system |
US10191155B2 (en) | 2017-03-29 | 2019-01-29 | Luminar Technologies, Inc. | Optical resolution in front of a vehicle |
US11002853B2 (en) | 2017-03-29 | 2021-05-11 | Luminar, Llc | Ultrasonic vibrations on a window in a lidar system |
US10983213B2 (en) | 2017-03-29 | 2021-04-20 | Luminar Holdco, Llc | Non-uniform separation of detector array elements in a lidar system |
US10663595B2 (en) | 2017-03-29 | 2020-05-26 | Luminar Technologies, Inc. | Synchronized multiple sensor head system for a vehicle |
US10254762B2 (en) | 2017-03-29 | 2019-04-09 | Luminar Technologies, Inc. | Compensating for the vibration of the vehicle |
US10897082B1 (en) | 2017-03-29 | 2021-01-19 | The United States Of America As Represented By The Secretary Of The Air Force | Steerable phased array antenna |
US10641874B2 (en) | 2017-03-29 | 2020-05-05 | Luminar Technologies, Inc. | Sizing the field of view of a detector to improve operation of a lidar system |
US9989629B1 (en) | 2017-03-30 | 2018-06-05 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
US10241198B2 (en) | 2017-03-30 | 2019-03-26 | Luminar Technologies, Inc. | Lidar receiver calibration |
US10295668B2 (en) | 2017-03-30 | 2019-05-21 | Luminar Technologies, Inc. | Reducing the number of false detections in a lidar system |
US10684360B2 (en) | 2017-03-30 | 2020-06-16 | Luminar Technologies, Inc. | Protecting detector in a lidar system using off-axis illumination |
US10401481B2 (en) | 2017-03-30 | 2019-09-03 | Luminar Technologies, Inc. | Non-uniform beam power distribution for a laser operating in a vehicle |
US11022688B2 (en) | 2017-03-31 | 2021-06-01 | Luminar, Llc | Multi-eye lidar system |
US20180284246A1 (en) | 2017-03-31 | 2018-10-04 | Luminar Technologies, Inc. | Using Acoustic Signals to Modify Operation of a Lidar System |
US10641876B2 (en) | 2017-04-06 | 2020-05-05 | Quanergy Systems, Inc. | Apparatus and method for mitigating LiDAR interference through pulse coding and frequency shifting |
US10677897B2 (en) | 2017-04-14 | 2020-06-09 | Luminar Technologies, Inc. | Combining lidar and camera data |
US11698460B2 (en) | 2017-04-17 | 2023-07-11 | Purdue Research Foundation | Ultrafast laser beam steering using frequency-arrayed optics |
WO2018205006A1 (en) * | 2017-05-11 | 2018-11-15 | Huawei Technologies Co., Ltd. | Time-of-flight apparatus |
DE202018006695U1 (de) | 2017-05-15 | 2022-04-01 | Ouster, Inc. | Optischer Bildübertrager mit Helligkeitsverbesserung |
CN108693513A (zh) * | 2017-06-09 | 2018-10-23 | 深圳市涵光半导体有限公司 | 激光雷达及其二维相控阵激光发射单元 |
KR102407142B1 (ko) | 2017-06-30 | 2022-06-10 | 삼성전자주식회사 | 빔 스티어링 소자 및 이를 포함하는 전자 장치 |
KR102429877B1 (ko) | 2017-07-03 | 2022-08-05 | 삼성전자주식회사 | 하이브리드 2차원 스캐너 시스템과 그 동작방법 |
WO2019010621A1 (zh) * | 2017-07-11 | 2019-01-17 | 深圳市涵光半导体有限公司 | 相控阵激光雷达 |
KR102434702B1 (ko) * | 2017-07-24 | 2022-08-22 | 삼성전자주식회사 | 라이다 시스템 및 이의 구동 방법 |
FR3070102B1 (fr) * | 2017-08-08 | 2019-09-06 | Thales | Dispositif de reception optique d'un signal provenant d'un reseau antennaire a commande de phase et systeme antennaire associe |
CN107329132B (zh) * | 2017-08-11 | 2023-09-29 | 深圳力策科技有限公司 | 一种基于光学相位阵列的激光雷达收发天线及测距方法 |
US10627653B2 (en) * | 2017-08-28 | 2020-04-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Thermal guiding for photonic components |
US10838048B2 (en) * | 2017-09-08 | 2020-11-17 | Quanergy Systems, Inc. | Apparatus and method for selective disabling of LiDAR detector array elements |
SG11202002406TA (en) * | 2017-09-18 | 2020-04-29 | Advanced Micro Foundry Pte Ltd | Optical phase array, methods of forming and operating the same |
US10613200B2 (en) | 2017-09-19 | 2020-04-07 | Veoneer, Inc. | Scanning lidar system and method |
US10838043B2 (en) | 2017-11-15 | 2020-11-17 | Veoneer Us, Inc. | Scanning LiDAR system and method with spatial filtering for reduction of ambient light |
US11460550B2 (en) | 2017-09-19 | 2022-10-04 | Veoneer Us, Llc | Direct detection LiDAR system and method with synthetic doppler processing |
KR101924890B1 (ko) | 2017-09-28 | 2018-12-04 | 광주과학기술원 | 광 위상 배열 안테나 및 이를 포함하는 라이다 |
US11194022B2 (en) | 2017-09-29 | 2021-12-07 | Veoneer Us, Inc. | Detection system with reflection member and offset detection array |
