CN106571798A - 优化的cmos模拟开关 - Google Patents

优化的cmos模拟开关 Download PDF

Info

Publication number
CN106571798A
CN106571798A CN201510644537.6A CN201510644537A CN106571798A CN 106571798 A CN106571798 A CN 106571798A CN 201510644537 A CN201510644537 A CN 201510644537A CN 106571798 A CN106571798 A CN 106571798A
Authority
CN
China
Prior art keywords
analog switch
nmos pass
terminal
butterfly circuit
volts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510644537.6A
Other languages
English (en)
Inventor
I.柯
K.W.侯
W.T.陈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microchip Technology Inc
Original Assignee
Microchip Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microchip Technology Inc filed Critical Microchip Technology Inc
Priority to CN201510644537.6A priority Critical patent/CN106571798A/zh
Priority to US15/265,341 priority patent/US10171072B2/en
Priority to JP2018517872A priority patent/JP2018535592A/ja
Priority to EP16854056.5A priority patent/EP3360252B1/en
Priority to KR1020187012630A priority patent/KR20180063254A/ko
Priority to PCT/US2016/051712 priority patent/WO2017062142A1/en
Priority to TW105131913A priority patent/TWI622269B/zh
Publication of CN106571798A publication Critical patent/CN106571798A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/546Control of the diagnostic device involving monitoring or regulation of device temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6874Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0054Gating switches, e.g. pass gates

