WO2022156000A1 - 定位系统及定位方法 - Google Patents

定位系统及定位方法 Download PDF

Info

Publication number
WO2022156000A1
WO2022156000A1 PCT/CN2021/075099 CN2021075099W WO2022156000A1 WO 2022156000 A1 WO2022156000 A1 WO 2022156000A1 CN 2021075099 W CN2021075099 W CN 2021075099W WO 2022156000 A1 WO2022156000 A1 WO 2022156000A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
target object
array
information
reflected echo
Prior art date
Application number
PCT/CN2021/075099
Other languages
English (en)
French (fr)
Inventor
李胜全
张爱东
孙晓雨
张翼
陈明
罗明成
Original Assignee
鹏城实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹏城实验室 filed Critical 鹏城实验室
Publication of WO2022156000A1 publication Critical patent/WO2022156000A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • the present application relates to the field of positioning technology, and in particular, to a positioning system and a positioning method.
  • an underwater positioning method is published, which forms a beam by receiving a hydrophone array and transmits a beam to the target object. After the receiving hydrophone array receives the beam-based echo of the target object, The position information of the target object is obtained according to the echo.
  • the obtained position information is only the approximate position information of the target object, that is, the accuracy of obtaining the position information of the target object is poor.
  • the main purpose of the present application is to provide a positioning system and method, aiming at solving the problem of poor accuracy in obtaining the position information of a target object by using the existing underwater positioning method in the prior art.
  • the present application proposes a positioning system, the positioning system includes:
  • Ring transmitter arrays Ring transmitter arrays, ring receiver arrays, and locators
  • the annular transmitter array is used for transmitting a plurality of vortex wave signals to a target object, so that when the plurality of vortex wave signals reach the target object, a plurality of reflected echo signals carrying feedback phase information are generated; Wherein, the emission frequencies of the plurality of the vortex wave signals are the same, and the initial phase information carried by the plurality of the vortex wave signals is different;
  • the annular receiver array for receiving the plurality of reflected echo signals carrying feedback phase information
  • the locator is configured to obtain target position information of the target object according to the plurality of reflected echo signals carrying feedback phase information.
  • the annular transmitter array is also used to transmit a plurality of the vortex wave signals of various orders to the target object, so that when the plurality of the vortex wave signals of various orders reach the target object, generating multiple reflected echo signals of multiple orders and carrying feedback phase information;
  • the annular receiver array is further configured to receive a plurality of reflected echo signals of the various orders that carry feedback phase information;
  • the locator is further configured to obtain the target position information of the target object according to the plurality of reflected echo signals of the various orders that carry feedback phase information.
  • the annular transmitter array includes a plurality of transmitters, and the annular receiver array includes a plurality of receivers; wherein, each transmitter is arranged in the annular transmitter array according to a preset arrangement rule, and each receiver is arranged in the annular transmitter array.
  • the annular receiver array is arranged according to the preset arrangement rule.
  • each of the emitters is equally spaced in the annular emitter array
  • Each of the receivers is equally spaced in the annular receiver array.
  • the annular transmitter array is further used to:
  • each transmitter in the annular transmitter array According to the arrangement information of each transmitter in the annular transmitter array, the total number, and the order of the orbital angular momentum, obtain the initial phase information of each transmitter;
  • the vortex wave signal corresponding to the emission frequency and the initial phase information of each transmitter is transmitted to the target object.
  • the locator is also used for:
  • the target position information of the target object is obtained.
  • the locator is also used for:
  • the locator is also used for:
  • the pitch angle and the azimuth angle are determined as the target position of the target object.
  • the present application also proposes a positioning method, which is applied to the positioning system as described above, and the positioning method includes the following steps:
  • the annular transmitter array is used to transmit a plurality of vortex wave signals to a target object, so that when the plurality of vortex wave signals reach the target object, a plurality of reflected echo signals carrying feedback phase information are generated; wherein, The transmitting frequencies of the plurality of the vortex wave signals are the same, and the initial phase information carried by the plurality of the vortex wave signals is different; the ring receiver array is used to receive the plurality of reflected echoes carrying the feedback phase information Signal;
  • the target position information of the target object is obtained by using the locator according to the plurality of reflected echo signals carrying the feedback phase information.
  • annular transmitter array to transmit a plurality of vortex wave signals to the target object, so that when the plurality of vortex wave signals reach the target object, a plurality of reflected echo signals carrying feedback phase information are generated. steps, including:
  • the annular transmitter array is used to transmit multiple vortex wave signals of multiple orders to the target object, so that when the multiple vortex wave signals of multiple orders reach the target object, multiple orders of different orders are generated.
  • the step of receiving the plurality of reflected echo signals carrying feedback phase information by using the ring receiver array includes:
  • ring receiver array Using the ring receiver array to receive a plurality of reflected echo signals of the various orders and carrying feedback phase information;
  • the step of using the locator to obtain the target position information of the target object according to the plurality of reflected echo signals carrying the feedback phase information includes:
  • the target position information of the target object is obtained by using the locator according to the multiple reflected echo signals of the various orders and carrying the feedback phase information.
  • the technical solution of the present application proposes a positioning system and a positioning method.
  • the positioning system includes a ring-shaped transmitter array, a ring-shaped receiver array, and a positioner; wherein, the ring-shaped transmitter array is used to transmit a plurality of vortex wave signals to a target object, So that when multiple vortex wave signals reach the target object, multiple reflected echo signals carrying feedback phase information are generated, wherein the emission frequencies of the multiple vortex wave signals are the same, and the initial phases carried by the multiple vortex wave signals are The information is different; the ring receiver array is used to receive multiple reflected echo signals carrying feedback phase information; the locator is used to obtain the target position information of the target object according to multiple reflected echo signals carrying feedback phase information; it solves the problem of existing The existing underwater positioning method is used in the technology, and the accuracy of obtaining the position information of the target object is poor.
  • the annular transmitter array transmits multiple vortex waves, and the multiple emitted vortex waves carry different initial phase information, so that the annular receiver array receives the echoes reflected by the vortex waves.
  • the wave signal also carries different feedback phase information, so the target position information of the target object can be accurately obtained according to the multiple echo signals carrying different feedback phase information.
  • the efficiency of obtaining the target object is improved. Accuracy of location information.
  • FIG. 1 is a schematic structural diagram of the positioner involved in the solution of the embodiment of the present application
  • FIG. 2 is a structural block diagram of the first embodiment of the positioning system of the application
  • FIG. 3 is a schematic diagram of the equidistant distribution of each transmitter in the annular transmitter array of the present application
  • FIG. 4 is a schematic diagram of the equidistant distribution of each receiver in the annular receiver array of the present application.
  • Fig. 5 is the schematic diagram of the topological order of orbital angular momentum of the application.
  • FIG. 6 is a schematic diagram of a ring receiver array of the present application receiving a reflected echo signal carrying feedback phase information
  • Fig. 7-1 is a beam diagram of the existing annular array underwater positioning method in the prior art
  • Fig. 7-2 is a beam diagram of the annular array vortex wave of the present application.
  • FIG. 8 is a flowchart of the first embodiment of the positioning method of the present application.
  • FIG. 1 is a schematic structural diagram of the positioner involved in the solution of the embodiment of the present application.
  • the locator can be a User Equipment (UE) such as a mobile phone, a smart phone, a notebook computer, a digital broadcast receiver, a personal digital assistant (PDA), a tablet computer (PAD), a handheld device, a vehicle-mounted device, a wearable device, A computing device or other processing device connected to a wireless modem, a mobile station (MS), etc.
  • UE User Equipment
  • PDA personal digital assistant
  • PAD tablet computer
  • a locator may be called a user locator, portable locator, desktop locator, etc.
  • a locator includes at least one processor 301, a memory 302, and a locating program stored on the memory and executable on the processor, the locating program being configured to implement the steps of the locating method as before.
  • the processor 301 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • the processor 301 can use at least one hardware form among DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), PLA (Programmable Logic Array, programmable logic array) accomplish.
  • the processor 301 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the wake-up state, also called CPU (Central Processing Unit, central processing unit); A low-power processor for processing data in a standby state.
  • the processor 301 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is used for rendering and drawing the content that needs to be displayed on the display screen.
  • the processor 301 may further include an AI (Artificial Intelligence, artificial intelligence) processor, where the AI processor is used to process operations related to the positioning method, so that the positioning method model can be trained and learned autonomously to improve efficiency and accuracy.
  • AI Artificial Intelligence, artificial intelligence
  • Memory 302 may include one or more computer-readable storage media, which may be non-transitory. Memory 302 may also include high-speed random access memory, as well as non-volatile memory, such as one or more disk storage devices, flash storage devices. In some embodiments, the non-transitory computer-readable storage medium in the memory 302 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 301 to implement the positioning method provided by the method embodiments in this application. .
  • the locator may also optionally include: a communication interface 303 and at least one peripheral device.
  • the processor 301, the memory 302 and the communication interface 303 may be connected through a bus or a signal line.
  • Various peripheral devices can be connected to the communication interface 303 through a bus, a signal line or a circuit board.
  • the peripheral device includes: at least one of a radio frequency circuit 304 , a display screen 305 and a power supply 306 .
  • the communication interface 303 may be used to connect at least one peripheral device related to I/O (Input/Output) to the processor 301 and the memory 302 .
  • the processor 301, the memory 302, and the communication interface 303 are integrated on the same chip or circuit board; in some other embodiments, any one or both of the processor 301, the memory 302, and the communication interface 303 are integrated It may be implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the radio frequency circuit 304 is used for receiving and transmitting RF (Radio Frequency, radio frequency) signals, also called electromagnetic signals.
  • the radio frequency circuit 304 communicates with the communication network and other communication devices through electromagnetic signals.
  • the radio frequency circuit 304 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • the radio frequency circuit 304 includes an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a subscriber identity module card, and the like.
  • Radio frequency circuitry 304 may communicate with other locators via at least one wireless communication protocol.
  • the wireless communication protocols include, but are not limited to, metropolitan area networks, mobile communication networks of various generations (2G, 3G, 4G and 5G), wireless local area networks and/or WiFi (Wireless Fidelity, wireless fidelity) networks.
  • the radio frequency circuit 304 may further include a circuit related to NFC (Near Field Communication, short-range wireless communication), which is not limited in this application.
  • the display screen 305 is used for displaying UI (User Interface, user interface).
  • the UI can include graphics, text, icons, video, and any combination thereof.
  • the display screen 305 also has the ability to acquire touch signals on or above the surface of the display screen 305 .
  • the touch signal may be input to the processor 301 as a control signal for processing.
  • the display screen 305 may also be used to provide virtual buttons and/or virtual keyboards, also referred to as soft buttons and/or soft keyboards.
  • the display screen 305 may be one, which is the front panel of the electronic device; in other embodiments, the display screen 305 may be at least two, which are respectively disposed on different surfaces of the electronic device or in a folded design; In an embodiment, the display screen 305 may be a flexible display screen, which is disposed on a curved surface or a folding surface of the electronic device. Even, the display screen 305 can also be set as a non-rectangular irregular figure, that is, a special-shaped screen.
  • the display screen 305 can be made of materials such as LCD (Liquid Crystal Display, liquid crystal display), OLED (Organic Light-Emitting Diode, organic light emitting diode).
  • Power supply 306 is used to power various components in the electronic device.
  • the power source 306 may be alternating current, direct current, a primary battery, or a rechargeable battery.
  • the rechargeable battery can support wired charging or wireless charging.
  • the rechargeable battery can also be used to support fast charging technology.
  • FIG. 1 does not constitute a limitation on the positioner, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • an embodiment of the present application also provides a computer-readable storage medium, where a positioning program is stored on the computer-readable storage medium, and the positioning program is executed by a processor to implement the steps of the positioning method as described above. Therefore, it will not be repeated here.
  • the description of the beneficial effects of using the same method will not be repeated.
  • program instructions may be deployed to execute on one locator, or on multiple locators located at one site, or alternatively, on multiple locators distributed at multiple sites and interconnected by a communication network execute on.
  • the above program can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the above-mentioned computer-readable storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.
  • FIG. 2 is a structural block diagram of the first embodiment of the positioning system of the present application.
  • the positioning system in this embodiment includes: a ring transmitter array 10, a ring receiver array 20, and a localizer 30;
  • the annular transmitter array 10 is used for transmitting a plurality of vortex wave signals to a target object, so that when the plurality of vortex wave signals reach the target object, a plurality of reflected echo signals carrying feedback phase information are generated;
  • the emission frequencies of the vortex signals are the same, and the initial phase information carried by the multiple vortex signals is different;
  • annular receiver array 20 for receiving a plurality of reflected echo signals carrying feedback phase information
  • the locator 30 is configured to obtain target position information of the target object according to a plurality of reflected echo signals carrying feedback phase information.
  • the "ring” mentioned in the ring transmitter array 10 and the ring receiver array 20 in this embodiment may be a circular ring, an elliptical ring, etc. In practical applications, the “ring” can be flexibly made according to specific application scenarios. Adjustment.
  • the annular transmitter array 10 in this embodiment includes a plurality of transmitters, wherein the transmitters may be transducers; in practical applications, the transmitters included in the annular transmitter array 10 may be made according to specific application scenarios. Flexible adjustment.
  • the annular transmitter array 10 is used to transmit multiple vortex wave signals to the target object, wherein the emission frequencies of the multiple vortex wave signals are the same, and the initial phase information carried by the multiple vortex wave signals is different, which refers to the
  • the annular transmitter array 10 transmits a plurality of vortex wave signals with the same transmission frequency but different initial phase information to the target object.
  • the annular receiver array 30 in this embodiment includes multiple receivers, wherein the receivers may be receiving hydrophones; in practical applications, the receivers included in the annular receiver array 30 may be based on specific application scenarios Make flexible adjustments. Among them, since the ring transmitter array 10 transmits multiple vortex wave signals with the same transmission frequency but different initial phase information to the target object, correspondingly, the ring receiver array 20 receives multiple reflections carrying different feedback phase information echo signal.
  • the plurality of transmitters included in the annular transmitter array 10 in this embodiment are arranged in the annular transmitter array according to a preset arrangement rule, and the plurality of receivers included in the annular receiver array 30 are also Arrangements are made in the annular receiver array according to preset arrangement rules; in practical applications, the preset arrangement rules can be flexibly adjusted according to specific application scenarios.
  • each transmitter may be equally spaced in the annular transmitter array 10.
  • FIG. 3 is a schematic diagram of each transmitter being equally spaced in the annular transmitter array.
  • each receiver may be equally spaced in the annular receiver array 20.
  • FIG. 4 is a schematic diagram of each receiver being equally spaced in the annular receiver array .
  • a coordinate system is established at the center of the circle in Figures 3 and 4, and the coordinate positions of each transmitter and each receiver are the same, that is, the annular transmitter array 10 and the annular receiver array 20 are completely coincident; in practical applications , which can be flexibly adjusted according to specific application scenarios.
  • each transmitter is unequally spaced in the annular transmitter array; specifically, the distance may be increased or decreased in sequence with each adjacent transmitter based on one of the transmitters, or It is a plurality of different separation distances randomly generated, and then according to the plurality of different separation distances, unequally spaced distribution in the annular emitter array is realized.
  • each receiver is distributed unequally in the ring-shaped receiver array; specifically, a certain receiver may be used as a reference, and the separation distance may be sequentially increased or decreased according to each adjacent one, Alternatively, it may be a plurality of different separation distances that are randomly generated, and then according to the plurality of different separation distances, unequally spaced distribution in the annular emitter array is realized.
  • the typical characteristics of the vortex sound field carrying the orbital angular momentum are the helical phase distribution along the angular direction, the phase singularity located at the axial center of the sound field, and the symmetrical field strength along the axis center. distribution; the orbital angular momentum carried by it is usually characterized by the topological order, which reflects the degree of phase distortion of the vortex sound field. For example, see Figure 5.
  • the topological orders of the orbital angular momentum are 2, 4 and 8 respectively. Schematic representation of the vortex sound field.
  • various vortex waves of different orders can be emitted, so as to obtain reflected echo signals of various orders, and the target position information of the target object can be obtained according to the reflected echo signals of various orders , so as to further improve the accuracy of the obtained position information of the target object.
  • the annular transmitter array 10 is also used to transmit multiple vortex wave signals of multiple orders to the target object, so that when multiple vortex wave signals of multiple orders reach the target object, multiple vortex wave signals of multiple orders are generated. a reflected echo signal carrying feedback phase information;
  • the annular receiver array 20 is also used for receiving multiple reflected echo signals of multiple orders and carrying feedback phase information
  • the locator 30 is further configured to obtain the target position information of the target object according to a plurality of reflected echo signals of various orders and carrying feedback phase information.
  • the annular transmitter array can transmit a vortex wave of one order at a time, while the annular receiver array can receive a reflected echo of one order; in practical applications, in order to ensure the target object obtained
  • the accuracy of the position information is higher, and it is necessary to use the annular transmitter array to transmit multiple vortex waves, and each time to transmit vortex waves of different orders, so that the annular receiver array can receive the reflected echoes of different orders.
  • the ring transmitter array transmits 6 times respectively, that is, vortex waves of 6 orders are transmitted, and the ring receiver array receives 6 times, that is, the reflected echoes of 6 orders are received.
  • the ring transmitter array 10 can also be used for:
  • the vortex wave signal with the frequency and initial phase information corresponding to each transmitter is transmitted to the target object.
  • the ring transmitter array 10 transmits vortex wave signals, that is, the transmitters included in the ring transmitter array 10 transmit vortex wave signals. Therefore, the initial phase information of each transmitter needs to be obtained first.
  • the initial phase information of each emitter is related to the position information of the annular emitter array where it is located, the total number of emitters included in the annular emitter array, and the order of orbital angular momentum; wherein, the annular emitters where different emitters are located are The position information of the array is different, so the initial phase information of different transmitters is also different; then after obtaining the initial phase information of each transmitter, the corresponding transmission frequency of each transmitter is determined, and the corresponding transmission frequency of each transmitter is determined.
  • the frequency is the same, that is, the transmission frequency is the same frequency, which can avoid interference caused by different transmission frequencies; then each transmitter transmits the vortex wave information corresponding to the initial phase information to the target object at the same transmission frequency.
  • the vortex wave signal can be obtained in the following ways:
  • Fig. 3-1 Please refer to Fig. 3-1 again.
  • the emission of the vortex sound field with orbital angular momentum is completed by the annular transmitter array shown in Fig. 1, in which a total of N transducers are equally spaced in a radius of a.
  • the center of the circle is the origin of coordinates, and all array elements are located on the same plane.
  • N is the total number of transducers included in the ring transmitter array
  • is the order of orbital angular momentum
  • t is the moment of launch
  • exp is an exponential function
  • i is a complex unit
  • f is the signal frequency.
  • the method of obtaining the vortex wave signal is not limited to the above specific examples, and in practical applications, it can be flexibly adjusted according to specific application scenarios.
  • the locator 30 can also be used for:
  • phase-shift processing is performed on the multiple reflected echo signals to obtain multiple phase-shifted result information
  • the target position information of the target object is obtained.
  • the locator 30 needs to first obtain multiple reflected echo signals carrying reflected phase information from the ring receiver array 20, and then obtain multiple reflected echo signals carrying reflected phase information Perform phase-shift processing to obtain multiple phase-shift result information, and further sum up multiple direction-shift result information to obtain the signal amplitude, and then obtain the target position information of the target object according to the signal amplitude;
  • the location information includes, but is not limited to, three-dimensional information of azimuth, pitch, and distance.
  • the localizer 30 is configured to perform phase-shift processing on a plurality of reflected echo signals to obtain a plurality of phase-shift result information, which may be:
  • phase-shift processing is performed on multiple reflected echo signals to obtain multiple phase-shifting results information.
  • phase-shift processing of the multiple reflected echo signals by the localizer 30 is related to the arrangement information of each receiver in the annular receiver array, the coordinate position information of the receivers, and the order of orbital angular momentum; therefore, It is necessary to first obtain the arrangement information of each receiver in the annular receiver array, the coordinate position information of each receiver, and the order of orbital angular momentum, and then according to the obtained arrangement information of each receiver in the annular receiver array, The coordinate position information of each receiver and the order of orbital angular momentum are used to perform phase-shift processing on multiple reflected echo signals to obtain multiple phase-shift result information.
  • phase-shifting result information can be obtained in the following ways:
  • the ring transmitter array 10 transmits vortex wave signals with the same frequency and different initial phase information to the target object P.
  • a reflected echo signal is generated, and the ring receiver A schematic diagram of the array 30 receiving a reflected echo signal carrying feedback phase information.
  • phase-shift processing is performed, and phase-shift result information exp(iksin ⁇ (x n cos ⁇ +y n sin ⁇ ))exp(i ⁇ ) is obtained by calculation.
  • exp is an exponential function
  • i is a complex unit
  • k is the wave number of the signal
  • is the wavelength
  • x n , y n are the receivers
  • the coordinate position of R1 in the ring receiver array ⁇ is the direction angle between the target object P and the ring receiver array
  • is the circumference angle between the target object P and the ring receiver array; it can be understood that the reflected echo signal contains The direction angle of the target object P from the center of the annular receiver array, and the circumferential angle of the target object P from the center of the annular receiver array.
  • phase shift result information exp(iksin ⁇ (x n cos ⁇ +y n sin ⁇ ))exp(i ⁇ ) can also be further processed;
  • is the scattering coefficient
  • r is the distance between the target object P and the center of the annular receiver array
  • N is the total number of receivers contained in the annular receiver array
  • i is a complex unit
  • is the orbital angular momentum order
  • exp is the exponential function
  • is the circular frequency of the signal
  • J ⁇ is the ⁇ -order Bessel function
  • t is the moment when the transmitter corresponds to the receiver.
  • phase-shift processing on the reflected echo signal received by one receiver to obtain phase-shifting result information
  • the reflected echo signal received by the receiver is subjected to phase-shift processing to obtain a plurality of phase-shift result information, and then the sum of the plurality of phase-shift result information is performed to obtain the signal amplitude.
  • the locator 30 is configured to obtain target position information of the target object according to the signal amplitude, which may be:
  • the beam information map is obtained
  • the pitch and azimuth angles are determined as the target position of the target object.
  • the corresponding beam information map can be obtained first according to the signal amplitude. , and then from the beam information map, the pitch angle and azimuth angle corresponding to the highest peak can be directly obtained, so as to determine the target position of the target object.
  • vortex waves of different frequencies may also be generated, and vortex waves of multiple orders are emitted for each frequency of vortex waves, so as to obtain multiple targets of the target object corresponding to the vortex waves of different frequencies respectively Position information, among which, vortex waves of one frequency and multiple orders correspond to one target position information; according to the multiple target position information, the final target position information of the target object is determined, thereby further improving the accuracy of the target position information of the target object sex.
  • the annular transmitter array transmits multiple vortex waves, and the multiple transmitted vortex waves carry different initial phase information, so that the annular receiver array receives echo signals reflected from the vortex waves.
  • Carrying different feedback phase information so the target position information of the target object can be accurately obtained according to the multiple echo signals carrying different feedback phase information. Compared with the prior art, the efficiency of obtaining the position information of the target object is improved. precision.
  • Fig. 7-1 and Fig. 7-2 are the beams of the 32 array elements included in the ring transmitter array and the ring receiver array to detect the position of the target object.
  • Fig. 7-1 is a beam diagram of an existing underwater positioning method in the prior art
  • Fig. 7-2 is a beam diagram of a vortex wave of the present application.
  • the positioning system provided in this embodiment can obtain the position information of the target object more accurately.
  • FIG. 8 is a flowchart of the first embodiment of the positioning method of the present application.
  • the positioning method is applied to the positioning system as described above, and the positioning method includes the following steps:
  • Step 80 Using the annular transmitter array to transmit a plurality of vortex wave signals to the target object, so that when the plurality of vortex wave signals reach the target object, a plurality of reflected echo signals carrying feedback phase information are generated;
  • the emission frequencies of the vortex signals are the same, and the initial phase information carried by the multiple vortex signals is different;
  • Step 81 Receive a plurality of reflected echo signals carrying feedback phase information by using a ring receiver array
  • Step 82 Use the locator to obtain target position information of the target object according to a plurality of reflected echo signals carrying the feedback phase information.
  • step 80 transmits a plurality of vortex wave signals to the target object using the annular transmitter array, so that when the plurality of vortex wave signals reach the target object, a plurality of reflected echo signals carrying feedback phase information are generated, including :
  • the annular transmitter array is used to transmit multiple vortex wave signals of various orders to the target object, so that when the multiple vortex wave signals of various orders reach the target object, multiple carry feedback phases of various orders are generated The reflected echo signal of the information;
  • step 81 utilizes a ring receiver array to receive a plurality of reflected echo signals carrying feedback phase information, including:
  • a ring receiver array to receive multiple reflected echo signals of various orders and carrying feedback phase information
  • step 82 utilizes the locator to obtain target position information of the target object according to a plurality of reflected echo signals carrying feedback phase information, including:
  • the target position information of the target object is obtained by using the locator according to multiple reflected echo signals of various orders and carrying feedback phase information.
  • the positioning method in this embodiment also includes other corresponding steps in an embodiment, so as to realize the above-mentioned positioning system to obtain the target position of the target object.
  • the positioning method of the present application adopts all the technical solutions of all the above-mentioned embodiments of the positioning system, and therefore at least has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

提供了一种定位系统及定位方法,其中该定位系统包括环形发射器阵列(10),环形接收器阵列(20),以及定位器(30);其中,环形发射器阵列(10)用于向目标物体发射多个涡旋波信号,以使多个涡旋波信号到达目标物体时,产生多个携带反馈相位信息的反射回波信号,其中多个涡旋波信号的发射频率相同,且多个涡旋波信号所携带的初始相位信息不同;环形接收器阵列(20)用于接收多个携带反馈相位信息的反射回波信号;定位器(30)用于根据多个携带反馈相位信息的反射回波信号,获得目标物体的目标位置信息。

Description

定位系统及定位方法
优先权信息
本申请要求于2021年01月19日申请的、申请号为202110072527.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种定位系统及定位方法。
背景技术
在水下目标物体的定位领域中,公布了一种水下定位方法,通过接收水听器阵列形成波束,并向目标物体发射波束,接收水听器阵列接收目标物体基于波束的回波后,根据回波获得目标物体的位置信息。
但是,采用现有的水下定位方法,获得的位置信息仅是目标物体大概的位置信息,即获得目标物体的位置信息的精确性较差。
发明内容
本申请的主要目的是提供一种定位系统和方法,旨在解决现有技术中采用现有的水下定位方法,获得目标物体的位置信息的精确性较差的问题。
为实现上述目的,本申请提出一种定位系统,所述定位系统包括:
环形发射器阵列,环形接收器阵列,以及定位器;
所述环形发射器阵列,用于向目标物体发射多个涡旋波信号,以使所述多个涡旋波信号到达所述目标物体时,产生多个携带反馈相位信息的反射回波信号;其中,多个所述涡旋波信号的发射频率相同,且多个所述涡旋波信号所携带的初始相位信息不同;
所述环形接收器阵列,用于接收所述多个携带反馈相位信息的反射回波信号;
所述定位器,用于根据所述多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息。
在一实施例中,
所述环形发射器阵列,还用于向目标物体发射多种阶数的多个所述涡旋波信号,以使多种阶数的多个所述涡旋波信号到达所述目标物体时,产生多种阶数的多个携带反馈相位信息的反射回波信号;
所述环形接收器阵列,还用于接收所述多种阶数的多个携带反馈相位信息的反射回波信号;
所述定位器,还用于根据所述多种阶数的多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息。
在一实施例中,
所述环形发射器阵列包括多个发射器,所述环形接收器阵列包括多个接收器;其中,每个发射器按照预设排列规则在所述环形发射器阵列中进行排列,每个接收器按照所述预设排列规则在所述环形接收器阵列中进行排列。
在一实施例中,
所述每个发射器等间距地分布在所述环形发射器阵列中;
和,
所述每个接收器等间距地分布在所述环形接收器阵列中。
在一实施例中,所述环形发射器阵列,还用于:
获取所述每个发射器在所述环形发射器阵列的排列信息,所述环形发射器阵列包括的发射器的总个数,以及轨道角动量阶数;
根据所述每个发射器在所述环形发射器阵列的排列信息,所述总个数,以及所述轨道角动量阶数,获得所述每个发射器的初始相位信息;
确定所述每个发射器的发射频率;其中,所述每个发射器的发射频率相同;
向目标物体发射所述每个发射器对应的发射频率和初始相位信息的涡旋波信号。
在一实施例中,所述定位器,还用于:
获取携带反射相位信息的多个反射回波信号;
对所述多个反射回波信号进行移相处理,获得多个移相结果信息;
对所述多个移相结果信息进行求和,获得信号幅值;
根据所述信号幅值,获得所述目标物体的目标位置信息。
在一实施例中,所述定位器,还用于:
获取所述每个接收器在所述环形接收器阵列的排列信息,所述每个接收器的坐标位置信息,以及轨道角动量阶数;
根据所述每个接收器在所述环形接收器阵列的排列信息,所述每个接收器的坐标位置信息,以及所述轨道角动量阶数,对所述多个反射回波信号进行移相处理,获得多个移相结果信息。
在一实施例中,所述定位器,还用于:
根据所述信号幅值,获得波束信息图;
从所述波束信息图中,获得最高峰值对应的俯仰角和方位角;
将所述俯仰角和方位角确定为所述目标物体的目标位置。
此外,为实现上述目的,本申请还提出了一种定位方法,应用于如上所述的定位系统,所述定位方法包括以下步骤:
利用所述环形发射器阵列向目标物体发射多个涡旋波信号,以使所述多个涡旋波信号到达所述目标物体时,产生多个携带反馈相位信息的反射回波信号;其中,多个所述涡旋波信号的发射频率相同,且多个所述涡旋波信号所携带的初始相位信息不同;利用所述环形接收器阵列接收所述多个携带反馈相位信息的反射回波信号;
利用所述定位器根据所述多个携带反馈相位信息的反射回波信号,获得所 述目标物体的目标位置信息。
在一实施例中,
所述利用所述环形发射器阵列向目标物体发射多个涡旋波信号,以使所述多个涡旋波信号到达所述目标物体时,产生多个携带反馈相位信息的反射回波信号的步骤,包括:
利用所述环形发射器阵列向目标物体发射多种阶数的多个涡旋波信号,以使多种阶数的多个所述涡旋波信号到达所述目标物体时,产生多种阶数的多个携带反馈相位信息的反射回波信号;
所述利用所述环形接收器阵列接收所述多个携带反馈相位信息的反射回波信号的步骤,包括:
利用所述环形接收器阵列接收所述多种阶数的多个携带反馈相位信息的反射回波信号;
所述利用所述定位器根据所述多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息的步骤,包括:
利用所述定位器根据所述多种阶数的多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息。
本申请技术方案提出了一种定位系统和定位方法,定位系统包括环形发射器阵列,环形接收器阵列,以及定位器;其中,环形发射器阵列用于向目标物体发射多个涡旋波信号,以使多个涡旋波信号到达目标物体时,产生多个携带反馈相位信息的反射回波信号,其中多个涡旋波信号的发射频率相同,且多个涡旋波信号所携带的初始相位信息不同;环形接收器阵列用于接收多个携带反馈相位信息的反射回波信号;定位器用于根据多个携带反馈相位信息的反射回波信号,获得目标物体的目标位置信息;解决了现有技术中采用现有的水下定位方法,获得目标物体的位置信息的精确性较差的问题。
也即本申请技术方案中,环形发射器阵列发射多个涡旋波,且发射的多个 涡旋波携带着不同的初始相位信息,从而环形接收器阵列接收到该涡旋波反射回的回波信号也携带着不同的反馈相位信息,因此可以根据该携带着不同反馈相位信息的多个回波信号精确获得目标物体的目标位置信息,相对于现有技术而言,提升了获得目标物体的位置信息的精确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请实施例方案涉及的定位器结构示意图;
图2为本申请定位系统第一实施例的结构框图;
图3为本申请环形发射器阵列中每个发射器等间距分布的示意图;
图4为本申请环形接收器阵列中每个接收器等间距分布的示意图;
图5为本申请轨道角动量拓扑阶数的示意图;
图6为本申请环形接收器阵列接收携带反馈相位信息的反射回波信号的示意图;
图7-1为现有技术中采用现有的环形阵列水下定位方法的波束图;
图7-2为采用本申请环形阵列涡旋波的波束图;
图8为本申请定位方法第一实施例的流程图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不 是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见图1所示,图1为本申请实施例方案涉及的定位器结构示意图。
定位器可以是移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(PDA)、平板电脑(PAD)等用户设备(User Equipment,UE)、手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备、移动台(Mobile station,MS)等。定位器可能被称为用户定位器、便携式定位器、台式定位器等。
通常,定位器包括:至少一个处理器301、存储器302以及存储在存储器上并可在处理器上运行的定位程序,定位程序配置为实现如前的定位方法的步骤。
处理器301可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器301可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器301也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central ProcessingUnit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器301可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。处理器301还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关定位方法操作,使得定位方法模型可以自主训练学习,提高效率和准确度。
存储器302可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器302还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器302中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指 令用于被处理器301所执行以实现本申请中方法实施例提供的定位方法。
在一些实施例中,定位器还可选包括有:通信接口303和至少一个外围设备。处理器301、存储器302和通信接口303之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与通信接口303相连。具体地,外围设备包括:射频电路304、显示屏305和电源306中的至少一种。
通信接口303可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器301和存储器302。在一些实施例中,处理器301、存储器302和通信接口303被集成在同一芯片或电路板上;在一些其他实施例中,处理器301、存储器302和通信接口303中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路304用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路304通过电磁信号与通信网络以及其他通信设备进行通信。射频电路304将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路304包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路304可以通过至少一种无线通信协议来与其它定位器进行通信。该无线通信协议包括但不限于:城域网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WiFi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路304还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。
显示屏305用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏305是触摸显示屏时,显示屏305还具有采集在显示屏305的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器301进行处理。此时,显示屏305还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏305可以为一个,电子设备的前面板;在另一些实施例中,显示屏305可以为至少两 个,分别设置在电子设备的不同表面或呈折叠设计;在一些实施例中,显示屏305可以是柔性显示屏,设置在电子设备的弯曲表面上或折叠面上。甚至,显示屏305还可以设置成非矩形的不规则图形,也即异形屏。显示屏305可以采用LCD(LiquidCrystal Display,液晶显示屏)、OLED(Organic Light-Emitting Diode,有机发光二极管)等材质制备。
电源306用于为电子设备中的各个组件进行供电。电源306可以是交流电、直流电、一次性电池或可充电电池。当电源306包括可充电电池时,该可充电电池可以支持有线充电或无线充电。该可充电电池还可以用于支持快充技术。
本领域技术人员可以理解,图1中示出的结构并不构成对定位器的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,本申请实施例还提出一种计算机可读存储介质,计算机可读存储介质上存储有定位程序,定位程序被处理器执行时实现如上文的定位方法的步骤。因此,这里将不再进行赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。对于本申请所涉及的计算机可读存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述。确定为示例,程序指令可被部署为在一个定位器上执行,或者在位于一个地点的多个定位器上执行,又或者,在分布在多个地点且通过通信网络互连的多个定位器上执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的计算机可读存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。
请参见图2所示,图2为本申请定位系统第一实施例的结构框图。
本实施例中的定位系统包括:环形发射器阵列10、环形接收器阵列20,以及定位器30;
环形发射器阵列10,用于向目标物体发射多个涡旋波信号,以使多个涡旋波信号到达目标物体时,产生多个携带反馈相位信息的反射回波信号;其中,多个涡旋波信号的发射频率相同,且多个涡旋波信号所携带的初始相位信息不同;
环形接收器阵列20,用于接收多个携带反馈相位信息的反射回波信号;
定位器30,用于根据多个携带反馈相位信息的反射回波信号,获得目标物体的目标位置信息。
需要说明的是,本实施例中的环形发射器阵列10和环形接收器阵列20所提及的“环形”可以是圆环形、椭圆环形等,在实际应用中,可以根据具体应用场景做灵活调整。
应当明确的是,本实施例中的环形发射器阵列10包括多个发射器,其中发射器可以是换能器;在实际应用中,环形发射器阵列10包括的发射器可以根据具体应用场景做灵活调整。其中,环形发射器阵列10用于向目标物体发射多个涡旋波信号,其中多个涡旋波信号的发射频率相同,且多个涡旋波信号所携带的初始相位信息不同,指的是环形发射器阵列10向目标物体发射发射频率相同,但初始相位信息不同的多个涡旋波信号。
应当明确的是,本实施例中的环形接收器阵列30包括多个接收器,其中接收器可以是接收水听器;在实际应用中,环形接收器阵列30包括的接收器可以根据具体应用场景做灵活调整。其中,由于环形发射器阵列10向目标物体发射发射频率相同,但初始相位信息不同的多个涡旋波信号,相应地,环形接收器阵列20接收到的是携带不同反馈相位信息的多个反射回波信号。
需要说明的是,本实施例中的环形发射器阵列10包括的多个发射器是按照预设排列规则在环形发射器阵列中进行排列,以及环形接收器阵列30包括的多个接收器同样是按照预设排列规则在环形接收器阵列中进行排列;在实际应用中,预设排列规则可以根据具体应用场景做灵活调整。
本实施例中,每个发射器可以等间距地分布在环形发射器阵列10中,例如 请参见图3所示,为每个发射器等间距地分布在环形发射器阵列中的示意图。相应地,本实施例中,每个接收器可以等间距地分布在环形接收器阵列20中,例如请参见图4所示,为每个接收器等间距地分布在环形接收器阵列中的示意图。同时,在图3和图4中的圆心位置建立了坐标系,每个发射器与每个接收器的坐标位置相同,即环形发射器阵列10和环形接收器阵列20完全重合;在实际应用中,可以根据具体应用场景做灵活调整。
在一些示例中,每个发射器不等间距地分布在环形发射器阵列中;具体地,可以是以其中某一个发射器为基准,按照每相邻一个依次增加或减少间隔距离,或者也可以是随机生成的多个不同的间隔距离,进而根据该多个不同的间隔距离,实现不等间距地分布在环形发射器阵列中。相应地,在一些示例中,每个接收器不等间距地分布在环形接收器阵列中;具体地,可以是以其中某一个接收器为基准,按照每相邻一个依次增加或减少间隔距离,或者也可以是随机生成的多个不同的间隔距离,进而根据该多个不同的间隔距离,实现不等间距地分布在环形发射器阵列中。
可以理解的是,携带轨道角动量的涡旋声场其典型特征表现为沿角度方向呈现出的螺旋状分布的相位、位于声场轴向中心处的相位奇点,以及沿着轴中心对称的场强分布;其所携带的轨道角动量通常用拓扑阶数来表征,体现了涡旋声场相位扭曲的程度,例如请参见图5所示,分别为轨道角动量拓扑阶数为2,4和8阶的涡旋声场的示意图。因此,本实施例中可以发射出多种不同阶数的涡旋波,从而以得到多种阶数的反射回波信号,并根据多种阶数的反射回波信号获得目标物体的目标位置信息,从而以进一步提升获得的目标物体的位置信息的精确性。
具体地:
环形发射器阵列10,还用于向目标物体发射多种阶数的多个涡旋波信号,以使多种阶数的多个涡旋波信号到达目标物体时,产生多种阶数的多个携带反馈相位信息的反射回波信号;
环形接收器阵列20,还用于接收多种阶数的多个携带反馈相位信息的反射回波信号;
定位器30,还用于根据多种阶数的多个携带反馈相位信息的反射回波信号,获得目标物体的目标位置信息。
应当明确的是,环形发射器阵列可以每次发射一种阶数的涡旋波,同时环形接收器阵列接收一种阶数的反射回波;在实际应用中,为了保证获得的目标物体的目标位置信息精确性更高,需要利用环形发射器阵列进行多次涡旋波的发射,每次发射不同种阶数的涡旋波,以使环形接收器阵列接收不同种阶数的反射回波。例如,环形发射器阵列分别发射6次,即发射了6种阶数的涡旋波,环形接收器阵列接收6次,即接收到6种阶数的反射回波。
在本实施例中,环形发射器阵列10,还可以用于:
首先,获取每个发射器在环形发射器阵列的排列信息,环形发射器阵列包括的发射器的总个数,以及轨道角动量阶数;
然后,根据每个发射器在环形发射器阵列的排列信息,总个数,以及轨道角动量阶数,获得每个发射器的初始相位信息;
其次,确定每个发射器的发射频率;其中,每个发射器的发射频率相同;
最后,向目标物体发射每个发射器对应的频率和初始相位信息的涡旋波信号。
应当明确的是,环形发射器阵列10发射涡旋波信号,即为环形发射器阵列10包含的发射器发射涡旋波信号,因此,需要先获得每个发射器的初始相位信息,具体地,每个发射器的初始相位信息与其所处环形发射器阵列的位置信息、环形发射器阵列包括的发射器的总个数,以及轨道角动量阶数相关;其中,不同发射器所处环形发射器阵列的位置信息不同,因此不同发射器的初始相位信息也是不同的;然后在获得每个发射器的初始相位信息之后,确定出每个发射器对应的发射频率,其中每个发射器对应的发射频率相同,即发射频率为同一频率,这样能够避免由于发射频率不同造成的干扰;进而每个发射器以相同的 发射频率向目标物体发射其对应的初始相位信息的涡旋波信息。
具体地,可以通过如下方式获得涡旋波信号:
请再参见图3-1所示,携带有轨道角动量的涡旋声场的发射由图1所示的环形发射器阵列完成,其中共N个换能器等间距地排布在半径为a的圆周上,圆心为坐标原点,所有阵元位于同一平面。
具体地,先计算得到第n个换能器的方位角为φ n=2πn/N,进而根据该方位角计算得到第n个换能器的初始相位信息
Figure PCTCN2021075099-appb-000001
进而再根据该初始相位信息计算得到第n个换能器的涡旋波信号为
Figure PCTCN2021075099-appb-000002
相应地,可以计算得到共N个换能器发射的涡旋波信号,从而进行发射。
其中,第n=1个换能器位于圆环和x轴的交界处,N为环形发射器阵列包含的换能器的总个数,α为轨道角动量的阶数,t为发射的时刻,exp为指数函数,i为复数单位,f为信号频率。
值得注意的是,涡旋波信号的获得方式并不局限于上述的具体示例,在实际应用中,可以根据具体应用场景做灵活调整。
在本实施例中,定位器30,还可以用于:
首先,获取携带反射相位信息的多个反射回波信号;
然后,对多个反射回波信号进行移相处理,获得多个移相结果信息;
其次,对多个移相结果信息进行求和,获得信号幅值;
最后,根据信号幅值,获得目标物体的目标位置信息。
应当明确的是,由于环形发射器阵列10与环形接收器阵列20相对应,环形发射器阵列10包含的多个发射器发射涡旋波,环形接收器阵列20包含的多个接收器便接收到多个反射回波信号;因此,定位器30需要先从环形接收器阵列20处获取得到携带反射相位信息的多个反射回波信号,然后对获取得到携带反射相位信息的多个反射回波信号进行移相处理,获得多个移相结果信息,并进一步对多个移向结果信息进行求和,获得信号幅值,进而根据信号幅值,获得目标物体的目标位置信息;其中目标物体的目标位置信息包括但不限于方位 角、俯仰角和距离的三维信息。
在一些示例中,定位器30用于对多个反射回波信号进行移相处理,获得多个移相结果信息,可以是:
首先,获取每个接收器在环形接收器阵列的排列信息,每个接收器的坐标位置信息,以及轨道角动量阶数;
然后,根据每个接收器在环形接收器阵列的排列信息,每个接收器的坐标位置信息,以及轨道角动量阶数,对多个反射回波信号进行移相处理,获得多个移相结果信息。
应当明确的是,定位器30对多个反射回波信号进行移相处理与每个接收器在环形接收器阵列的排列信息,接收器的坐标位置信息,以及轨道角动量阶数相关;因此,需要先获取每个接收器在环形接收器阵列的排列信息,每个接收器的坐标位置信息,以及轨道角动量阶数,进而根据获取得到的每个接收器在环形接收器阵列的排列信息,每个接收器的坐标位置信息,以及轨道角动量阶数,对多个反射回波信号进行移相处理,获得多个移相结果信息。
具体地,可以通过如下方式获得多个移相结果信息:
请参见图6所示,为环形发射器阵列10向目标物体P发射相同频率,不同初始相位信息的涡旋波信号,涡旋波信号到达目标物体P时,产生反射回波信号,环形接收器阵列30接收到携带反馈相位信息的反射回波信号的示意图。
具体地,先获取接收器R1在环形接收器阵列中的排列信息n,接收器R1的坐标位置信息R1(x n,y n),以及轨道角动量阶数α;此时对反射回波信号进行移相处理,计算得到移相结果信息exp(iksinθ(x ncosφ+y nsinφ))exp(iαφ)。
其中,exp为指数函数,i为复数单位,k为信号的波数,k=2π/λ即在波传播的方向上单位长度内的波周数,λ为波长,x n,y n为接收器R1在环形接收器阵列的坐标位置,θ为目标物体P距离环形接收器阵列的方向角,φ为目标物体P距离环形接收器阵列的圆周角;可以理解的是,反射回波信号中包含了目标物体P距离环形接收器阵列中心的方向角,以及目标物体P距离环形接收器阵列中心的 圆周角。
可选地,为了更加准确地得到目标物体的目标位置信息,还可以对移相结果信息exp(iksinθ(x ncosφ+y nsinφ))exp(iαφ)做进一步处理;具体地,处理得到
Figure PCTCN2021075099-appb-000003
其中,σ为散射系数,r为目标物体P距离环形接收器阵列中心的距离,N为环形接收器阵列包含的接收器的总个数,i为复数单位,α为轨道角动量阶数,exp为指数函数,ω为信号的圆频率,J α为α阶贝塞尔函数,t为与接收器对应的发射器发射的时刻。
值得注意的是,这里仅是定位器对一个接收器接收到的反射回波信号进行移相处理,获得移相结果信息的示例,以此类推,可以对预设环形接收阵列中包含的多个接收器接收到的反射回波信号进行移相处理,获得多个移相结果信息,进而再对多个移相结果信息进行求和,获得信号幅值。
在一些示例中,定位器30用于根据信号幅值,获得目标物体的目标位置信息,可以是:
首先,根据信号幅值,获得波束信息图;
然后,从波束信息图中,获得最高峰值对应的俯仰角和方位角;
其次,将俯仰角和方位角确定为目标物体的目标位置。
应当明确的是,为了更加方便快捷地获得目标物体的目标位置信息,因此在对多个移相结果信息进行求和,获得信号幅值之后,可以根据信号幅值,先获得对应的波束信息图,然后从波束信息图中,可以直接获得最高峰值对应的俯仰角和方位角,从而以确定出目标物体的目标位置。
在一些示例中,还可以生成不同频率的涡旋波,对于每一种频率的涡旋波发射多种阶数的涡旋波,以获得不同频率涡旋波分别对应的目标物体的多个目标位置信息,其中,一种频率的多种阶数的涡旋波对应一个目标位置信息;根据多个目标位置信息,确定目标物体的最终目标位置信息,从而进一步提升目 标物体的目标位置信息的精确性。
本实施例中,环形发射器阵列发射多个涡旋波,且发射的多个涡旋波携带着不同的初始相位信息,从而环形接收器阵列接收到该涡旋波反射回的回波信号也携带着不同的反馈相位信息,因此可以根据该携带着不同反馈相位信息的多个回波信号精确获得目标物体的目标位置信息,相对于现有技术而言,提升了获得目标物体的位置信息的精确性。
进一步地,请参见图7-1至图7-2所示,图7-1和图7-2均为环形发射器阵列和环形接收器阵列包含的32个阵元进行目标物体位置探测的波束图;其中,图7-1为现有技术中采用现有的水下定位方法的波束图,图7-2为采用本申请涡旋波的波束图。通过对比不难发现,采用现有的水下定位方法探测出的目标物体的目标位置信息已经被掩盖在波束形成的杂波当中,且出现了伪像,而采用本申请涡旋波则能较好的探测出目标物体的目标位置信息;由此可见,本实施例中提供的定位系统,相对于现有技术而言,能够更加精确地获得目标物体的位置信息。
请参见图8所示,图8为本申请定位方法第一实施例的流程图,该定位方法应用于如上述的定位系统,定位方法包括以下步骤:
步骤80:利用环形发射器阵列向目标物体发射多个涡旋波信号,以使多个涡旋波信号到达目标物体时,产生多个携带反馈相位信息的反射回波信号;其中,多个涡旋波信号的发射频率相同,且多个涡旋波信号所携带的初始相位信息不同;
步骤81:利用环形接收器阵列接收多个携带反馈相位信息的反射回波信号;
步骤82:利用定位器根据多个携带反馈相位信息的反射回波信号,获得目标物体的目标位置信息。
在一些示例中,步骤80利用环形发射器阵列向目标物体发射多个涡旋波信 号,以使多个涡旋波信号到达目标物体时,产生多个携带反馈相位信息的反射回波信号,包括:
利用环形发射器阵列向目标物体发射多种阶数的多个涡旋波信号,以使多种阶数的多个涡旋波信号到达目标物体时,产生多种阶数的多个携带反馈相位信息的反射回波信号;
在一些示例中,步骤81利用环形接收器阵列接收多个携带反馈相位信息的反射回波信号,包括:
利用环形接收器阵列接收多种阶数的多个携带反馈相位信息的反射回波信号;
在一些示例中,步骤82利用定位器根据多个携带反馈相位信息的反射回波信号,获得目标物体的目标位置信息,包括:
利用定位器根据多种阶数的多个携带反馈相位信息的反射回波信号,获得目标物体的目标位置信息。
需要说明的是,本实施例中定位方法还在一实施例中包括有对应的其他步骤,以实现上述定位系统获得目标物体的目标位置。
本申请的定位方法采用了上述所有定位系统实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种定位系统,其中,所述定位系统包括:环形发射器阵列,环形接收器阵列,以及定位器;
    所述环形发射器阵列,用于向目标物体发射多个涡旋波信号,以使所述多个涡旋波信号到达所述目标物体时,产生多个携带反馈相位信息的反射回波信号;其中,多个所述涡旋波信号的发射频率相同,且多个所述涡旋波信号所携带的初始相位信息不同;
    所述环形接收器阵列,用于接收所述多个携带反馈相位信息的反射回波信号;
    所述定位器,用于根据所述多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息。
  2. 如权利要求1所述的定位系统,其中,
    所述环形发射器阵列,还用于向目标物体发射多种阶数的多个所述涡旋波信号,以使多种阶数的多个所述涡旋波信号到达所述目标物体时,产生多种阶数的多个携带反馈相位信息的反射回波信号;
    所述环形接收器阵列,还用于接收所述多种阶数的多个携带反馈相位信息的反射回波信号;
    所述定位器,还用于根据所述多种阶数的多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息。
  3. 如权利要求1或2所述的定位系统,其中,
    所述环形发射器阵列包括多个发射器,所述环形接收器阵列包括多个接收器;其中,每个发射器按照预设排列规则在所述环形发射器阵列中进行排列,每个接收器按照所述预设排列规则在所述环形接收器阵列中进行排列。
  4. 如权利要求3所述的定位系统,其中,
    所述每个发射器等间距地分布在所述环形发射器阵列中;
    和,
    所述每个接收器等间距地分布在所述环形接收器阵列中。
  5. 如权利要求3所述的定位系统,其中,所述环形发射器阵列,还用于:
    获取所述每个发射器在所述环形发射器阵列的排列信息,所述环形发射器阵列包括的发射器的总个数,以及轨道角动量阶数;
    根据所述每个发射器在所述环形发射器阵列的排列信息,所述总个数,以及所述轨道角动量阶数,获得所述每个发射器的初始相位信息;
    确定所述每个发射器的发射频率;其中,所述每个发射器的发射频率相同;
    向目标物体发射所述每个发射器对应的发射频率和初始相位信息的涡旋波信号。
  6. 如权利要求5所述的定位系统,其中,所述定位器,还用于:
    获取携带反射相位信息的多个反射回波信号;
    对所述多个反射回波信号进行移相处理,获得多个移相结果信息;
    对所述多个移相结果信息进行求和,获得信号幅值;
    根据所述信号幅值,获得所述目标物体的目标位置信息。
  7. 如权利要求6所述的定位系统,其中,所述定位器,还用于:
    获取所述每个接收器在所述环形接收器阵列的排列信息,所述每个接收器的坐标位置信息,以及轨道角动量阶数;
    根据所述每个接收器在所述环形接收器阵列的排列信息,所述每个接收器的坐标位置信息,以及所述轨道角动量阶数,对所述多个反射回波信号进行移相处理,获得多个移相结果信息。
  8. 如权利要求6所述的定位系统,其中,所述定位器,还用于:
    根据所述信号幅值,获得波束信息图;
    从所述波束信息图中,获得最高峰值对应的俯仰角和方位角;
    将所述俯仰角和方位角确定为所述目标物体的目标位置。
  9. 一种定位方法,其中,应用于如权利要求1-8中任一项所述的定位系统,所述定位方法包括以下步骤:
    利用所述环形发射器阵列向目标物体发射多个涡旋波信号,以使所述多个涡旋波信号到达所述目标物体时,产生多个携带反馈相位信息的反射回波信号;其中,多个所述涡旋波信号的发射频率相同,且多个所述涡旋波信号所携带的初始相位信息不同;
    利用所述环形接收器阵列接收所述多个携带反馈相位信息的反射回波信号;
    利用所述定位器根据所述多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息。
  10. 如权利要求9所述的定位方法,其中,
    所述利用所述环形发射器阵列向目标物体发射多个涡旋波信号,以使所述多个涡旋波信号到达所述目标物体时,产生多个携带反馈相位信息的反射回波信号的步骤,包括:
    利用所述环形发射器阵列向目标物体发射多种阶数的多个涡旋波信号,以使多种阶数的多个所述涡旋波信号到达所述目标物体时,产生多种阶数的多个携带反馈相位信息的反射回波信号;
    所述利用所述环形接收器阵列接收所述多个携带反馈相位信息的反射回波信号的步骤,包括:
    利用所述环形接收器阵列接收所述多种阶数的多个携带反馈相位信息的反射回波信号;
    所述利用所述定位器根据所述多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息的步骤,包括:
    利用所述定位器根据所述多种阶数的多个携带反馈相位信息的反射回波信号,获得所述目标物体的目标位置信息。
PCT/CN2021/075099 2021-01-19 2021-02-03 定位系统及定位方法 WO2022156000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110072527.5 2021-01-19
CN202110072527.5A CN112904345B (zh) 2021-01-19 2021-01-19 定位系统及定位方法

Publications (1)

Publication Number Publication Date
WO2022156000A1 true WO2022156000A1 (zh) 2022-07-28

Family

ID=76116255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075099 WO2022156000A1 (zh) 2021-01-19 2021-02-03 定位系统及定位方法

Country Status (2)

Country Link
CN (1) CN112904345B (zh)
WO (1) WO2022156000A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122478A (ja) * 1982-01-14 1983-07-21 Furuno Electric Co Ltd 水中探知用パラメトリツク超音波送受波器
CN106526589A (zh) * 2016-12-26 2017-03-22 浙江大学 一种基于涡旋电磁波的雷达目标二维成像方法
CN106886020A (zh) * 2017-03-06 2017-06-23 中国人民解放军国防科学技术大学 一种单天线接收条件下的电磁涡旋成像方法
CN110501707A (zh) * 2019-08-27 2019-11-26 中国人民解放军国防科技大学 基于轨道角动量双模态复用的电磁涡旋成像方法
CN112083432A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 基于声学轨道角动量的超精细三维成像方法
CN112083431A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 基于声学轨道角动量的低频远程三维成像方法
CN112083430A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 一种适用于轨道角动量三维成像声呐的旁瓣抑制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122478A (ja) * 1982-01-14 1983-07-21 Furuno Electric Co Ltd 水中探知用パラメトリツク超音波送受波器
CN106526589A (zh) * 2016-12-26 2017-03-22 浙江大学 一种基于涡旋电磁波的雷达目标二维成像方法
CN106886020A (zh) * 2017-03-06 2017-06-23 中国人民解放军国防科学技术大学 一种单天线接收条件下的电磁涡旋成像方法
CN110501707A (zh) * 2019-08-27 2019-11-26 中国人民解放军国防科技大学 基于轨道角动量双模态复用的电磁涡旋成像方法
CN112083432A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 基于声学轨道角动量的超精细三维成像方法
CN112083431A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 基于声学轨道角动量的低频远程三维成像方法
CN112083430A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 一种适用于轨道角动量三维成像声呐的旁瓣抑制方法

Also Published As

Publication number Publication date
CN112904345A (zh) 2021-06-04
CN112904345B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US10024952B2 (en) Self-organizing hybrid indoor location system
CN108139460B (zh) 使用超声脉冲和无线电信号的云协调定位系统
CN104978022B (zh) 基于超声波的非接触式手势识别方法及其装置
US20130337849A1 (en) Mobile device position detection
EP3780664B1 (en) Terminal detection method and terminal
WO2019165999A1 (zh) 超声波指纹采集精度控制处理方法、存储介质及移动终端
CN109783901B (zh) 串馈victs平板阵列天线扫描波束估计方法和装置
WO2022156000A1 (zh) 定位系统及定位方法
WO2022156001A1 (zh) 成像系统和方法
JP2011089947A (ja) 位置検知システムおよび方法
CN112954793B (zh) 定位方法、装置、终端及存储介质
WO2012098962A1 (ja) 座標入力装置、および該座標入力装置を備えた表示装置ならびに座標入力方法
WO2023155560A1 (zh) 定位方法、装置、终端配件、移动终端及电子设备
WO2022155998A1 (zh) 成像系统和方法
WO2020077968A1 (zh) 一种投影装置及其投影图像矫正方法和计算机存储介质
WO2022068705A1 (zh) 用于调整位置信息的方法、设备和系统
WO2022174500A1 (zh) 一种成像方法及系统
WO2024065152A1 (zh) 跟踪用户的方法、平台、系统及存储介质
US20240094380A1 (en) Method for performing positioning operation and electronic device for supporting same
CN210072053U (zh) 一种适用于多频干扰源的定位装置
CN113225478A (zh) 一种拍摄方法和装置
JP5547889B2 (ja) スキャニングソナー装置および追尾方法
JP2018524556A (ja) 単一送信機の磁界を用いた無線位置検出
CN116346977A (zh) 音频播放方法、装置、电子设备及存储介质
TWM614918U (zh) 充電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920391

Country of ref document: EP

Kind code of ref document: A1