US20190107622A1 (en) * | 2017-10-11 | 2019-04-11 | Veoneer Us, Inc. | Scanning LiDAR System and Method with Source Laser Beam Splitting Apparatus and Method |
US10520589B2 (en) * | 2017-10-16 | 2019-12-31 | Sensors Unlimited, Inc. | Multimode ROIC pixel with laser range finding (LRF) capability |
US10003168B1 (en) | 2017-10-18 | 2018-06-19 | Luminar Technologies, Inc. | Fiber laser with free-space components |
US11835841B2 (en) | 2017-10-27 | 2023-12-05 | Exciting Technology LLC | System, method and apparatus for non-mechanical optical and photonic beam steering |
US11835838B2 (en) | 2017-10-27 | 2023-12-05 | Exciting Technology LLC | System, method and apparatus for non-mechanical optical and photonic beam steering |
US10845671B2 (en) | 2017-10-27 | 2020-11-24 | Exciting Technology, Llc | System, method and apparatus for non-mechanical optical and photonic beam steering |
US11585901B2 (en) | 2017-11-15 | 2023-02-21 | Veoneer Us, Llc | Scanning lidar system and method with spatial filtering for reduction of ambient light |
US10451716B2 (en) | 2017-11-22 | 2019-10-22 | Luminar Technologies, Inc. | Monitoring rotation of a mirror in a lidar system |
US10324185B2 (en) * | 2017-11-22 | 2019-06-18 | Luminar Technologies, Inc. | Reducing audio noise in a lidar scanner with a polygon mirror |
US11353556B2 (en) | 2017-12-07 | 2022-06-07 | Ouster, Inc. | Light ranging device with a multi-element bulk lens system |
US10495794B2 (en) * | 2017-12-12 | 2019-12-03 | Huawei Technologies Co., Ltd. | Polarization insensitive optical phased array and associated method |
DE102017222864A1 (de) * | 2017-12-15 | 2019-06-19 | Robert Bosch Gmbh | Vorrichtung zur Ablenkung von Laserstrahlen |
US11493601B2 (en) | 2017-12-22 | 2022-11-08 | Innovusion, Inc. | High density LIDAR scanning |
US10666348B1 (en) | 2018-01-08 | 2020-05-26 | The United States Of America As Represented By The Secretary Of The Air Force | Phased array receiver with reduced number of beam former elements |
WO2019139186A1 (ko) * | 2018-01-11 | 2019-07-18 | 주식회사 큐유아이 | 안테나 어레이의 지향성을 개선하는 rf 렌즈 장치 및 그를 포함하는 송수신 안테나 시스템 |
CN108387909A (zh) * | 2018-01-23 | 2018-08-10 | 国耀量子雷达科技有限公司 | 基于激光雷达网的区域环境监测系统 |
KR102474591B1 (ko) | 2018-01-24 | 2022-12-05 | 삼성전자주식회사 | 광 조향 장치 및 이를 포함하는 센서 시스템 |
KR102611985B1 (ko) | 2018-01-24 | 2023-12-08 | 삼성전자주식회사 | 양방향성 광 집적 회로 소자 어레이 및 이를 이용한 양방향성 광 시스템 |
KR102501469B1 (ko) | 2018-02-02 | 2023-02-20 | 삼성전자주식회사 | 빔 스티어링 장치를 포함한 시스템 |
US10365536B1 (en) | 2018-02-07 | 2019-07-30 | Eagle Technology, Llc | Optical device including a monolithic body of optical material and related methods |
US11988773B2 (en) | 2018-02-23 | 2024-05-21 | Innovusion, Inc. | 2-dimensional steering system for lidar systems |
US11808888B2 (en) | 2018-02-23 | 2023-11-07 | Innovusion, Inc. | Multi-wavelength pulse steering in LiDAR systems |
US11081792B2 (en) | 2018-03-07 | 2021-08-03 | Anokiwave, Inc. | Phased array with low-latency control interface |
US10324170B1 (en) | 2018-04-05 | 2019-06-18 | Luminar Technologies, Inc. | Multi-beam lidar system with polygon mirror |
US11029406B2 (en) | 2018-04-06 | 2021-06-08 | Luminar, Llc | Lidar system with AlInAsSb avalanche photodiode |
US11152700B2 (en) | 2018-04-16 | 2021-10-19 | Phase Sensitive Innovations, Inc. | Beam steering antenna transmitter, multi-user antenna MIMO transmitter and related methods of communication |
JP6746039B2 (ja) * | 2018-04-27 | 2020-08-26 | 三菱電機株式会社 | 空間光通信装置 |
US10515993B2 (en) | 2018-05-17 | 2019-12-24 | Hi Llc | Stacked photodetector assemblies |
US10340408B1 (en) | 2018-05-17 | 2019-07-02 | Hi Llc | Non-invasive wearable brain interface systems including a headgear and a plurality of self-contained photodetector units configured to removably attach to the headgear |
US10158038B1 (en) | 2018-05-17 | 2018-12-18 | Hi Llc | Fast-gated photodetector architectures comprising dual voltage sources with a switch configuration |
US10348051B1 (en) | 2018-05-18 | 2019-07-09 | Luminar Technologies, Inc. | Fiber-optic amplifier |
US10884105B2 (en) * | 2018-05-31 | 2021-01-05 | Eagle Technology, Llc | Optical system including an optical body with waveguides aligned along an imaginary curved surface for enhanced beam steering and related methods |
