CN106526589A - 一种基于涡旋电磁波的雷达目标二维成像方法 - Google Patents

一种基于涡旋电磁波的雷达目标二维成像方法 Download PDF

Info

Publication number
CN106526589A
CN106526589A CN201611217914.9A CN201611217914A CN106526589A CN 106526589 A CN106526589 A CN 106526589A CN 201611217914 A CN201611217914 A CN 201611217914A CN 106526589 A CN106526589 A CN 106526589A
Authority
CN
China
Prior art keywords
electromagnetic wave
target
radar target
echo
oam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611217914.9A
Other languages
English (en)
Other versions
CN106526589B (zh
Inventor
张朝阳
武华阳
袁裕清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201611217914.9A priority Critical patent/CN106526589B/zh
Publication of CN106526589A publication Critical patent/CN106526589A/zh
Application granted granted Critical
Publication of CN106526589B publication Critical patent/CN106526589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Abstract

本发明公开了一种基于涡旋电磁波的雷达目标二维成像方法。本发明基于由均匀环形天线阵列生成的涡旋电磁波投射下理想散射点的回波模型,对雷达目标回波信号进行轨道角动量(OAM)模式采样并计算相关函数,运用多重信号分类(MUSIC)算法得到空间谱函数并进行二维谱峰搜索从而实现对雷达目标俯仰角和方位角的二维联合检测。本发明提出的方案与传统的基于平面波MUSIC算法的到达角(DOA)估计方案相比,能够实现更高的角度分辨率,同时相对于现有的基于涡旋电磁波的雷达目标方位角成像方案,能够在不增加硬件代价的前提下同时实现目标俯仰角的成像,这对现代新体制的雷达设计具有重要参考和借鉴意义。