Abstract

本文献公开了一种用于在超声弹性成像探头中使用的改进的模拟开关。这种改进的模拟开关与现有技术中的模拟开关相比产生更少的热耗散。

Description

优化的CMOS模拟开关
技术领域
本文献公开了一种用于在超声弹性成像设备中使用的改进的模拟开关。这种改进的模拟开关与现有技术中的模拟开关相比产生更少的热耗散。
背景技术
超声成像系统的最新发展包括使用剪切波弹性成像。图1示出了现有技术中的超声弹性成像设备100,该设备包括换能器105。换能器105使用声辐射力来引起“推压”脉冲150到软组织110中,该“推压”脉冲150产生剪切波140。软组织110具有硬化病变120(其可以是肿瘤或者其他医学异常),其包括感兴趣区130或在感兴趣区130附近。组织的硬度是基于所产生的剪切波传播通过该组织有多快来计算。当检测脉冲160与经过的剪切波140相互作用时,经过的剪切波140展示剪切波在特定时间的位置,从而允许计算剪切波140的速度。这个数值与感兴趣区内组织的硬度相关。通过使用多个几乎同时的推压脉冲150,并通过使用高级超快成像技术来跟踪剪切波140,该系统能每秒钟生成组织硬度(杨氏模量)的一个二维定量图。
图2示出了现有技术中超声弹性成像设备100的某些电气方面。超声弹性成像设备100包括示例性高电压发射路径和示例性低电压接收路径,示例性高电压发射路径包括放大器210和二极管对211,示例性低电压接收路径包括耦接到高电压隔离电路254的放大器250,高电压隔离电路254包括电阻器252和253以及二极管桥251。超声弹性成像设备100还包括探头选择继电器221、222、223、和224、以及探头231、232、233、和234。探头231被显示为连接到多路复用器270,多路复用器270包括模拟开关241、243、245、和247,这些模拟开关分别连接到换能器242、244、246、和248。应当理解,为探头232、233、和234也使用相同的结构构造(多路复用器270和换能器242、244、246、和248)。图1中的换能器105代表换能器242、244、246、和248。
参照图1和图2,声学推压脉冲150的振动频率在50-500Hz范围内。为了测量剪切波140的速度,每个探测脉冲170可持续300ms。为了检测剪切波140,设备100中的模拟开关241、243、245、和247需要驱动高电压换能器242、244、246、和248(由换能器105表示)约300ms。
现有技术中的模拟开关241、243、245、和247每一个都需要两个高电压开关并行工作,以避免可能损坏电路的过量热耗散。然而,并联连接的两个开关也使寄生电容加倍,并且影响图像质量。
事实上,所有现有技术中多路复用器270中的模拟开关241、243、245、和247都使用T型开关300,如图3中所示。在超声成像应用中,使用T型开关300就对于低于15pF的寄生电容和高于60dB的关断隔离将接通电阻限制到大约16欧姆。
图3示出了用于高电压多路复用器270中的模拟开关241、243、245、和247的常规T型开关300结构的示意图。T型开关300包括与NMOS晶体管320串联的NMOS晶体管310,具有分流NMOS晶体管330以实现60dB的关断隔离。NMOS晶体管310、320、和330每一个都包括厚栅极氧化层,其允许正向和负向的高的栅极电压摆幅,但代价是生成过量热量的接通电阻。厚栅极氧化层通常在5000-10000埃的范围内。
设备的高电压能力进一步劣化接通电阻/寄生电容折衷。在变化的源电压上固定的栅极偏压使正信号的接通电阻比负信号的接通电阻大得多,并产生二次谐波失真。
图4示出了示例性的NMOS晶体管400,其代表NMOS晶体管310、320、和330。NMOS晶体管400实际上包括NMOS晶体管410和二极管420,这是由于NMOS晶体管410的漏极和本体之间的接合。漏极和栅极二者都能操作最高至200V。
NMOS晶体管400的漏极/本体二极管结构使高电压器件基本上是整流器,即使其被关断也是如此。因此,NMOS晶体管410的本体需要被下拉到最大负电压,例如关断状态的-100V(VNN),正如图4中所示。分流NMOS晶体管330端接到-100V。第二串行器件(诸如NMOS晶体管320)将换能器与-100V端子隔离开。如果换能器能被端接到-100V,则这个器件不是必需的,但对于压电换能器而言通常并非是这样。
压电器件在经受高电场时展现非线性特性。这个强非线性材料特性是在亚晶粒级由局部偏振切换(即偏振方向变化)引起的。一旦压电材料工作于非线性模式中,材料就可能已经被损坏。因此,将压电换能器与高电压端接对于压电材料是有害的。这个特性在图5中在曲线图500和510中被示出。曲线图500和510示出了响应于电场变化的压电材料偏振变化。
在图6中示出了申请人先前发明的一种改进的T型开关,T型开关600包括与蝶形晶体管对635(包括NMOS晶体管630和640)串联的蝶形晶体管对615(包括NMOS晶体管610和620)以及分流蝶形晶体管对655(包括NMOS晶体管650和660),如图所示。NMOS晶体管610、620、630、640、650、和660每一个都包括薄栅极氧化层。薄栅极氧化层通常在100-200埃的范围内。与T型开关300相比,T型开关600使用更低栅极电压,并具有更高跨导。在接通电阻/电容比率方面,蝶形晶体管对615和635一起相当于单个200V漏极、200V栅极晶体管。然而,T型开关600经受大量热耗散。
需要的是与现有技术中的T型开关300和600相比产生更少热耗散的一种改进的模拟开关。
发明内容
优选实施例是将接通电阻减小到4-8欧姆的一种高电压CMOS开关电路拓扑结构,这与现有技术相比改善了2到4倍,但没有增大寄生电容。这种电路拓扑结构易于实现,并且适于例如构建能处理±100V模拟信号的4:1超声多路复用器(诸如多路复用器270)。对这个电路的电源供应是±6V,并且控制输入是0和+5V的电压水平,与标准CMOS电路兼容。该电路尤其可用于驱动用于超声弹性成像探头的高电压换能器。
附图说明
图1示出了一种现有技术中的超声弹性成像探头。
图2示出了这种现有技术中的超声弹性成像探头的电气方面。
图3示出了一种现有技术中的模拟T型开关。
图4示出了在图3所示的现有技术中的模拟T型开关中使用的晶体管结构。
图5示出了现有技术中的压电换能器的某些物理特性。
图6示出了另一种现有技术中的模拟T型开关。
图7示出了一种改进的模拟开关的一个实施例。
具体实施方式
图7示出了本发明的一个实施例。模拟开关700是T型开关600的一种改进型式,其中已经移除了串联蝶形晶体管对之一。模拟开关700包括蝶形晶体管对705(包括NMOS晶体管710和720)和执行分流功能的分流蝶形晶体管对725(包括NMOS晶体管730和740)。NMOS晶体管710、720、730、和740每一个都包括薄栅极氧化层。薄栅极氧化层通常在100-200埃的范围内。在这个构型中,蝶形晶体管对705可被视为是用于将高电压源连接到收发器的传导装置,分流蝶形晶体管对725可被视为是用于将电流从传导装置的端子分流到地的分流装置。
模拟开关700的接通电阻约为现有技术中T型开关600的接通电阻的一半,并且模拟开关700的寄生电容与现有技术中T型开关600的寄生电容相比也大大地降低。
模拟开关700的拓扑结构不受现有技术中T型开关300的压电材料非线性问题的影响,因为蝶形晶体管对725允许端接到地,而不是如现有技术T型开关300中那样端接到-100V。
与现有技术中T型开关300和600相比,利用模拟开关700实现了以下改进:
(1)在只使用大约±6V的电源的同时能转移大于±100V的电压。
(2)与标准5V CMOS电路兼容的输入。
(3)最高至200V峰到峰的模拟信号能力,具有>3A的峰值模拟信号电流。
(4)低于8欧姆的独立于信号的接通电阻。
(5)减小到10pF的寄生电容。
(6)在未选换能器被端接时没有关断隔离问题。
综上所述,提出了一种使用100V薄栅极氧化NMOS晶体管的高电压模拟开关700。它是由现有技术中T型开关600通过移除一个串联器件并将未选换能器直接分接到地而改进得到的。使用这种拓扑结构的电路在超声成像、剪切波弹性成像、以及甚至高强度聚焦超声中具有广泛的潜在应用,在高强度聚焦超声中需要高功率超声透射。例如,模拟开关700适于在4:1超声多路复用器中使用,诸如超声弹性成像设备100中的多路复用器270。
虽然已经参考附图结合本发明的实施例充分地描述了本发明,但应当指出,各种变化和修改对于本领域的技术人员将变得明显。这样的变化和修改应当被理解为是被包括在所附权利要求所限定的本发明的范围之内。