US11402505B2 (en) | 2018-06-05 | 2022-08-02 | Silc Technologies, Inc. | Control of phase in steering of LIDAR output signals |
US10420498B1 (en) | 2018-06-20 | 2019-09-24 | Hi Llc | Spatial and temporal-based diffusive correlation spectroscopy systems and methods |
US11536805B2 (en) | 2018-06-25 | 2022-12-27 | Silc Technologies, Inc. | Optical switching for tuning direction of LIDAR output signals |
US10591601B2 (en) | 2018-07-10 | 2020-03-17 | Luminar Technologies, Inc. | Camera-gated lidar system |
US11213206B2 (en) | 2018-07-17 | 2022-01-04 | Hi Llc | Non-invasive measurement systems with single-photon counting camera |
US10627516B2 (en) | 2018-07-19 | 2020-04-21 | Luminar Technologies, Inc. | Adjustable pulse characteristics for ground detection in lidar systems |
JP2020021024A (ja) * | 2018-08-03 | 2020-02-06 | 日本放送協会 | 光偏向装置およびモード変換部設計方法 |
US10739189B2 (en) | 2018-08-09 | 2020-08-11 | Ouster, Inc. | Multispectral ranging/imaging sensor arrays and systems |
US11473970B2 (en) | 2018-08-09 | 2022-10-18 | Ouster, Inc. | Subpixel apertures for channels in a scanning sensor array |
US10551501B1 (en) | 2018-08-09 | 2020-02-04 | Luminar Technologies, Inc. | Dual-mode lidar system |
US11681021B2 (en) | 2018-08-17 | 2023-06-20 | SiLC Technologies. Inc. | Optical sensor system |
US10340651B1 (en) | 2018-08-21 | 2019-07-02 | Luminar Technologies, Inc. | Lidar system with optical trigger |
KR102703721B1 (ko) | 2018-10-04 | 2024-09-05 | 삼성전자주식회사 | 광학 위상 어레이의 위상 최적화 방법 |
US11892565B2 (en) | 2018-10-12 | 2024-02-06 | Silc Technologies, Inc. | Controlling direction of LIDAR output signals |
US11205858B1 (en) | 2018-10-16 | 2021-12-21 | Anokiwave, Inc. | Element-level self-calculation of phased array vectors using direct calculation |
US10985819B1 (en) | 2018-10-16 | 2021-04-20 | Anokiwave, Inc. | Element-level self-calculation of phased array vectors using interpolation |
US11561451B2 (en) | 2018-10-23 | 2023-01-24 | Exciting Technology LLC | System, method and apparatus for non-mechanical optical and photonic beam steering |
US11624807B2 (en) | 2018-12-11 | 2023-04-11 | Silc Technologies, Inc. | Image distance in LIDAR systems |
CN109707585B (zh) * | 2018-12-20 | 2020-07-07 | 浙江大学 | 一种基于相控阵控制的激光推进方法 |
WO2020131148A1 (en) | 2018-12-21 | 2020-06-25 | Hi Llc | Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method |
US11500071B2 (en) | 2019-01-25 | 2022-11-15 | Silc Technologies, Inc. | Steering of output signals in LIDAR systems |
US11774561B2 (en) | 2019-02-08 | 2023-10-03 | Luminar Technologies, Inc. | Amplifier input protection circuits |
US11579299B2 (en) | 2019-04-02 | 2023-02-14 | Litexel Inc. | 3D range imaging method using optical phased array and photo sensor array |
US11143860B1 (en) | 2019-04-29 | 2021-10-12 | United States Of America As Represented By The Secretary Of The Air Force | Photonic crystal-based optical steering |
EP3966590A1 (en) | 2019-05-06 | 2022-03-16 | Hi LLC | Photodetector architectures for time-correlated single photon counting |
WO2020236371A1 (en) | 2019-05-21 | 2020-11-26 | Hi Llc | Photodetector architectures for efficient fast-gating |
US11754682B2 (en) | 2019-05-30 | 2023-09-12 | Microvision, Inc. | LIDAR system with spatial beam combining |
US11796643B2 (en) | 2019-05-30 | 2023-10-24 | Microvision, Inc. | Adaptive LIDAR scanning methods |
US11828881B2 (en) | 2019-05-30 | 2023-11-28 | Microvision, Inc. | Steered LIDAR system with arrayed receiver |
EP3977565A4 (en) | 2019-06-03 | 2023-06-21 | Raymond Albert Fillion | PHASE CONTROLLED ARRAY ANTENNA WITH ISOTROPIC AND NON-ISOTROPIC RADIANT AND OMNIDIRECTIONAL AND NON-OMNIDIRECTIONAL RECEIVING ELEMENTS |
US10838059B2 (en) | 2019-06-03 | 2020-11-17 | Raymond Albert Fillion | Acoustic phased array antenna with isotropic and non-isotropic radiating elements |
US11539144B2 (en) | 2019-06-03 | 2022-12-27 | Raymond Albert Fillion | Phased array antenna with isotropic and non-isotropic radiating and omnidirectional and non-omnidirectional receiving elements |
US10868207B1 (en) | 2019-06-06 | 2020-12-15 | Hi Llc | Photodetector systems with low-power time-to-digital converter architectures to determine an arrival time of photon at a photodetector based on event detection time window |
US11480660B2 (en) | 2019-07-09 | 2022-10-25 | Microvision, Inc. | Arrayed MEMS mirrors for large aperture applications |
US11579256B2 (en) | 2019-07-11 | 2023-02-14 | Microvision, Inc. | Variable phase scanning lidar system |
US11579257B2 (en) | 2019-07-15 | 2023-02-14 | Veoneer Us, Llc | Scanning LiDAR system and method with unitary optical element |
US11474218B2 (en) | 2019-07-15 | 2022-10-18 | Veoneer Us, Llc | Scanning LiDAR system and method with unitary optical element |
EP3779560A1 (en) * | 2019-08-13 | 2021-02-17 | Imec VZW | A dispersive optical phased array for two-dimensional scanning |
US11313969B2 (en) | 2019-10-28 | 2022-04-26 | Veoneer Us, Inc. | LiDAR homodyne transceiver using pulse-position modulation |
CN110596679B (zh) * | 2019-10-28 | 2021-10-01 | 中国科学院长春光学精密机械与物理研究所 | 一种固态激光雷达系统 |
US11579305B2 (en) | 2019-11-05 | 2023-02-14 | Silc Technologies, Inc. | LIDAR output steering systems having optical gratings |
US11703598B2 (en) | 2019-11-18 | 2023-07-18 | Silc Technologies, Inc. | Steering of LIDAR output signals |
CN110736974A (zh) * | 2019-12-03 | 2020-01-31 | 中国科学院长春光学精密机械与物理研究所 | 一种全固态激光雷达扫描光源及全固态激光雷达 |
WO2021167890A1 (en) | 2020-02-21 | 2021-08-26 | Hi Llc | Wearable module assemblies for an optical measurement system |
WO2021167876A1 (en) | 2020-02-21 | 2021-08-26 | Hi Llc | Methods and systems for initiating and conducting a customized computer-enabled brain research study |
US11950879B2 (en) | 2020-02-21 | 2024-04-09 | Hi Llc | Estimation of source-detector separation in an optical measurement system |
US11630310B2 (en) | 2020-02-21 | 2023-04-18 | Hi Llc | Wearable devices and wearable assemblies with adjustable positioning for use in an optical measurement system |
US12029558B2 (en) | 2020-02-21 | 2024-07-09 | Hi Llc | Time domain-based optical measurement systems and methods configured to measure absolute properties of tissue |
US11883181B2 (en) | 2020-02-21 | 2024-01-30 | Hi Llc | Multimodal wearable measurement systems and methods |
US11969259B2 (en) | 2020-02-21 | 2024-04-30 | Hi Llc | Detector assemblies for a wearable module of an optical measurement system and including spring-loaded light-receiving members |
WO2021167893A1 (en) | 2020-02-21 | 2021-08-26 | Hi Llc | Integrated detector assemblies for a wearable module of an optical measurement system |
DE102020202819A1 (de) * | 2020-03-05 | 2021-09-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | LiDAR-Vorrichtung |
US11573294B2 (en) * | 2020-03-17 | 2023-02-07 | Litexel Inc. | Switched optical phased array based beam steering LiDAR |
US11245404B2 (en) | 2020-03-20 | 2022-02-08 | Hi Llc | Phase lock loop circuit based signal generation in an optical measurement system |
WO2021188489A1 (en) | 2020-03-20 | 2021-09-23 | Hi Llc | High density optical measurement systems with minimal number of light sources |
US11864867B2 (en) | 2020-03-20 | 2024-01-09 | Hi Llc | Control circuit for a light source in an optical measurement system by applying voltage with a first polarity to start an emission of a light pulse and applying voltage with a second polarity to stop the emission of the light pulse |
US11877825B2 (en) | 2020-03-20 | 2024-01-23 | Hi Llc | Device enumeration in an optical measurement system |
US11645483B2 (en) | 2020-03-20 | 2023-05-09 | Hi Llc | Phase lock loop circuit based adjustment of a measurement time window in an optical measurement system |
WO2021188496A1 (en) | 2020-03-20 | 2021-09-23 | Hi Llc | Photodetector calibration of an optical measurement system |
WO2021188487A1 (en) | 2020-03-20 | 2021-09-23 | Hi Llc | Temporal resolution control for temporal point spread function generation in an optical measurement system |
WO2021188485A1 (en) | 2020-03-20 | 2021-09-23 | Hi Llc | Maintaining consistent photodetector sensitivity in an optical measurement system |
US11857348B2 (en) | 2020-03-20 | 2024-01-02 | Hi Llc | Techniques for determining a timing uncertainty of a component of an optical measurement system |
US12085789B2 (en) | 2020-03-20 | 2024-09-10 | Hi Llc | Bias voltage generation in an optical measurement system |
US12059262B2 (en) | 2020-03-20 | 2024-08-13 | Hi Llc | Maintaining consistent photodetector sensitivity in an optical measurement system |