Description

一种基于涡旋电磁波的雷达目标二维成像方法
技术领域
本发明涉及雷达目标成像领域,具体涉及一种基于涡旋电磁波的雷达目标二维成像方法。
背景技术
无线通信技术的飞速发展,为现代社会高效快速的信息交换提供了极大的方便。然而,移动设备使用量的快速增长、新型业务的不断涌现使得即使采用了诸如多端口、信道复用等提高通信容量的技术,仍然不可避免因有限的频谱资源而产生的频谱拥塞问题,在这样的背景下,轨道角动量(OAM)作为电磁场的基本物理量,由于其理论上拥有无穷可数且相互正交的模式,因此有希望能够解决上述射频段中无线通信信道的频谱拥塞问题。
实际上,OAM的概念在上世纪初已被提及,然而囿于当时器件以及技术因素的限制,没能得到广泛应用。直到上世纪九十年代,随着光学技术的发展,人们才发现OAM在光学领域所具有的巨大应用潜力,在此后的几十年中,OAM被广泛应用于原子、分子的微观操纵,光学成像以及光通信等领域。而在射频域中,直到近几年在解决了如何生成携带OAM的射频电磁波问题后,射频OAM才逐渐得到关注。在射频段中,电磁场能够同时携带线动量和角动量,而角动量又包括自旋角动量和轨道角动量,前者与电磁波的偏振行为相关,是波的内在属性,而后者与波的等相位面相关,是电磁波的外在属性。携带OAM的电磁波又被称为涡旋电磁波,其OAM的大小通过OAM模式数l来表征,模式l理论上可以取任意的整数值,携带不同OAM模式l的涡旋电磁波,其等相位面具有不同的螺旋程度,研究表明,不同OAM模式的涡旋电磁波之间携带的信息是相互正交的,因此无穷可数且相互正交的OAM模式为大幅提高无线通信的频谱利用效率提供了可能。
当前关于OAM在射频段的应用研究主要集中在通信领域,即如何利用OAM来增加当前无线通信信道的容量,从而提高无线通信的频谱效率。然而,不同于传统电磁波所具有的平面等相位面,涡旋电磁波具有空间螺旋形的等相位面,同时,由于OAM模式l可取任意整数,对应涡旋电磁波的等相位面理论上可以作无穷多种程度的螺旋,如果能将涡旋电磁波的这一等相位面特性应用于雷达信息获取领域,理应能够取得比平面波雷达更好的空间目标成像效果,即得到更高的雷达目标分辨率。当前已有的基于涡旋电磁波的雷达目标成像方法有逆投影法、滤波-傅里叶变化法以及回波信号的OAM模式采样法,这几种方法采用均匀环形天线阵列作为雷达发射端,发射涡旋电磁波投射到空间目标上,根据回波信号的特性进行相应的信号处理,从而得到雷达目标的方位角成像。上述这几种OAM雷达成像方法均只能对目标的方位角进行检测,得到目标的方位角像,然而对于处于三维空间中的散射目标来说,如果只得到目标的方位角像以及距离像而目标的俯仰角像无法得到,就无法对目标的俯仰角参数进行检测,从而无法确定目标的具体位置所在,这样的雷达是毫无实用意义的。而且已有的OAM雷达成像算法相对于传统的基于平面电磁波的目标DOA估计算法,如经典的MUSIC、ESPRIT等算法,就方位角成像而言,也无法获得更高的成像分辨率。因此,要探索涡旋电磁波在雷达目标成像方面的潜力,就需要充分利用涡旋电磁波所具有的空间螺旋形等相位面特性,发掘出这种螺旋形等相位面电磁波相对于平面电磁波所具有的空间分辨率优势,从而为新型雷达设计以及目标识别技术提供有价值的参考。
发明内容
本发明提出一种基于涡旋电磁波的雷达目标二维成像方法,其目的在于解决现有OAM雷达不能实现目标的俯仰角成像问题,从而实现目标的俯仰角和方位角二维联合成像。
本发明的目的通过以下技术方案实现:雷达由Q个天线组成的均匀环形天线阵列以及一个额外的回波信号接收天线构成,回波信号接收天线位于均匀环形天线阵列的中心,阵列半径为d,以接收天线所在位置为坐标原点,建立雷达观测极坐标系设雷达目标由M个理想散射点构成,每个散射点在雷达观测坐标系中的位置参数可表示为散射点的散射强度为σm。待发射的原始信号为s(t),其载波频率为fc,对应波长为λ,对于均匀环形阵列中的第q(q=1,2,...,Q)个天线阵元,其馈入信号为s(t)ejl2πq/Q,其中l为涡旋电磁波所携带的OAM模式,Q个发射天线产生的电磁波在传播空间叠加,到达雷达目标后,目标对来波产生散射,散射波反向传播至均匀环形天线阵列处,由于双程作用,位于阵列中心位置处的接收天线接收到的归一化回波信号可表示为:
式中Sr(l,t)中的下标r表示信号是回波信号,Jl(kdsinθm)为l阶第一类贝塞尔函数,k=2π/λ为电磁波波数,σm为第m(m=1,...,M)个散射点的散射强度,n(l,t)为与l有关的噪声项。
本发明提出的基于涡旋电磁波的雷达目标二维成像方法,具体包括以下步骤:
(1)将回波信号Sr(l,t)在OAM模式域进行N点采样,OAM模式采样值分别表示为ln(n=1,...,N),经N点采样后得到回波信号矢量:
其中,
S=[s1(t) … sM(t)]T,其中
n=[n(l1,t) … n(lN,t)]T
(2)采用空间平滑技术解决不同散射点回波信号之间的相关性问题,所述空间平滑技术,即将OAM模式域采样得到的N个采样值划分为b个长度相等的混合子块,每个子块包含p≥M个采样值,使得N=p+b-1,对每个子块的p个采样值分别作自相关,在高斯噪声假设下,得到自相关函数:
式中RS=SSH,ρn为噪声功率,Ip为p阶单位矩阵,对得到的b个自相关矩阵取平均,从而得到回波信号的自相关函数
(3)对矩阵R作特征分解,得到p个特征值,将p个特征值按从大到小的顺序排列,则R的第M+1到第p这p-M个特征值对应的特征向量组成噪声子空间V;
(4)根据得到的噪声子空间,计算空间谱函数