Claims (12)

1.一种模拟开关,所述模拟开关包括:
第一蝶形电路,所述第一蝶形电路包括与第二薄栅极氧化NMOS晶体管串联的第一薄栅极氧化NMOS晶体管,所述第一蝶形电路包括第一端子和第二端子,所述第二端子耦接到高电压源;
第二蝶形电路,所述第二蝶形电路包括与第四薄栅极氧化NMOS晶体管串联的第三薄栅极氧化NMOS晶体管,所述第二蝶形电路包括耦接到所述第二端子的第三端子和耦接到地的第四端子。
2.根据权利要求1所述的模拟开关,其中所述模拟开关的接通电阻小于8欧姆。
3.根据权利要求1所述的模拟开关,其中所述模拟开关的寄生电容小于10皮法。
4.根据权利要求1所述的模拟开关,其中所述高电压源具有大于200伏的峰到峰幅值。
5.根据权利要求1所述的模拟开关,其中所述第一蝶形电路需要在-6伏到+6伏范围内的电源电压。
6.根据权利要求5所述的模拟开关,其中所述第二蝶形电路需要在-6伏到+6伏范围内的电源电压。
7.一种模拟开关,所述模拟开关包括:
传导装置,用于将高电压源连接到收发器;和
分流装置,用于将电流从所述传导装置的端子分流到地。
8.根据权利要求7所述的模拟开关,其中所述模拟开关的接通电阻小于8欧姆。
9.根据权利要求7所述的模拟开关,其中所述模拟开关的寄生电容小于10皮法。
10.根据权利要求7所述的模拟开关,其中所述高电压源具有大于200伏的峰到峰幅值。
11.根据权利要求7所述的模拟开关,其中所述传导装置需要在-6伏到+6伏范围内的电源电压。
12.根据权利要求11所述的模拟开关,其中所述分流装置需要在-6伏到+6伏范围内的电源电压。
CN201510644537.6A 2015-10-08 2015-10-08 优化的cmos模拟开关 Pending CN106571798A (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201510644537.6A CN106571798A (zh) 2015-10-08 2015-10-08 优化的cmos模拟开关
US15/265,341 US10171072B2 (en) 2015-10-08 2016-09-14 Optimized CMOS analog switch
JP2018517872A JP2018535592A (ja) 2015-10-08 2016-09-14 最適化されたcmosアナログスイッチ
EP16854056.5A EP3360252B1 (en) 2015-10-08 2016-09-14 An optimized cmos analog switch
KR1020187012630A KR20180063254A (ko) 2015-10-08 2016-09-14 최적화된 cmos 아날로그 스위치
PCT/US2016/051712 WO2017062142A1 (en) 2015-10-08 2016-09-14 An optimized cmos analog switch
TW105131913A TWI622269B (zh) 2015-10-08 2016-10-03 最佳化cmos類比開關

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510644537.6A CN106571798A (zh) 2015-10-08 2015-10-08 优化的cmos模拟开关

Publications (1)

Publication Number Publication Date
CN106571798A true CN106571798A (zh) 2017-04-19

Family

ID=58500125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510644537.6A Pending CN106571798A (zh) 2015-10-08 2015-10-08 优化的cmos模拟开关

Country Status (6)

Country Link
US (1) US10171072B2 (zh)
EP (1) EP3360252B1 (zh)
JP (1) JP2018535592A (zh)
KR (1) KR20180063254A (zh)
CN (1) CN106571798A (zh)
TW (1) TWI622269B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431514A (zh) * 2020-06-11 2020-07-17 深圳市鼎阳科技股份有限公司 一种宽带缓冲模拟开关电路和集成电路

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9778348B1 (en) * 2016-03-31 2017-10-03 Butterfly Network, Inc. Symmetric receiver switch for bipolar pulser
US10210946B2 (en) * 2016-07-08 2019-02-19 Analog Devices, Inc. Electronic switch exhibiting low off-state leakage current
US10141926B2 (en) * 2016-07-19 2018-11-27 Ciena Corporation Ultra-low power cross-point electronic switch apparatus and method
US10511297B2 (en) 2017-07-25 2019-12-17 Psemi Corporation High-speed switch with accelerated switching time
GB2579678B (en) * 2018-12-11 2021-10-06 Cirrus Logic Int Semiconductor Ltd Switch arrangements
US10855258B1 (en) 2019-08-16 2020-12-01 Cirrus Logic, Inc. Voltage control
US11921240B2 (en) 2019-09-19 2024-03-05 Bfly Operations, Inc. Symmetric receiver switch for ultrasound devices
US11133836B1 (en) * 2020-07-16 2021-09-28 Nxp Usa, Inc. High isolation radio frequency switch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595847A (en) * 1983-10-20 1986-06-17 Telmos, Inc. Bi-directional high voltage analog switch having source to source connected field effect transistors
JPH098621A (ja) * 1995-06-16 1997-01-10 Nec Corp Fetスイッチ回路
WO2003032431A2 (en) * 2001-10-10 2003-04-17 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
CN1595801A (zh) * 2003-09-08 2005-03-16 通用电气公司 用于超声转换器阵列的高电压开关的方法和装置
US20110241755A1 (en) * 2010-03-31 2011-10-06 Auriga Measurement Systems, LLC High Power Radio Frequency (RF) Switch
CN103595380A (zh) * 2012-08-17 2014-02-19 立积电子股份有限公司 互补式开关射频切换器
US20150263721A1 (en) * 2014-03-12 2015-09-17 Kabushiki Kaisha Toshiba Semiconductor switch circuit and semiconductor substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012123A (en) 1989-03-29 1991-04-30 Hittite Microwave, Inc. High-power rf switching system
US6836159B2 (en) * 2003-03-06 2004-12-28 General Electric Company Integrated high-voltage switching circuit for ultrasound transducer array
US7756486B1 (en) 2005-11-16 2010-07-13 Marvell International Ltd. Transmitter and receiver impedance control using shunt switches
US8547159B2 (en) 2011-05-13 2013-10-01 Fairchild Semiconductor Corporation Constant Vgs analog switch
US9837324B2 (en) 2013-11-12 2017-12-05 Skyworks Solutions, Inc. Devices and methods related to radio-frequency switches having improved on-resistance performance
JP6563180B2 (ja) * 2014-08-07 2019-08-21 エイブリック株式会社 半導体集積回路装置
US9401659B2 (en) * 2014-11-12 2016-07-26 Monolithic Power Systems, Inc. High voltage analog switch
CN105811946B (zh) * 2014-12-31 2019-01-15 微芯片科技公司 在不利用高电压电源情况下传输高电压信号的模拟开关

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595847A (en) * 1983-10-20 1986-06-17 Telmos, Inc. Bi-directional high voltage analog switch having source to source connected field effect transistors
JPH098621A (ja) * 1995-06-16 1997-01-10 Nec Corp Fetスイッチ回路
WO2003032431A2 (en) * 2001-10-10 2003-04-17 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
CN1595801A (zh) * 2003-09-08 2005-03-16 通用电气公司 用于超声转换器阵列的高电压开关的方法和装置
US20110241755A1 (en) * 2010-03-31 2011-10-06 Auriga Measurement Systems, LLC High Power Radio Frequency (RF) Switch
CN103595380A (zh) * 2012-08-17 2014-02-19 立积电子股份有限公司 互补式开关射频切换器
US20150263721A1 (en) * 2014-03-12 2015-09-17 Kabushiki Kaisha Toshiba Semiconductor switch circuit and semiconductor substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
上海市电子学会计算机技术专业组: "《八十年代的电子计算机》", 31 July 1980, 上海科学技术文献出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431514A (zh) * 2020-06-11 2020-07-17 深圳市鼎阳科技股份有限公司 一种宽带缓冲模拟开关电路和集成电路

Also Published As

Publication number Publication date
US10171072B2 (en) 2019-01-01
TW201724748A (zh) 2017-07-01
EP3360252A4 (en) 2019-05-15
JP2018535592A (ja) 2018-11-29
EP3360252A1 (en) 2018-08-15
US20170104481A1 (en) 2017-04-13
TWI622269B (zh) 2018-04-21
KR20180063254A (ko) 2018-06-11
EP3360252B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN106571798A (zh) 优化的cmos模拟开关
CN107967080A (zh) 配置成按照时间共享方式操作显示驱动和触摸感测的显示装置以及其上采用的半导体装置
CN209450552U (zh) 电子电路以及相应的超声设备
US20100321089A1 (en) Complementary high voltage switched current source integrated circuit
US10873328B2 (en) Driver circuit, corresponding ultrasound apparatus and method
TWI530926B (zh) 源極驅動器及顯示裝置
CN105811946B (zh) 在不利用高电压电源情况下传输高电压信号的模拟开关
Jung et al. Supply-doubled pulse-shaping high voltage pulser for CMUT arrays
TW201331904A (zh) 源極驅動電路、面板驅動裝置及液晶顯示設備
JP6325379B2 (ja) スイッチ回路および半導体集積回路装置
KR100416686B1 (ko) 의료용 초음파 진단 시스템에 사용되는 집적된 고전압펄스 발생 회로
KR101626507B1 (ko) 고집적 고전압 아날로그 프론트엔드 집적회로 및 이를 이용하는 초음파 영상시스템
Holen et al. A high-voltage cascode-connected three-level pulse-generator for bio-medical ultrasound applications
JP2015518313A (ja) ソースフォロワベースの電圧モードトランスミッタ
JP2007111257A (ja) 超音波診断装置および超音波プローブ
US10856073B2 (en) Switch arrangements
WO2011148446A1 (ja) レベルシフタおよびそれを備えた半導体集積回路
JP2008289780A (ja) 超音波診断装置および超音波プローブ
CN201365236Y (zh) 互补转换驱动电路
WO2017062142A1 (en) An optimized cmos analog switch
JP5718152B2 (ja) 超音波探触子、超音波診断装置
CN106936424A (zh) 输出级电路
TW201025855A (en) Transmitter
Vaishnavi et al. Design and analysis of level shifter in high voltage transmitter
CN211160544U (zh) 一种超声波换能器驱动电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170419

RJ01 Rejection of invention patent application after publication