US20230038746A1 (en) | 2020-04-17 | 2023-02-09 | Exciting Technology LLC | System, method, and apparatus for high precision light beam steering using a triplet lens |
US12059270B2 (en) | 2020-04-24 | 2024-08-13 | Hi Llc | Systems and methods for noise removal in an optical measurement system |
US11789121B2 (en) | 2020-05-28 | 2023-10-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Determining an angle of an incident beam of coherent light |
US11994785B2 (en) | 2020-06-03 | 2024-05-28 | Raytheon Company | Dispersive beam steering based on optical-frequency shift patterns |
US11428785B2 (en) * | 2020-06-12 | 2022-08-30 | Ours Technology, Llc | Lidar pixel with active polarization control |
CN111596498B (zh) * | 2020-07-01 | 2022-03-01 | 中国工程物理研究院激光聚变研究中心 | 一种基于液晶相控阵的环形光束产生方法 |
WO2022051453A1 (en) | 2020-09-04 | 2022-03-10 | Analog Photonics LLC | Two dimensional optical phased arrays using edge-coupled integrated circuits |
CN112034657B (zh) * | 2020-09-10 | 2022-07-22 | 中国科学院空天信息创新研究院 | 全固态芯片化大角度光学波束成形系统 |
CN112490671A (zh) * | 2020-10-26 | 2021-03-12 | 深圳奥锐达科技有限公司 | 一种反射式光学相控阵芯片及制造方法及激光扫描装置 |
US11489593B2 (en) * | 2020-12-02 | 2022-11-01 | Tmy Technology Inc. | Optical and electrical hybrid beamforming transmitter, receiver, and signal processing method |
ES2913576B2 (es) | 2020-12-02 | 2022-10-11 | Univ Malaga | Deflector lateral de haz unico, multiplexor/demultiplexor y dispositivo alimentador de antena optica que incorporan el deflector, y metodos que los utilizan |
US12044800B2 (en) | 2021-01-14 | 2024-07-23 | Magna Electronics, Llc | Scanning LiDAR system and method with compensation for transmit laser pulse effects |
US11934048B2 (en) * | 2021-01-29 | 2024-03-19 | Raytheon Company | Photonic integrated circuit-based coherently phased array laser transmitter |
WO2022162981A1 (ja) | 2021-02-01 | 2022-08-04 | 日本碍子株式会社 | 光走査素子 |
TWI760103B (zh) * | 2021-02-09 | 2022-04-01 | 國立臺灣科技大學 | 可調控光學相位陣列 |
US11644621B2 (en) | 2021-02-11 | 2023-05-09 | Raytheon Company | Digital input circuit design for photonic integrated circuit |
US11532881B2 (en) * | 2021-02-11 | 2022-12-20 | Raytheon Company | Photonic integrated circuit-based optical phased array phasing technique |
US11988903B2 (en) | 2021-02-11 | 2024-05-21 | Raytheon Company | Photonic integrated circuit-based optical phased array calibration technique |
US11326758B1 (en) | 2021-03-12 | 2022-05-10 | Veoneer Us, Inc. | Spotlight illumination system using optical element |
US11714330B2 (en) | 2021-04-30 | 2023-08-01 | The Regents Of The University Of Michigan | Phase-combining waveguide doubler for optical phased array in solid-state lidar applications |
US11732858B2 (en) | 2021-06-18 | 2023-08-22 | Veoneer Us, Llc | Headlight illumination system using optical element |
CN115685220A (zh) * | 2021-07-30 | 2023-02-03 | 北京万集科技股份有限公司 | 目标探测方法、opa激光雷达及计算机可读存储介质 |
CN113703244B (zh) * | 2021-08-19 | 2023-12-19 | 扬州大学 | 一种大规模集成的电光微环光学相控阵 |
EP4423859A1 (en) * | 2021-10-29 | 2024-09-04 | Battelle Memorial Institute | Beam steering and nulling for a differentially segmented aperture antenna |
US11888515B1 (en) | 2022-07-14 | 2024-01-30 | Raytheon Company | System and method for parallel real-time photonic integrated circuit (PIC) optical phased array calibration and ultraviolet laser micro-ring wavelength offset trimming |
US12092278B2 (en) | 2022-10-07 | 2024-09-17 | Magna Electronics, Llc | Generating a spotlight |
CN116068273B (zh) * | 2023-03-06 | 2023-06-13 | 中国人民解放军海军工程大学 | 一种大功率短波相控阵相位检测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1442932A (zh) * | 2002-03-06 | 2003-09-17 | 中国科学院物理研究所 | 利用垂直腔面发射半导体激光器制作相控阵激光装置 |
US7095925B2 (en) * | 2004-11-03 | 2006-08-22 | Intel Corporation | Optical phased array transmitter/receiver |
CN102362205A (zh) * | 2009-03-20 | 2012-02-22 | 阿尔卡特朗讯 | 具有多功能波导光栅的相干光学检测器 |
US8203115B2 (en) * | 2008-07-29 | 2012-06-19 | University Of Washington | Method of performing hyperspectral imaging with photonic integrated circuits |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3781552A (en) | 1972-08-02 | 1973-12-25 | K Kadrmas | Self-calibrating multiple field of view telescope for remote atmospheric electromagnetic probing and data acquisition |
JPH01238627A (ja) * | 1988-03-19 | 1989-09-22 | Fuji Photo Film Co Ltd | 光導波路素子 |
JPH0315003A (ja) | 1989-03-16 | 1991-01-23 | Omron Corp | グレーティング・レンズおよび集光グレーティング・カプラ |
EP0464263A3 (en) | 1990-06-27 | 1992-06-10 | Siemens Aktiengesellschaft | Device for obstacle detection for pilots of low flying aircrafts |
US5455669A (en) | 1992-12-08 | 1995-10-03 | Erwin Sick Gmbh Optik-Elektronik | Laser range finding apparatus |
JP3042278B2 (ja) | 1993-09-17 | 2000-05-15 | 三菱電機株式会社 | 距離測定装置 |
US5543805A (en) | 1994-10-13 | 1996-08-06 | The Boeing Company | Phased array beam controller using integrated electro-optic circuits |
US5682229A (en) | 1995-04-14 | 1997-10-28 | Schwartz Electro-Optics, Inc. | Laser range camera |
US5898483A (en) | 1997-05-01 | 1999-04-27 | Lockheed Martin Corporation | Method for increasing LADAR resolution |
US6765663B2 (en) | 2002-03-14 | 2004-07-20 | Raytheon Company | Efficient multiple emitter boresight reference source |
US6891987B2 (en) | 2002-04-24 | 2005-05-10 | Hrl Laboratories, Llc | Multi-aperture beam steering system with wavefront correction based on a tunable optical delay line |
AU2003900878A0 (en) * | 2003-02-26 | 2003-03-13 | Tele-Ip Limited | Improved sodar sounding in the lower atmosphere |
US7180579B1 (en) | 2003-03-28 | 2007-02-20 | Irvine Sensors Corp. | Three-dimensional imaging processing module incorporating stacked layers containing microelectronic circuits |
US6950733B2 (en) | 2003-08-06 | 2005-09-27 | Ford Global Technologies, Llc | Method of controlling an external object sensor for an automotive vehicle |
JP2005202069A (ja) * | 2004-01-14 | 2005-07-28 | Sony Corp | 偏向素子及びこれを用いた画像表示装置 |
US7129510B2 (en) | 2004-10-29 | 2006-10-31 | Corning Incorporated | Optical sensors |
US7957648B2 (en) | 2005-02-28 | 2011-06-07 | The Invention Science Fund I, Llc | Electromagnetic device with integral non-linear component |
US7375804B2 (en) | 2005-03-01 | 2008-05-20 | Lockheed Martin Corporation | Single detector receiver for multi-beam LADAR systems |
EP1724609A1 (de) | 2005-05-18 | 2006-11-22 | Leica Geosystems AG | Verfahren zur Lagebestimmung einer Empfängereinheit |
US20080002176A1 (en) | 2005-07-08 | 2008-01-03 | Lockheed Martin Corporation | Lookdown and loitering ladar system |
CN101356450B (zh) * | 2005-12-19 | 2015-08-05 | 莱达科技股份有限公司 | 物体检测发光系统和方法 |
US7936448B2 (en) | 2006-01-27 | 2011-05-03 | Lightwire Inc. | LIDAR system utilizing SOI-based opto-electronic components |
US7544945B2 (en) | 2006-02-06 | 2009-06-09 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Vertical cavity surface emitting laser (VCSEL) array laser scanner |
EP2041515A4 (en) | 2006-07-13 | 2009-11-11 | Velodyne Acoustics Inc | HIGH DEFINITION LIDAR SYSTEM |
EP1901093B1 (de) | 2006-09-15 | 2018-11-14 | Triple-IN Holding AG | Aufnahme von Entfernungsbildern |
EP1916542B1 (en) | 2006-10-24 | 2009-06-17 | C.R.F. Società Consortile per Azioni | Optical method and device for measuring the distance from an obstacle |
JP2008227121A (ja) | 2007-03-13 | 2008-09-25 | Oki Electric Ind Co Ltd | 半導体デバイスの製造方法 |
US7746450B2 (en) | 2007-08-28 | 2010-06-29 | Science Applications International Corporation | Full-field light detection and ranging imaging system |
US7746449B2 (en) | 2007-11-14 | 2010-06-29 | Rosemount Aerospace Inc. | Light detection and ranging system |
US7697126B2 (en) | 2008-04-02 | 2010-04-13 | Spatial Integrated Systems, Inc. | Three dimensional spatial imaging system and method |
US9285459B2 (en) | 2008-05-09 | 2016-03-15 | Analog Devices, Inc. | Method of locating an object in 3D |
US8311374B2 (en) | 2008-07-29 | 2012-11-13 | University Of Washington | Beam generation and steering with integrated optical circuits for light detection and ranging |
WO2010016120A1 (ja) | 2008-08-06 | 2010-02-11 | 株式会社ニコンビジョン | 測距装置 |
CN101655563B (zh) | 2008-08-21 | 2012-07-04 | 金华市蓝海光电技术有限公司 | 一种高精度、低功耗激光测距的方法及其装置 |
KR101742583B1 (ko) * | 2009-01-27 | 2017-06-01 | 엑스와이지 인터랙티브 테크놀로지스 아이엔씨. | 단일 및/또는 다중 장치의 감지, 방위 및/또는 배치 범위를 위한 장치 및 방법 |
US20110316978A1 (en) | 2009-02-25 | 2011-12-29 | Dimensional Photonics International, Inc. | Intensity and color display for a three-dimensional metrology system |
US8085209B2 (en) | 2009-04-02 | 2011-12-27 | Viasat, Inc. | Sub-array polarization control using rotated dual polarized radiating elements |
US8125367B2 (en) | 2009-08-06 | 2012-02-28 | Irvine Sensors Corp. | AM chirp LADAR readout circuit and module |
GB0915775D0 (en) * | 2009-09-09 | 2009-10-07 | Univ Gent | Implantable sensor |
EP2517189B1 (en) * | 2009-12-22 | 2014-03-19 | Leddartech Inc. | Active 3d monitoring system for traffic detection |
US8964298B2 (en) | 2010-02-28 | 2015-02-24 | Microsoft Corporation | Video display modification based on sensor input for a see-through near-to-eye display |
US8467641B2 (en) | 2010-03-12 | 2013-06-18 | The Johns Hopkins University | System and method for using planar device to generate and steer light beam |
US8629977B2 (en) | 2010-04-14 | 2014-01-14 | Digital Ally, Inc. | Traffic scanning LIDAR |
WO2011136741A1 (en) | 2010-04-29 | 2011-11-03 | Agency For Science, Technology And Research | An optical arrangement and a method of forming the same |
CN102884444B (zh) | 2010-05-07 | 2014-08-13 | 三菱电机株式会社 | 激光雷达装置 |
EP3901653A3 (en) | 2010-05-17 | 2022-03-02 | Velodyne Lidar USA, Inc. | High definition lidar system |
US8200055B2 (en) | 2010-07-19 | 2012-06-12 | Harish Subbaraman | Two-dimensional surface normal slow-light photonic crystal waveguide optical phased array |
US8829417B2 (en) | 2010-11-08 | 2014-09-09 | The Johns Hopkins University | Lidar system and method for detecting an object via an optical phased array |
JP5567696B2 (ja) | 2011-01-26 | 2014-08-06 | 日本電信電話株式会社 | 導波路型偏波ビームスプリッタ |
US8659748B2 (en) | 2011-02-15 | 2014-02-25 | Optical Air Data Systems, Llc | Scanning non-scanning LIDAR |
US9222771B2 (en) * | 2011-10-17 | 2015-12-29 | Kla-Tencor Corp. | Acquisition of information for a construction site |
US8731247B2 (en) | 2012-01-20 | 2014-05-20 | Geodigital International Inc. | Densifying and colorizing point cloud representation of physical surface using image data |
US20130208256A1 (en) | 2012-02-10 | 2013-08-15 | Optical Air Data Systems, Llc. | LDV with Diffractive Optical Element for Transceiver Lens |
US9851443B2 (en) | 2012-03-16 | 2017-12-26 | Alcatel Lucent | Optical beam sweeper |
US8687086B1 (en) | 2012-03-30 | 2014-04-01 | Gopro, Inc. | On-chip image sensor data compression |
CN102636776B (zh) * | 2012-03-31 | 2013-10-23 | 中国科学院上海技术物理研究所 | THz级大带宽激光合成孔径雷达成像系统的数据处理方法 |
US9014903B1 (en) | 2012-05-22 | 2015-04-21 | Google Inc. | Determination of object heading based on point cloud |
KR102038533B1 (ko) | 2012-06-14 | 2019-10-31 | 한국전자통신연구원 | 레이저 레이더 시스템 및 목표물 영상 획득 방법 |
CA2816227A1 (en) * | 2012-07-06 | 2014-01-06 | Kapsch Trafficcom Ag | Method for detecting a wheel of a vehicle |
US9383753B1 (en) | 2012-09-26 | 2016-07-05 | Google Inc. | Wide-view LIDAR with areas of special attention |
US20160047901A1 (en) | 2012-12-25 | 2016-02-18 | Quanergy Systems, Inc. | Robust lidar sensor for broad weather, shock and vibration conditions |
US9476981B2 (en) | 2013-01-08 | 2016-10-25 | Massachusetts Institute Of Technology | Optical phased arrays |
US8988754B2 (en) | 2013-01-08 | 2015-03-24 | Massachusetts Institute Of Technology | Optical phased arrays with evanescently-coupled antennas |
US20140211194A1 (en) | 2013-01-27 | 2014-07-31 | Quanergy Systems, Inc. | Cost-effective lidar sensor for multi-signal detection, weak signal detection and signal disambiguation and method of using same |
US10132928B2 (en) | 2013-05-09 | 2018-11-20 | Quanergy Systems, Inc. | Solid state optical phased array lidar and method of using same |
US9069080B2 (en) | 2013-05-24 | 2015-06-30 | Advanced Scientific Concepts, Inc. | Automotive auxiliary ladar sensor |
US9683928B2 (en) | 2013-06-23 | 2017-06-20 | Eric Swanson | Integrated optical system and components utilizing tunable optical sources and coherent detection and phased array for imaging, ranging, sensing, communications and other applications |
US10126412B2 (en) | 2013-08-19 | 2018-11-13 | Quanergy Systems, Inc. | Optical phased array lidar system and method of using same |
US8836922B1 (en) | 2013-08-20 | 2014-09-16 | Google Inc. | Devices and methods for a rotating LIDAR platform with a shared transmit/receive path |
US20150192677A1 (en) | 2014-01-03 | 2015-07-09 | Quanergy Systems, Inc. | Distributed lidar sensing system for wide field of view three dimensional mapping and method of using same |
US9104086B1 (en) | 2014-02-24 | 2015-08-11 | Sandia Corporation | Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array |
US9753351B2 (en) | 2014-06-30 | 2017-09-05 | Quanergy Systems, Inc. | Planar beam forming and steering optical phased array chip and method of using same |
US9869753B2 (en) | 2014-08-15 | 2018-01-16 | Quanergy Systems, Inc. | Three-dimensional-mapping two-dimensional-scanning lidar based on one-dimensional-steering optical phased arrays and method of using same |
-
2014
- 2014-06-30 US US14/318,716 patent/US9753351B2/en active Active
-
2015
- 2015-06-23 KR KR1020177002229A patent/KR102017474B1/ko active IP Right Grant
- 2015-06-23 SG SG11201610963XA patent/SG11201610963XA/en unknown
- 2015-06-23 EP EP15830163.0A patent/EP3161533A4/en not_active Withdrawn
- 2015-06-23 WO PCT/US2015/037246 patent/WO2016022220A2/en active Application Filing
- 2015-06-23 CN CN201580043763.7A patent/CN106575017B/zh active Active
- 2015-06-23 JP JP2017521073A patent/JP2017521734A/ja active Pending
- 2015-06-29 TW TW104120988A patent/TWI647469B/zh active
-
2017
- 2017-09-05 US US15/695,864 patent/US9964833B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1442932A (zh) * | 2002-03-06 | 2003-09-17 | 中国科学院物理研究所 | 利用垂直腔面发射半导体激光器制作相控阵激光装置 |
US7095925B2 (en) * | 2004-11-03 | 2006-08-22 | Intel Corporation | Optical phased array transmitter/receiver |
US8203115B2 (en) * | 2008-07-29 | 2012-06-19 | University Of Washington | Method of performing hyperspectral imaging with photonic integrated circuits |
CN102362205A (zh) * | 2009-03-20 | 2012-02-22 | 阿尔卡特朗讯 | 具有多功能波导光栅的相干光学检测器 |
Non-Patent Citations (1)
Title |
---|
"Large-Scale Silicon Photonic Circuits for Optical Phased Arrays";Jie Sun;《IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS》;20131128;第20卷(第4期);标题,第Ⅱ-Ⅳ部分,图1、5、6 * |
Also Published As
Publication number | Publication date |
---|---|
EP3161533A2 (en) | 2017-05-03 |
CN106575017A (zh) | 2017-04-19 |
US9753351B2 (en) | 2017-09-05 |
EP3161533A4 (en) | 2018-02-28 |
KR20170028373A (ko) | 2017-03-13 |
US20180074384A1 (en) | 2018-03-15 |
WO2016022220A2 (en) | 2016-02-11 |
SG11201610963XA (en) | 2017-01-27 |
US9964833B2 (en) | 2018-05-08 |
TW201604569A (zh) | 2016-02-01 |
US20150378241A1 (en) | 2015-12-31 |
TWI647469B (zh) | 2019-01-11 |
KR102017474B1 (ko) | 2019-09-03 |
WO2016022220A3 (en) | 2016-05-12 |
JP2017521734A (ja) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106575017B (zh) | 平面波束形成和操纵的光学相控阵列芯片以及使用其的方法 | |
US11209546B1 (en) | Solid state optical phased array lidar and method of using same | |
EP3180655B1 (en) | Three-dimensional-mapping two-dimensional-scanning lidar based on one-dimensional-steering optical phased arrays and method of using same | |
US10605901B2 (en) | Beam steering device and optical apparatus including the same | |
TWI780120B (zh) | 模組式三維光學感測系統(二) | |
Poulton et al. | Optical phased array with small spot size, high steering range and grouped cascaded phase shifters | |
KR20200051519A (ko) | 파장 분할 다중화 lidar | |
CN113196088A (zh) | 具有差拍分量的光谱分析系统 | |
Zhang et al. | Fast beam steering enabled by a chip-scale optical phased array with 8× 8 elements | |
US11579299B2 (en) | 3D range imaging method using optical phased array and photo sensor array | |
US11664905B2 (en) | Optically-steered RF imaging receiver using photonic spatial beam processing | |
US11212010B2 (en) | Optically-steered RF imaging receiver using photonic spatial beam processing | |
CN115685135A (zh) | 一种发射模块、相关设备以及探测方法 | |
Zhou et al. | Butler matrix enabled multi-beam optical phased array for two-dimensional beam-steering and ranging | |
Hashemi | Monolithic optical phased arrays in silicon | |
Simoens et al. | FMCW chip-scale LiDARs for safer and smarter mobility of people and goods | |
Dahlem et al. | Photonic Integrated Circuits for LiDAR: Solid-State 2D Beamsteering | |
Paek et al. | 2D multiple beam steering with acoustically steered and rotated (ASTRO) true-time delay generator | |
Mustafa et al. | Opto-VLSI-based variable RF power splitter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |