CN106531985B - 一种碳纳米带包覆磷酸铁锂材料的制备方法 - Google Patents

一种碳纳米带包覆磷酸铁锂材料的制备方法 Download PDF

Info

Publication number
CN106531985B
CN106531985B CN201610891065.9A CN201610891065A CN106531985B CN 106531985 B CN106531985 B CN 106531985B CN 201610891065 A CN201610891065 A CN 201610891065A CN 106531985 B CN106531985 B CN 106531985B
Authority
CN
China
Prior art keywords
carbon nanobelts
lithium ion
lifepo
preparation
ion batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610891065.9A
Other languages
English (en)
Other versions
CN106531985A (zh
Inventor
杨国龙
王海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen OptimumNano Energy Co Ltd
Original Assignee
Shenzhen OptimumNano Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen OptimumNano Energy Co Ltd filed Critical Shenzhen OptimumNano Energy Co Ltd
Priority to CN201610891065.9A priority Critical patent/CN106531985B/zh
Publication of CN106531985A publication Critical patent/CN106531985A/zh
Priority to EP17195773.1A priority patent/EP3309125A1/en
Priority to US15/730,759 priority patent/US20180102530A1/en
Application granted granted Critical
Publication of CN106531985B publication Critical patent/CN106531985B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种碳纳米带包覆磷酸铁锂材料的制备方法,包括如下步骤:步骤一:将碳纳米带通过搅拌和超声分散方式充分均匀分散于水溶液中;步骤二:在惰性气体保护下,向步骤一得到的混合物中按摩尔比为Li:Fe:P=1:1:1的比加入锂源、铁源及磷源,并加入水搅拌成为浆料并进行回流;步骤三:洗涤并干燥得到初级的碳纳米带包覆的磷酸铁锂材料;步骤四:将步骤三得到的初级的碳纳米带包覆的磷酸铁锂材料在5‑10v/v%H2的氩气混合气氛中进行高温退火,获得最终的碳纳米带包覆的磷酸铁锂材料。

Description

一种碳纳米带包覆磷酸铁锂材料的制备方法
【技术领域】
本发明涉及电池材料技术领域,尤其涉及一种碳纳米带包覆磷酸铁锂材料的制备方法。
【背景技术】
磷酸铁锂(LiFePO4)电池作为一种绿色环保能源,以其高安全性、良好的高温特性、长的循环寿命、对环境友好、来源广、价格低廉等优点引起人们的高度关注,逐渐成为动力电池的重要选择。然而,磷酸铁锂材料本身较差的电子导电性和低的锂离子扩散性,导致其电化学性能并不太理想,对磷酸铁锂材料的改进通常采用碳包覆技术,现有的碳包覆磷酸铁锂技术中使用常规的碳源进行包覆,包覆后的磷酸铁锂导电性能一般,且碳包覆质量分数通常达到5%甚至10%,大量碳材料的使用会促进电极活性材料的溶解以及电解液在其表面的氧化,从而使得电极的循环性能变差、不可逆容量增加。
近几年来迅速兴起的两种用于磷酸铁锂包覆的纳米材料为碳纳米管和石墨烯。然而,碳纳米管包覆为线接触包覆,包覆接触面积小;石墨烯为二维纳米结构,比表面积较大,但其柔韧性、结构灵活可调性比碳纳米管差,难以充分包覆磷酸铁锂纳米颗粒的表面。
【发明内容】
本发明的目的是提供一种锂离子导电率高且所应用的电池倍率性能优异的碳纳米带包覆磷酸铁锂材料的制备方法。
为了实现上述目的,本发明提供一种碳纳米带包覆磷酸铁锂材料的制备方法,包括如下步骤:
步骤一:将碳纳米带通过搅拌和超声分散方式充分均匀分散于水溶液中;
步骤二:在惰性气体保护下,向步骤一得到的混合物中按摩尔比为Li:Fe:P=1:1:1的比加入取锂源、铁源及磷源,并加入水搅拌成为浆料并进行回流;
步骤三:洗涤并干燥得到初级的碳纳米带包覆的磷酸铁锂材料;
步骤四:将步骤三得到的初级的碳纳米带包覆的磷酸铁锂材料在5-10v/v%H2的氩气混合气氛中进行高温退火,获得最终的碳纳米带包覆的磷酸铁锂材料;所述步骤一中的碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-20):1,宽度与长度的比例为1:(5-25)。
相比于现有技术,本发明提供的碳纳米带包覆磷酸铁锂材料的制备方法,使用的碳包覆材料为碳纳米带,碳纳米带的碳层是一种开放的结构,相对碳纳米管具有更大的比表面积及孔结构,提供了更多的锂离子反应界面;同时带与带之间由于大的比表面积及柔韧性的相互作用,形成了三维多孔结构,能很好的形成导电网络,更加有利于电极活性材料与电解液的接触,缩短了锂离子及电解液的传输扩散路径,能很好的提升其作为锂离子电池倍率性能。
【附图说明】
图1为本发明实施例1所使用的碳纳米带的SEM图;
图2为本发明实施例1所制备的碳纳米带包覆磷酸铁锂材料的SEM图;
图3为本发明实施例1所制备的碳纳米带包覆磷酸铁锂材料的的锂离子电池倍率充电性能图;
图4为本发明实施例3所制备的碳纳米带包覆磷酸铁锂材料的SEM图;
图5为本发明实施例1和实施例4所制备的碳纳米带包覆磷酸铁锂材料的锂离子电池循环性能图。
【具体实施方式】
为了使本发明的目的、技术方案和有益技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
本发明提供一种碳纳米带包覆磷酸铁锂材料的制备方法,包括如下步骤:
步骤一:将碳纳米带通过搅拌和超声分散方式充分均匀分散于水溶液中;
步骤二:在惰性气体保护下,向步骤一得到的混合物中按摩尔比为Li:Fe:P=1:1:1的比加入锂源、铁源及磷源,并加入水搅拌成为浆料并进行回流;
步骤三:洗涤并干燥得到初级的碳纳米带包覆的磷酸铁锂材料;
步骤四:将步骤三得到的初级的碳纳米带包覆的磷酸铁锂材料在5-10v/v%H2(即氢气在氩气中的体积比为5-10%)的氩气混合气氛中进行高温退火,获得最终的碳纳米带包覆的磷酸铁锂材料。
具体的,所述步骤一中的碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-20):1,宽度与长度的比例为1:(5-25);所述步骤一得到的混合物的固含量为2-10wt%;所述步骤一中的搅拌和超声分散方式为:先搅拌分散0.5-4h,后进行超声分散0.5-4h。
具体的,所述步骤二所得的浆料的含碳量为2-5wt%,固含量为35-65wt%;所述步骤二中的回流温度为90℃-110℃,回流时间为4-12h;所述步骤二中的锂源为:碳酸锂或氢氧化锂或磷酸二氢锂;所述步骤二中的铁源为:氧化铁或磷酸铁或草酸亚铁;所述步骤二中的磷源为:磷酸二氢铵或磷酸氢二铵或磷酸二氢锂或磷酸铁。
具体的,所述步骤四中的退火温度为400-1200℃,退火时间为4-16h。
本发明提供的碳纳米带包覆磷酸铁锂材料的制备方法,使用的碳包覆材料为碳纳米带,碳纳米带的碳层是一种开放的结构,相对碳纳米管具有更大的比表面积及孔结构,提供了更多的锂离子反应界面;同时带与带之间由于大的比表面积及柔韧性的相互作用,形成了三维多孔结构,能很好的形成导电网络,更加有利于电极活性材料与电解液的接触,缩短了锂离子及电解液的传输扩散路径,能很好的提升其作为锂离子电池倍率性能。
实施例1:
1、将碳纳米带分散于水溶液中,通过搅拌和超声分散方式事情充分均匀分散于水溶液中;其中,碳纳米带的厚度为5-15nm,宽度与厚度的比例为(10-15):1,宽度与长度的比例为1:(10-20);所得混合物的固含量为5wt%;所述搅拌和超声分散方式为:先搅拌分散2h,后进行超声分散2h;
2、在惰性气体保护下,向步骤一所得的混合物按摩尔比为Li:Fe:P=1:1:1的比加入锂源、铁源和磷源,并加入水搅拌成为浆料并进行回流;其中,所得浆料的含碳量为3wt%,固含量为45wt%;所述锂源、铁源及磷源分别为:碳酸锂、氧化铁及磷酸二氢铵;所述回流温度为100℃,回流时间为8h;
3、洗涤并干燥得到初级的碳纳米带包覆的磷酸铁锂材料;
4、将步骤三得到的初级的碳纳米带包覆的磷酸铁锂材料在5v/v%H2的氩气混合气氛中进行高温退火获得最终的碳纳米带包覆的磷酸铁锂材料;其中,所述退火温度为600℃,退火时间为8h。
实施例2:
制备方法基本与实施例1相同,不同之处为步骤1的碳纳米带的厚度为5-10nm,宽度与厚度的比例为(15-20):1,宽度与长度的比例为1:(10-15)。
实施例3:
制备方法基本与实施例1相同,不同之处为步骤1所得的混合物的固含量为8wt%,搅拌分散时间为1.5h,超声分散时间为4h;
实施例4:
制备方法基本与实施例1相同,不同之处为步骤2中的锂源、铁源、磷源的添加量反应后形成的浆料含碳量为5wt%,固含量为50wt%。
实施例5:
制备方法基本与实施例1相同,不同之处为步骤2中的锂源与磷源为同一物质:磷酸二氢锂。
实施例6:
制备方法基本与实施例1相同,不同之处为步骤2中的铁源与磷源为同一物质磷酸铁。
实施例7:
制备方法基本与实施例1相同,不同之处为步骤2的回流温度为110℃,回流时间为10h。
实施例8:
制备方法基本与实施例1相同,不同之处为步骤4的退火温度为800℃,退火时间为10h。
图3为本发明实施例1所制备的碳纳米带包覆磷酸铁锂材料的倍率充电性能图,从图3可以看出,本发明实施例1所制备的碳纳米带包覆磷酸铁锂材料的锂离子电池在1CDischarge、3C Discharge及5C Discharge的情况下均表现出良好的倍率特性;图5为本发明实施例1和实施例4所制备的碳纳米带包覆磷酸铁锂材料的锂离子电池循环性能图,从图5可以看出,本发明实施例1和实施例4所制备的碳纳米带包覆磷酸铁锂材料的锂离子电池在充放电次数逐渐增加的情况下,容量保持率依然在90%以上,具有良好的循环性能。
本发明并不仅仅限于说明书和实施方式中所描述,因此对于熟悉领域的人员而言可容易地实现另外的优点和修改,故在不背离权利要求及等同范围所限定的一般概念的精神和范围的情况下,本发明并不限于特定的细节、代表性的设备和这里示出与描述的图示示例。

Claims (9)

1.一种碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:包括如下步骤:
步骤一:将碳纳米带通过搅拌和超声分散方式充分均匀分散于水溶液中;
步骤二:在惰性气体保护下,向步骤一得到的混合物中按摩尔比为Li:Fe:P=1:1:1的比加入锂源、铁源及磷源,并加入水搅拌成为浆料并进行回流;
步骤三:洗涤并干燥得到初级的碳纳米带包覆的磷酸铁锂材料;
步骤四:将步骤三得到的初级的碳纳米带包覆的磷酸铁锂材料在5-10v/v%H2的氩气混合气氛中进行高温退火,获得最终的碳纳米带包覆的磷酸铁锂材料;所述步骤一中的碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-20):1,宽度与长度的比例为1:(5-25)。
2.如权利要求1所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤一得到的混合物的固含量为2-10wt%。
3.如权利要求2所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤一中的搅拌和超声分散方式为:先搅拌分散0.5-4h,后进行超声分散0.5-4h。
4.如权利要求3所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤二所得的浆料的含碳量为2-5wt%,固含量为35-65wt%。
5.如权利要求4所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤二中的回流温度为90℃-110℃,回流时间为4-12h。
6.如权利要求5所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤四中的退火温度为400-1200℃,退火时间为4-16h。
7.如权利要求1所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤二中的锂源为:碳酸锂或氢氧化锂或磷酸二氢锂。
8.如权利要求1所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤二中的铁源为:氧化铁或磷酸铁或草酸亚铁。
9.如权利要求1所述的碳纳米带包覆磷酸铁锂材料的制备方法,其特征在于:所述步骤二中的磷源为:磷酸二氢铵或磷酸氢二铵或磷酸二氢锂或磷酸铁。
CN201610891065.9A 2016-10-12 2016-10-12 一种碳纳米带包覆磷酸铁锂材料的制备方法 Expired - Fee Related CN106531985B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610891065.9A CN106531985B (zh) 2016-10-12 2016-10-12 一种碳纳米带包覆磷酸铁锂材料的制备方法
EP17195773.1A EP3309125A1 (en) 2016-10-12 2017-10-10 Method for preparing lithium iron phosphate material coated with carbon nanoribbon
US15/730,759 US20180102530A1 (en) 2016-10-12 2017-10-12 Method for preparing lithium iron phosphate material coated with carbon nanoribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610891065.9A CN106531985B (zh) 2016-10-12 2016-10-12 一种碳纳米带包覆磷酸铁锂材料的制备方法

Publications (2)

Publication Number Publication Date
CN106531985A CN106531985A (zh) 2017-03-22
CN106531985B true CN106531985B (zh) 2018-07-24

Family

ID=58331579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610891065.9A Expired - Fee Related CN106531985B (zh) 2016-10-12 2016-10-12 一种碳纳米带包覆磷酸铁锂材料的制备方法

Country Status (3)

Country Link
US (1) US20180102530A1 (zh)
EP (1) EP3309125A1 (zh)
CN (1) CN106531985B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284503B (zh) * 2021-11-09 2024-05-14 浙江南都电源动力股份有限公司 一种锂电池正极集流体、电池及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710615A (zh) * 2009-11-19 2010-05-19 鞍山凯信工矿设备有限公司 磷酸铁锂与碳纳米管复合正极材料的制备方法
CN102569787A (zh) * 2010-12-21 2012-07-11 上海杉杉科技有限公司 一种磷酸亚铁锂复合材料及其制备方法和用途
CN104009225A (zh) * 2014-05-13 2014-08-27 昆明理工大学 一种合成硅酸铁锂/结晶碳复合正极材料的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858395B2 (ja) * 2010-03-31 2016-02-10 日本ケミコン株式会社 金属化合物ナノ粒子とカーボンの複合体の製造方法
US20130143123A1 (en) * 2010-08-20 2013-06-06 National University Of Singapore Mesoporous metal phosphate materials for energy storage application
CN102544491B (zh) * 2012-01-12 2016-01-13 常州第六元素材料科技股份有限公司 一种掺杂石墨烯的磷酸铁锂正极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710615A (zh) * 2009-11-19 2010-05-19 鞍山凯信工矿设备有限公司 磷酸铁锂与碳纳米管复合正极材料的制备方法
CN102569787A (zh) * 2010-12-21 2012-07-11 上海杉杉科技有限公司 一种磷酸亚铁锂复合材料及其制备方法和用途
CN104009225A (zh) * 2014-05-13 2014-08-27 昆明理工大学 一种合成硅酸铁锂/结晶碳复合正极材料的方法

Also Published As

Publication number Publication date
EP3309125A1 (en) 2018-04-18
CN106531985A (zh) 2017-03-22
US20180102530A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
CN105552344B (zh) 一种锂离子电池正极片、锂离子电池及其制备方法
CN106450197B (zh) 基于石墨烯/氧化物的电极材料及包含该电极材料的锂硫电池
CN107482182B (zh) 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法
CN101442126B (zh) 一种碳纳米管键接磷酸亚铁锂复合电极材料及其制备方法
CN102769126A (zh) 一种纳米硫/氧化石墨烯复合电极材料的制备方法
CN103311541B (zh) 一种锂离子电池复合正极材料及其制备方法
CN106654169A (zh) 一种锂离子电池正极片及其制备方法
CN108306013A (zh) 一种快充快放型高功率锂离子电池及制作方法
CN109037659A (zh) 一种双层碳包覆磷酸铁锂材料的制备方法
CN103500820A (zh) 一种用于锂硫电池的硫/多孔碳包覆碳纳米管复合正极材料及其制备方法
CN108461707A (zh) 一种锂离子电池电极材料的制备方法
CN109244391A (zh) 一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法
CN105355849A (zh) 锂电池负极添加剂、锂离子电池、制备方法及应用
CN103975468B (zh) 复合粒子及其制造方法、二次电池用电极材料及二次电池
CN102760880A (zh) 一种高功率磷酸铁锂电池材料及其制备方法
CN108039458A (zh) 一种钠离子电池正极材料及其制备方法和应用
CN106058173A (zh) 一种锂硫电池用类石墨烯碳材料/硫复合正极材料及其制备方法和应用
CN109449429A (zh) 一种磷酸铁锂/碳化硅复合型材料及其制备方法
Huang et al. Aligned nickel–cobalt oxide nanosheet arrays for lithium ion battery applications
CN104124439A (zh) 一种锂离子电池用橄榄石型磷酸盐正极材料的制备方法
CN106935838A (zh) 制备单向择优生长高电化学活性的磷酸铁锂四元复合材料的方法
CN103280579A (zh) 一种高性能锂离子电池正极材料磷酸铁锰锂及其制备方法
CN104779390B (zh) 类球形纳米磷酸锰锂及其制备方法和应用
CN105489897B (zh) 锂离子电池三元正极材料用导电液及其制备方法、锂离子电池
CN101621121B (zh) 高功率型磷酸铁锂复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20180920

Granted publication date: 20180724

PD01 Discharge of preservation of patent
PD01 Discharge of preservation of patent

Date of cancellation: 20200320

Granted publication date: 20180724

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180724

Termination date: 20181012