式中导向矢量对空间谱函数域进行二维空间谱峰搜索,从而得到M个雷达目标散射点在域的二维成像。
进一步地,所述步骤(1)中OAM模式域的采样方法具体为:均匀环形天线阵列在发射携带OAM的涡旋电磁波时,每隔固定时隙Δt,依次发射OAM模式值为ln(n=1,...,N)的涡旋电磁波,其中OAM模式的采样间隔一般取整数1,也可以取其他整数或小数,由此得到的N个回波信号可表示为Sr(ln,t-(n-1)Δt)(n=1,...,N),由于电磁波传播速度远大于目标的运动速度,因此在电磁波传播时间间隔内可认为目标位置参数没有发生改变,同时由于Δt已知,因此可以对收到的N个回波信号Sr(ln,t-(n-1)Δt)进行时间补偿校正,使得校正后的OAM模式采样结果等同于对目标回波信号Sr(l,t)在同一时刻的采样Sr(ln,t)(n=1,...,N),Δt可根据具体雷达性能要求以及应用场景选取相应的合适值。
本发明的有益效果是:本发明提出的基于涡旋电磁波的雷达目标二维成像方法,与现有的基于涡旋电磁波只能进行目标方位角成像的雷达成像方法相比,能够同时实现目标方位角和俯仰角的成像,同时相对于传统平面电磁波经典的MUSIC二维成像算法,借助于涡旋电磁波所具有的独特的螺旋形空间相位特性,以及充分富余的OAM模式数,本方法能够实现更高的角度成像分辨率,同时本方法在探测雷达目标的过程中不需要相对运动以及波束扫描。本发明对新型雷达系统以及目标识别技术的设计具有重要参考意义。
附图说明
图1是本方法雷达观测坐标系示意图;
图2是本方法对两个散射点组成的雷达目标的二维成像结果;
图3是本方法与传统平面波MUSIC方法对目标俯仰角成像分辨率的对比;
图4是本方法与传统平面波MUSIC方法对目标方位角成像分辨率的对比。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
本发明提出的基于涡旋电磁波的雷达目标二维成像方法,具体实施例如下:
均匀环形天线阵列由Q=8个天线组成,在该阵列的中心处放置一个天线用于目标散射回波信号的接收,发射信号s(t)=cos(2πfct),信号频率fc=2.4GHz,对应波长λ=0.125m,阵列半径为d=10λ。雷达目标由M=2个理想散射点构成,每个散射点在雷达观测坐标系中的位置可表示为雷达观测坐标系如图1所示,具体的
散射点的散射强度σ1=1、σ2=1。
对于均匀环形阵列中的第q(q=1,...,8)个天线,其馈入信号为s(t)ejl2πq/8,其中l为涡旋电磁波所携带的OAM模式,8个发射天线产生的电磁波在空间叠加,投射到雷达目标上然后被散射回发射端,接收天线接收到归一化回波信号:
为实现雷达目标的方位角和俯仰角二维联合成像,通过如下步骤实现:
(1)将回波信号Sr(l,t)在OAM模式域进行N=20点采样,具体采样方法为:雷达发射端在发射携带OAM的涡旋电磁波时,每隔固定时隙Δt=0.1ms,依次发射OAM模式值为ln=n-1(n=1,...,20)的涡旋电磁波,此处OAM模式采样间隔取整数1,由此得到的回波信号可表示为Sr(ln,t-(n-1)Δt)(n=1,...,20),对收到的这N个回波信号Sr(ln,t-(n-1)Δt)进行时间补偿校正,使得校正后的OAM模式采样结果等同于对目标回波信号Sr(l,t)在同一时刻的采样Sr(ln,t)(n=1,...,20),从而得到经时间补偿后的回波信号矢量:
其中,
S=[s1(t) s2(t)]T,其中,
n=[n(l1,t) … n(l20,t)]T
(2)采用空间平滑技术解决不同散射点目标回波信号之间的相关性问题,即将OAM模式采样得到的N=20个采样值划分为b=6个长度相等的混合子块,每个子块包含p=15个采样值,从而有N=p+b-1,采样信号矢量取自相关得到:
式中RS=SSH,信噪比取SNR=20dB。对得到的6个子自相关矩阵取平均,从而得到回波信号的平均自相关矩阵
(3)对矩阵R作特征分解,得到共15个特征值,将这15个特征值按从大到小的顺序排列,则R的第3至第15这13个较小的特征值对应的特征向量按列排列组成噪声子空间矩阵V;
(4)根据得到的噪声子空间,计算空间谱函数
式中导向矢量对空间谱函数域进行二维空间谱峰搜索,从而得到这2个雷达目标散射点在域的二维成像。
图2为上述基于涡旋电磁波的雷达目标二维成像方法对两空间目标散射点的俯仰角及方位角成像结果。可以看到在两散射点方向上 分别存在一个明显的空间谱峰,表明本方法对雷达目标具有清晰的俯仰角及方位角联合成像能力,这相比于现有的只能进行目标方位角成像的OAM雷达算法,更具有实用意义。
图3为本发明公开的基于涡旋电磁波的雷达目标二维成像方法与经典的平面波二维DOA估计算法MUSIC在俯仰角成像方面成像分辨率的比较。可以看到在信噪比SNR=0时,两者具有相同的俯仰角分辨率,然而随着信噪比的增加,本方法相对于平面波MUSIC方法得到的分辨率优势逐渐拉大,在SNR=10dB时,两者差距最大,随后本方法得到的俯仰角分辨率随信噪比的增加已基本不变,而平面波MUSIC算法得到的分辨率逐渐趋近于本方法,整体上本方法在目标俯仰角成像上能够实现更高的分辨率。
图4则为本发明提出的基于涡旋电磁波的雷达目标二维成像方法与经典的平面波二维DOA估计算法MUSIC在方位角成像方面成像分辨率的比较。类似于图2中的结果,可以看到相对于平面波MUSIC算法,本方法在目标方位角成像上同样能够实现更高的分辨率。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (2)

1.一种基于涡旋电磁波的雷达目标二维成像方法,其特征在于,该方法包括以下步骤:
(1)由均匀环形天线阵列生成的涡旋电磁波投射到由M个散射点组成的雷达目标上,各散射点以(m=1,...,M)表示,为第m个散射点在雷达观测极坐标系中的位置参数,则位于该均匀环形天线阵列中心位置处的接收天线接收到的归一化回波信号Sr(l,t)可表示为:
σm为第m个散射点的散射强度,Jl(kd sinθm)为l阶第一类贝塞尔函数,k为波数,d为均匀环形天线阵列的半径,l为生成的涡旋电磁波的OAM模式,s(t)为待发射的原始信号,n(l,t)与l有关的噪声项,将回波信号Sr(l,t)在OAM模式域进行N点采样,OAM模式采样值分别表示为ln(n=1,...,N),经N点采样后得到回波信号矢量:
S r = S r ( l 1 , t ) . . . S r ( l N , t ) = A S + n
其中,
S=[s1(t) … sM(t)]T,其中i=1,...,M
n=[n(l1,t) … n(lN,t)]T
(2)采用空间平滑技术解决不同散射点回波信号之间的相关性问题,所述空间平滑技术,即将OAM模式域采样得到的N个采样值划分为b个长度相等的混合子块,每个子块包含p≥M个采样值,使得N=p+b-1,对每个子块的p个采样值分别作自相关,在高斯噪声假设下,得到自相关函数:
R i = A p R S A p H + ρ n I p , i = 1 , ... , b
式中RS=SSH,ρn为噪声功率,Ip为p阶单位矩阵,对得到的b个自相关函数取平均,从而得到回波信号的自相关函数
R = 1 b Σ i = 1 b R i
(3)对R作矩阵的特征分解,得到噪声子空间V;
(4)计算空间谱函数
式中导向矢量对空间谱函数域进行二维空间谱峰搜索,从而得到M个雷达目标散射点在域的二维成像。
2.权利要求1所述的一种基于涡旋电磁波的雷达目标二维成像方法,其特征在于,所述的OAM模式域采样方法具体为:均匀环形天线阵列在发射携带OAM的涡旋电磁波时,每隔固定时隙Δt,依次发射OAM模式值为ln(n=1,...,N)的涡旋电磁波,由此得到的N个回波信号可表示为Sr(ln,t-(n-1)Δt)(n=1,...,N),由于电磁波传播速度远大于目标的运动速度,因此在电磁波传播时间间隔内可认为目标位置参数没有发生改变,同时由于Δt已知,因此可以对收到的N个回波信号Sr(ln,t-(n-1)Δt)进行时间校正,使得校正后的OAM模式采样等同于对目标回波信号Sr(l,t)在同一时刻的采样Sr(ln,t)(n=1,...,N)。
CN201611217914.9A 2016-12-26 2016-12-26 一种基于涡旋电磁波的雷达目标二维成像方法 Active CN106526589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611217914.9A CN106526589B (zh) 2016-12-26 2016-12-26 一种基于涡旋电磁波的雷达目标二维成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611217914.9A CN106526589B (zh) 2016-12-26 2016-12-26 一种基于涡旋电磁波的雷达目标二维成像方法

Publications (2)

Publication Number Publication Date
CN106526589A true CN106526589A (zh) 2017-03-22
CN106526589B CN106526589B (zh) 2018-11-30

Family

ID=58337913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611217914.9A Active CN106526589B (zh) 2016-12-26 2016-12-26 一种基于涡旋电磁波的雷达目标二维成像方法

Country Status (1)

Country Link
CN (1) CN106526589B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290728A (zh) * 2017-06-09 2017-10-24 清华大学 一种等效电磁波轨道角动量脉冲雷达探测方法及系统
CN107607952A (zh) * 2017-10-16 2018-01-19 电子科技大学 基于电磁涡旋波的三维合成孔径雷达成像方法
CN107656253A (zh) * 2017-08-25 2018-02-02 北京航空航天大学 电磁涡旋合成孔径雷达回波信号仿真方法及装置
CN109541594A (zh) * 2018-11-12 2019-03-29 中国人民解放军国防科技大学 基于涡旋电磁波的条带sar三维成像方法
CN109946642A (zh) * 2019-03-07 2019-06-28 西安电子科技大学 涡旋电磁波的到达角估计方法
CN110191476A (zh) * 2019-04-18 2019-08-30 浙江大学 一种基于可重构天线阵列的非正交多址接入方法
CN110221293A (zh) * 2019-05-10 2019-09-10 电子科技大学 一种基于涡旋电磁波的俯仰角成像方法
CN110412571A (zh) * 2019-07-19 2019-11-05 西安电子科技大学 基于电磁涡旋波的合成孔径雷达三维成像方法
CN110501707A (zh) * 2019-08-27 2019-11-26 中国人民解放军国防科技大学 基于轨道角动量双模态复用的电磁涡旋成像方法
CN110967692A (zh) * 2019-12-24 2020-04-07 上海无线电设备研究所 一种成像方法
CN111265242A (zh) * 2020-02-21 2020-06-12 孙磊 胎儿胎心监护系统、设备及方法
CN111265243A (zh) * 2020-02-21 2020-06-12 孙磊 基于多维通道传感器的胎儿胎心监护系统、设备及方法
CN111769904A (zh) * 2020-06-23 2020-10-13 电子科技大学 一种反向散射通信系统中多反射设备并行传输的检测方法
CN112834980A (zh) * 2021-01-08 2021-05-25 北京理工大学 一种基于传播算子的涡旋电磁波超分辨测向方法
CN112904345A (zh) * 2021-01-19 2021-06-04 鹏城实验室 定位系统及定位方法
CN112904347A (zh) * 2021-01-19 2021-06-04 鹏城实验室 成像系统和方法
CN113281734A (zh) * 2021-05-14 2021-08-20 合肥工业大学 基于复合涡旋电磁波的目标径向与角向加速度检测方法
CN113281743A (zh) * 2021-05-14 2021-08-20 合肥工业大学 一种快速高分辨的基于oam雷达成像系统的成像方法
CN113820683A (zh) * 2021-10-08 2021-12-21 中国人民解放军空军工程大学 一种基于涡旋电磁波的快速超分辨成像方法
CN114674247A (zh) * 2022-03-04 2022-06-28 中国人民解放军战略支援部队航天工程大学 一种基于涡旋光束oam相位谱的方位角测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329286A (en) * 1993-06-29 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Method for two dimensional doppler imaging of radar targets
CN102112892A (zh) * 2007-05-29 2011-06-29 剑桥顾问 雷达系统和方法
CN104407485A (zh) * 2014-12-03 2015-03-11 南京邮电大学 一种基于角位置纠缠的量子关联成像方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329286A (en) * 1993-06-29 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Method for two dimensional doppler imaging of radar targets
CN102112892A (zh) * 2007-05-29 2011-06-29 剑桥顾问 雷达系统和方法
CN104407485A (zh) * 2014-12-03 2015-03-11 南京邮电大学 一种基于角位置纠缠的量子关联成像方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YUQING YUAN ETC.: ""Capacity Analysis of UCA一Based OAM Multiplexing Communication System"", 《IEEE》 *
李蹊等: ""电磁涡旋及其在无线通信中的应用"", 《电讯技术》 *
郭桂蓉等: ""基于电磁涡旋的雷达目标成像"", 《国防科技大学学报》 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290728A (zh) * 2017-06-09 2017-10-24 清华大学 一种等效电磁波轨道角动量脉冲雷达探测方法及系统
CN107290728B (zh) * 2017-06-09 2020-07-10 清华大学 一种等效电磁波轨道角动量脉冲雷达探测方法及系统
CN107656253B (zh) * 2017-08-25 2019-12-13 北京航空航天大学 电磁涡旋合成孔径雷达回波信号仿真方法及装置
CN107656253A (zh) * 2017-08-25 2018-02-02 北京航空航天大学 电磁涡旋合成孔径雷达回波信号仿真方法及装置
CN107607952A (zh) * 2017-10-16 2018-01-19 电子科技大学 基于电磁涡旋波的三维合成孔径雷达成像方法
CN107607952B (zh) * 2017-10-16 2020-08-11 电子科技大学 基于电磁涡旋波的三维合成孔径雷达成像方法
CN109541594A (zh) * 2018-11-12 2019-03-29 中国人民解放军国防科技大学 基于涡旋电磁波的条带sar三维成像方法
CN109946642A (zh) * 2019-03-07 2019-06-28 西安电子科技大学 涡旋电磁波的到达角估计方法
CN109946642B (zh) * 2019-03-07 2023-04-07 西安电子科技大学 涡旋电磁波的到达角估计方法
CN110191476A (zh) * 2019-04-18 2019-08-30 浙江大学 一种基于可重构天线阵列的非正交多址接入方法
CN110191476B (zh) * 2019-04-18 2020-07-14 浙江大学 一种基于可重构天线阵列的非正交多址接入方法
CN110221293A (zh) * 2019-05-10 2019-09-10 电子科技大学 一种基于涡旋电磁波的俯仰角成像方法
CN110412571A (zh) * 2019-07-19 2019-11-05 西安电子科技大学 基于电磁涡旋波的合成孔径雷达三维成像方法
CN110412571B (zh) * 2019-07-19 2023-03-14 西安电子科技大学 基于电磁涡旋波的合成孔径雷达三维成像方法
CN110501707A (zh) * 2019-08-27 2019-11-26 中国人民解放军国防科技大学 基于轨道角动量双模态复用的电磁涡旋成像方法
CN110501707B (zh) * 2019-08-27 2021-07-02 中国人民解放军国防科技大学 基于轨道角动量双模态复用的电磁涡旋成像方法
CN110967692A (zh) * 2019-12-24 2020-04-07 上海无线电设备研究所 一种成像方法
CN110967692B (zh) * 2019-12-24 2023-04-11 上海无线电设备研究所 一种成像方法
CN111265242A (zh) * 2020-02-21 2020-06-12 孙磊 胎儿胎心监护系统、设备及方法
CN111265243A (zh) * 2020-02-21 2020-06-12 孙磊 基于多维通道传感器的胎儿胎心监护系统、设备及方法
CN111769904A (zh) * 2020-06-23 2020-10-13 电子科技大学 一种反向散射通信系统中多反射设备并行传输的检测方法
CN112834980A (zh) * 2021-01-08 2021-05-25 北京理工大学 一种基于传播算子的涡旋电磁波超分辨测向方法
CN112834980B (zh) * 2021-01-08 2024-01-26 北京理工大学 一种基于传播算子的涡旋电磁波超分辨测向方法
WO2022156000A1 (zh) * 2021-01-19 2022-07-28 鹏城实验室 定位系统及定位方法
CN112904347A (zh) * 2021-01-19 2021-06-04 鹏城实验室 成像系统和方法
CN112904345A (zh) * 2021-01-19 2021-06-04 鹏城实验室 定位系统及定位方法
CN112904347B (zh) * 2021-01-19 2023-05-26 鹏城实验室 成像系统和方法
CN113281734A (zh) * 2021-05-14 2021-08-20 合肥工业大学 基于复合涡旋电磁波的目标径向与角向加速度检测方法
CN113281743A (zh) * 2021-05-14 2021-08-20 合肥工业大学 一种快速高分辨的基于oam雷达成像系统的成像方法
CN113820683A (zh) * 2021-10-08 2021-12-21 中国人民解放军空军工程大学 一种基于涡旋电磁波的快速超分辨成像方法
CN113820683B (zh) * 2021-10-08 2023-09-26 中国人民解放军空军工程大学 一种基于涡旋电磁波的快速超分辨成像方法
CN114674247A (zh) * 2022-03-04 2022-06-28 中国人民解放军战略支援部队航天工程大学 一种基于涡旋光束oam相位谱的方位角测量方法
CN114674247B (zh) * 2022-03-04 2024-03-15 中国人民解放军战略支援部队航天工程大学 一种基于涡旋光束oam相位谱的目标方位角测量方法

Also Published As

Publication number Publication date
CN106526589B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN106526589B (zh) 一种基于涡旋电磁波的雷达目标二维成像方法
Sun et al. Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications
CN105785323B (zh) 基于空间正交变换的涡旋电磁波信号模态并行分离方法与装置
Sarkar et al. Smart antennas
CN102055512B (zh) 天线组阵中基于循环自相关的信号相位差估计装置与方法
Li et al. Multipath-assisted indoor localization using a single receiver
CN110221293B (zh) 一种基于涡旋电磁波的俯仰角成像方法
Vesa Direction of arrival estimation using music and root-music algorithm
CN113992290B (zh) 一种面向轨道角动量无线通信的几何随机信道建模方法
CN108896954A (zh) 互质阵中一种基于联合实值子空间的波达角估计方法
CN105891771A (zh) 一种提高估计精度的基于连续分布的角度估计方法与设备
CN107315161B (zh) 基于压缩感知的非圆信号波达方向角估计方法
Lee et al. Spatial correlation of multiple antenna arrays in wireless communication systems
JP2002518683A (ja) 電磁波の方向を求める方法および装置
CN111649803A (zh) 基于垂直线性阵列的三维雷达物位计及其设计方法
CN103278796A (zh) 锥面共形阵列多参数联合估计方法
Li et al. Joint adaptive aoa and polarization estimation using hybrid dual-polarized antenna arrays
Peng et al. Two-step angle-of-arrival estimation for terahertz communications based on correlation of power-angular spectra in frequency
Tian et al. Passive localization through channel estimation of on-the-air LTE signals
CN109617258A (zh) 应用盲自适应波束成形算法的射频能量收集系统及方法
Qu et al. Sparsity-driven high-resolution fast electromagnetic vortex imaging based on two-dimensional NCALM
Israel et al. Discrete receive beamforming
He et al. Carrier phase-based Wi-Fi indoor localization method
Alsalti et al. Direction of arrival for uniform circular array using directional antenna elements
Li et al. Application research on DOA estimation based on software-defined radio receiver

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant