WO2022174500A1 - 一种成像方法及系统 - Google Patents

一种成像方法及系统 Download PDF

Info

Publication number
WO2022174500A1
WO2022174500A1 PCT/CN2021/085085 CN2021085085W WO2022174500A1 WO 2022174500 A1 WO2022174500 A1 WO 2022174500A1 CN 2021085085 W CN2021085085 W CN 2021085085W WO 2022174500 A1 WO2022174500 A1 WO 2022174500A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular momentum
orbital angular
signal
signals
array
Prior art date
Application number
PCT/CN2021/085085
Other languages
English (en)
French (fr)
Inventor
孙晓雨
李胜全
罗明成
张翼
陈明
Original Assignee
鹏城实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹏城实验室 filed Critical 鹏城实验室
Publication of WO2022174500A1 publication Critical patent/WO2022174500A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present application relates to the field of data processing, and in particular, to an imaging method and system.
  • Underwater 3D imaging can perform multi-view and high-resolution observation of underwater targets. It has urgent application requirements and broad application prospects in the fields of underwater vehicle obstacle avoidance, seabed topography mapping, and oil pipeline inspection.
  • a three-dimensional image is obtained by transmitting a vortex wave signal, receiving an echo signal, and processing the echo signal.
  • the imaging speed is slow.
  • the main purpose of this application is to provide an imaging method and system, which aims to solve the problem of slow underwater three-dimensional imaging with orbital angular momentum in the prior art.
  • an imaging method which includes:
  • the vortex wave signal is transmitted through the transmitter array; wherein, the vortex wave signal includes an ⁇ -order orbital angular momentum signal, and the ⁇ is an integer greater than or equal to 2, and the carrier frequencies of the different-order orbital angular momentum signals are different;
  • the echo signal comprising an alpha-order orbital angular momentum echo signal
  • the signals with different carrier frequencies in the echo signals are separated to obtain different orders of orbital angular momentum echo signals
  • the orbital angular momentum echo signals of different orders are processed to obtain a three-dimensional image of range-azimuth-elevation angle.
  • the transmitter array is a transmitter array including N transmitters, and N is an integer greater than or equal to 2;
  • the step of transmitting the vortex wave signal through the transmitter array includes:
  • each transmitter in the transmitter array Through each transmitter in the transmitter array, a corresponding vortex wave signal is transmitted.
  • the transmitter array is a circular transmitter array
  • the receiver array is disposed within a circle formed by the circular transmitter array
  • the receiver array is helical.
  • the transmitters in the transmitter array are combined transmitter-receiver transmitters
  • the step of receiving the echo signal of the vortex wave signal through the receiver array includes:
  • An echo signal of the vortex wave signal is received by the receiver array and the transmitter array.
  • the steps of processing the different-order orbital angular momentum echo signals to obtain a three-dimensional image of distance-azimuth-elevation include:
  • the orbital angular momentum echo signals of different orders are processed to obtain a range-azimuth-elevation three-dimensional image.
  • the step of processing the different-order orbital angular momentum echo signals based on beamforming to obtain a three-dimensional image of range-azimuth-elevation includes:
  • a range-azimuth-elevation three-dimensional image is acquired.
  • the present application also provides an imaging system, the imaging system includes: a transmitter array, a receiver array, and an imager;
  • the transmitter array is used to transmit a vortex wave signal; wherein, the vortex wave signal includes an ⁇ -order orbital angular momentum signal, the ⁇ is an integer greater than or equal to 2, and the carrier frequencies of the different-order orbital angular momentum signals are different ;
  • the receiver array configured to receive an echo signal of the vortex wave signal, where the echo signal includes an ⁇ -order orbital angular momentum echo signal;
  • the imager is used to separate the signals with different carrier frequencies in the echo signals by means of filtering, so as to obtain different-order orbital angular momentum echo signals; and process the different-order orbital angular momentum echo signals , to obtain a 3D range-azimuth-elevation image.
  • the transmitters included in the transmitter array are transmitter-receiver combined transmitters
  • the transmitter array is also used for receiving the echo signal of the vortex wave signal.
  • the transmitter array is a transmitter array including N transmitters, and N is an integer greater than or equal to 2; the transmitter array is further used for:
  • each transmitter in the transmitter array Through each transmitter in the transmitter array, a corresponding vortex wave signal is transmitted.
  • the technical solution of the present application provides an imaging method and system, which transmits a vortex wave signal through a transmitter array; wherein, the vortex wave signal includes an ⁇ -order orbital angular momentum signal, where ⁇ is an integer greater than or equal to 2, and different orders of orbital angular momentum
  • the carrier frequencies of the signals are different; the echo signals of the vortex wave signals are received by the receiver array, and the echo signals include the ⁇ -order orbital angular momentum echo signals; the signals with different carrier frequencies in the echo signals are separated by filtering,
  • the different-order orbital angular momentum echo signals are processed to obtain distance-azimuth-elevation three-dimensional images; the problem of slow underwater three-dimensional imaging in the prior art is solved.
  • different carrier frequencies are used to simultaneously transmit orbital angular momentum signals of different orders and receive echo signals, and the echo signals are filtered, so as to separate the echo signals with different carrier frequencies to obtain different signals.
  • Orbital angular momentum echo signals of different orders are processed to obtain a three-dimensional image of distance-azimuth-elevation angle, and parallel transmission, reception and processing of ⁇ -order orbital angular momentum signals are realized.
  • the next-order orbital angular momentum signal can be transmitted.
  • the three-dimensional image can only be obtained by processing the echo signal.
  • the imaging speed is faster.
  • FIG. 1 is a schematic structural diagram of an imaging device involved in an embodiment of the present application
  • FIG. 2 is a structural block diagram of the first embodiment of the imaging method of the present application.
  • 3-1 is a schematic diagram of the arrangement of the circular emitter array of the present application.
  • Figure 3-2 is a schematic diagram of the arrangement of the circular transmitter array and the receiver array of the present application
  • FIG. 5 is a schematic structural diagram of the imaging system of the present application.
  • FIG. 1 is a schematic structural diagram of an imaging device of a hardware operating environment involved in an embodiment of the present application.
  • the imaging device may be any electronic device with a signal processing function, for example, it may be a device such as a sonar.
  • an imaging device includes at least one processor 101, a memory 102, and an imaging program stored on the memory and executable on the processor, the imaging program configured to implement imaging as described in any of the following embodiments steps of the method.
  • the processor 101 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • the processor 101 can use at least one hardware form among DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), PLA (Programmable Logic Array, programmable logic array) accomplish.
  • the processor 101 may also include a main processor and a co-processor.
  • the main processor is a processor used to process data in the wake-up state, also called CPU (Central Processing Unit, central processing unit); A low-power processor for processing data in a standby state.
  • the processor 101 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is used for rendering and drawing the content that needs to be displayed on the display screen.
  • the processor 101 may further include an AI (Artificial Intelligence, artificial intelligence) processor, where the AI processor is used to process operations related to the imaging method, so that the imaging method model can be trained and learned autonomously to improve efficiency and accuracy.
  • AI Artificial Intelligence, artificial intelligence
  • Memory 102 may include one or more computer-readable storage media, which may be non-transitory. Memory 102 may also include high-speed random access memory, as well as non-volatile memory, such as one or more disk storage devices, flash storage devices. In some embodiments, a non-transitory computer-readable storage medium in the memory 102 is used to store at least one instruction for being executed by the processor 101 to implement corresponding steps of the imaging method in the present application.
  • the imaging device may also optionally include: a communication interface 103 and at least one peripheral device.
  • the processor 101, the memory 102 and the communication interface 103 may be connected through a bus or a signal line.
  • Various peripheral devices can be connected to the communication interface 103 through a bus, a signal line or a circuit board.
  • the peripheral device includes: at least one of a radio frequency circuit 104 , a display screen 105 and a power supply 106 .
  • the communication interface 103 may be used to connect at least one peripheral device related to I/O (Input/Output) to the processor 101 and the memory 102 .
  • processor 101, memory 102, and communication interface 103 are integrated on the same chip or circuit board; in some other embodiments, any one or both of processor 101, memory 102, and communication interface 103 It may be implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the radio frequency circuit 104 is used for receiving and transmitting RF (Radio Frequency, radio frequency) signals, also called electromagnetic signals.
  • the radio frequency circuit 104 communicates with the communication network and other communication devices via electromagnetic signals.
  • the radio frequency circuit 104 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • the radio frequency circuit 104 includes an antenna system, an RF transceiver, one or more amplifiers, tuners, oscillators, digital signal processors, codec chipsets, subscriber identity module cards, and the like.
  • the radio frequency circuit 104 may communicate with other terminals through at least one wireless communication protocol.
  • the wireless communication protocol includes but is not limited to: metropolitan area network, mobile communication networks of various generations (2G, 3G, 4G and 5G), wireless local area network and/or WIFI (Wireless Fidelity, wireless fidelity) network.
  • the radio frequency circuit 104 may further include a circuit related to NFC (Near Field Communication, short-range wireless communication), which is not limited in this application.
  • the display screen 105 is used for displaying UI (User Interface, user interface).
  • the UI can include graphics, text, icons, video, and any combination thereof.
  • the display screen 105 also has the ability to acquire touch signals on or above the surface of the display screen 105 .
  • the touch signal may be input to the processor 101 as a control signal for processing.
  • the display screen 105 may also be used to provide virtual buttons and/or virtual keyboards, also referred to as soft buttons and/or soft keyboards.
  • the display screen 105 may be one, which is the front panel of the electronic device; in other embodiments, the display screen 105 may be at least two, which are respectively disposed on different surfaces of the electronic device or in a folded design; In some embodiments, the display screen 105 may be a flexible display screen disposed on a curved or folded surface of the electronic device. Even, the display screen 105 can also be set as a non-rectangular irregular figure, that is, a special-shaped screen.
  • the display screen 105 can be prepared by using materials such as LCD (Liquid Crystal Display, liquid crystal display), OLED (Organic Light-Emitting Diode, organic light emitting diode).
  • the power supply 106 is used to power various components in the electronic device.
  • the power source 106 may be alternating current, direct current, primary batteries, or rechargeable batteries.
  • the rechargeable battery can support wired charging or wireless charging.
  • the rechargeable battery can also be used to support fast charging technology.
  • an embodiment of the present application further proposes a computer-readable storage medium, where a corresponding program is stored on the computer-readable storage medium, and when the program is executed by a processor, it implements the imaging method corresponding to any of the following embodiments. A step of. Therefore, it will not be repeated here.
  • the description of the beneficial effects of using the same method will not be repeated.
  • program instructions may be deployed to execute on one computing device, or on multiple computing devices located at one site, or alternatively, on multiple computing devices distributed across multiple sites and interconnected by a communications network execute on.
  • the above-mentioned storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.
  • the vortex wave signal of the first order orbital angular momentum is usually transmitted first and the echo signal is received, and then the vortex wave signal of the second order orbital angular momentum is transmitted and the echo signal is received.
  • the echo signal is not processed to obtain a three-dimensional image until the vortex wave signals of the multi-order orbital angular momentum are all transmitted and the echo signal is received, resulting in a slow three-dimensional imaging speed.
  • Imaging methods include:
  • Step S21 Transmit the vortex wave signal through the transmitter array.
  • the transmitter array includes N transmitters for transmitting vortex waves, where N is an integer greater than or equal to 2, and the specific value of N can be flexibly set according to actual needs.
  • the transmitter can be a transducer, and in practical applications, the transmitter can be flexibly adjusted according to specific application scenarios.
  • the N transmitters can simultaneously and independently transmit signals with the same frequency and the same amplitude, but with different initial phases.
  • the arrangement form of the transmitter array can be flexibly set according to actual needs.
  • the emitter array may be a circular emitter array, with at least two emitters distributed on the circle.
  • each transmitter in the transmitter array transmits a vortex wave signal, wherein the vortex wave signal includes an ⁇ -order orbital angular momentum signal, and the carrier frequencies of different-order orbital angular momentum signals are different, and the same order
  • the carrier frequencies of the orbital angular momentum signals are the same, and ⁇ is an integer greater than or equal to 2 (the specific value of ⁇ can be flexibly set according to actual needs). That is to say, in the embodiment of the present application, by using different carrier frequencies to transmit different-order orbital angular momentum signals simultaneously, the parallel transmission of multi-order orbital angular momentum signals is realized.
  • the method of transmitting the next-order orbital angular momentum signal reduces the transmission time of the multi-order orbital angular momentum signal.
  • the carrier frequency corresponding to the orbital angular momentum signal of each order can be flexibly set according to actual needs, for example, the carrier frequency of the first-order orbital angular momentum signal can be 200KHz (Hertz); the carrier frequency of the second-order orbital angular momentum signal can be is 220KHz etc.
  • the vortex wave signals emitted by different transmitters are different, but the vortex wave signals emitted by each transmitter include the ⁇ -order orbital angular momentum signal, and the vortex wave signals emitted by each transmitter include , the carrier frequencies of orbital angular momentum signals of different orders are different.
  • the carrier frequencies of the orbital angular momentum signals of the same order are the same.
  • the vortex wave signal emitted by the nth transmitter is denoted as
  • the value range of n is [1, N]
  • t is the emission time of the vortex wave signal
  • f m is the carrier frequency of the m-th order orbital angular momentum signal
  • the value range of m is [1, ⁇ ]
  • y mn (f m ) is the vortex wave signal emitted by the nth transmitter whose carrier frequency is f m .
  • the vortex wave signal may be an acoustic wave signal.
  • the first row is a schematic diagram of the amplitude distribution of the signal
  • the second row is a schematic diagram of the phase distribution
  • the first column is a schematic diagram of the amplitude and phase distribution of the plane wave
  • the second row is a schematic diagram of the first-order orbit
  • the third column includes the schematic diagram of the amplitude and phase distribution of the 12-order orbital angular momentum signal. It can be seen from the figure that the sound field and the ordinary plane wave of the multi-order orbital angular momentum signal emitted in parallel and the single-order The sound field of the orbital angular momentum signal has different characteristics.
  • Step S22 Receive the echo signal of the vortex wave signal through the receiver array.
  • the receiver array includes at least two receivers for receiving echo signals, wherein the receivers may be transducers, and in practical applications, the receivers may be based on specific application scenarios Make flexible adjustments.
  • the setting position of the receiver array can be flexibly set according to actual needs.
  • the receivers in the receiver array may all be arranged outside the circle formed by the circular transmitter array, or may be partly arranged outside the circle formed by the circular emitters and partly arranged outside the circle formed by the circular emitters Alternatively, to reduce device size, the receivers in the receiver array may all be located within the circle formed by a circular transmitter array.
  • the arrangement form of the receiver array can be flexibly set according to actual needs.
  • the receivers in the receiver array can be arranged in a circle (ie, a circular receiver array), or the receivers in the receiver array can be arranged randomly , or, in order to improve the quality of signal reception, the receivers in the receiver array can be arranged in a spiral, and the receiver array is arranged in the circle formed by the circular receiver array, for example, see Figure 3-2, Figure 3 -2 is a schematic diagram of the arrangement of the transmitter array and the receiver array, wherein the transmitter array is circular, the receiver array is spiral, and the receiver array is arranged in the circle formed by the transmitter array.
  • the receiver in the receiver array receives the echo signal of the vortex wave signal. wave signal. Since the vortex wave signal includes the ⁇ -order orbital angular momentum signal, the echo signal includes the ⁇ -order orbital angular momentum echo signal.
  • the transmitters in the transmitter array may be combined transmitter-receiver transmitters (that is, the transmitters that can receive signals and transmit the signals) Transmitter), for example, can be a transceiving and combining transducer, so that in step S22, the echo signal of the vortex wave signal can be received through the receiver array and the transmitter array.
  • transmitter-receiver transmitters that is, the transmitters that can receive signals and transmit the signals
  • Transmitter for example, can be a transceiving and combining transducer, so that in step S22, the echo signal of the vortex wave signal can be received through the receiver array and the transmitter array.
  • Step S23 Separating the echo signals with different carrier frequencies by means of filtering, so as to obtain different orders of orbital angular momentum echo signals.
  • the received echo signals since the transmitted vortex wave signals include orbital angular momentum signals of different orders, and the carrier frequencies of the orbital angular momentum signals of different orders are different, the received echo signals also include orbital angular momentum echo signals of different orders. , and the carrier frequencies of the orbital angular momentum echo signals of different orders are different.
  • the received echo signals may be filtered by a filter to separate the signals of different carrier frequencies in the echo signals, thereby obtaining orbitals of different orders. Angular momentum echo signal.
  • the vortex wave signal includes the second-order orbital angular momentum signal
  • the carrier frequency of the first-order orbital angular momentum signal is 200KHz
  • the carrier frequency of the second-order orbital angular momentum signal is 250KHz
  • the received echo signal including the second-order orbital angular momentum echo signal
  • the carrier frequency of the first-order orbital angular momentum echo signal corresponding to the first-order orbital angular momentum signal is 200KHz
  • the carrier frequency of the momentum echo signal is 250KHz
  • the echo signal is filtered by a filter, so that the first-order orbital angular momentum echo signal and the second-order orbital angular momentum echo signal can be separated to obtain the first-order orbital The angular momentum echo signal and the second order orbital angular momentum echo signal.
  • Step S24 Process the orbital angular momentum echo signals of different orders to obtain a three-dimensional image of distance-azimuth-elevation angle.
  • the orbital angular momentum echo signals of different orders are processed, so that a three-dimensional image of distance-azimuth-elevation angle can be obtained.
  • the processing method can be flexibly set according to actual needs.
  • a vortex wave signal is transmitted through a transmitter array; wherein, the vortex wave signal includes an ⁇ -order orbital angular momentum signal, where ⁇ is an integer greater than or equal to 2, and the carrier frequencies of the different-order orbital angular momentum signals Different; the echo signal of the vortex wave signal is received by the receiver array, and the echo signal includes the ⁇ -order orbital angular momentum echo signal; by filtering, the signals with different carrier frequencies in the echo signal are separated to obtain different orders.
  • Orbital angular momentum echo signal process the orbital angular momentum echo signals of different orders to obtain a three-dimensional image of distance-azimuth-elevation angle, that is to say, in the embodiment of the present application, different carrier frequencies are used to simultaneously transmit orbits of different orders
  • the angular momentum signal and the echo signal are received, and the echo signal is filtered, so as to separate the signals with different carrier frequencies in the echo signal, so as to obtain the orbital angular momentum echo signals of different orders.
  • a three-dimensional image of distance-azimuth-elevation angle can be obtained, and parallel transmission, reception, and processing of ⁇ -order orbital angular momentum signals are realized.
  • the echo signal can be obtained by processing the echo signal.
  • sending and receiving a 10th-order orbital angular momentum signal is equivalent to sending and receiving a vortex wave signal of a first-order orbital angular momentum, that is, 2
  • step S22 includes:
  • Step S221 Obtain the carrier frequency corresponding to the orbital angular momentum signal of each order.
  • the carrier frequency corresponding to the orbital angular momentum signal of each order can be flexibly set according to actual needs.
  • Step S222 Determine the initial phase of the orbital angular momentum signal of each order corresponding to each transmitter according to N.
  • the initial phases of the orbital angular momentum signals of each order corresponding to each transmitter are different, wherein the orbital angle of each order corresponding to each transmitter can be determined according to N (that is, the number of transmitters in the transmitter array).
  • N that is, the number of transmitters in the transmitter array.
  • the initial phase of the mth order orbital angular momentum corresponding to the nth emitter is denoted as It can be determined according to the following formula:
  • Step S223 Determine the vortex wave signal corresponding to each transmitter according to the carrier frequency and the initial phase.
  • the vortex wave signal corresponding to the nth transmitter is:
  • i is a complex unit
  • exp is an exponential function
  • Step S224 Transmit the corresponding vortex wave signal through each transmitter in the transmitter array.
  • the corresponding vortex wave signal is transmitted through each transmitter.
  • the vortex wave signal emitted by the first transmitter is s 1 (t)
  • the vortex wave signal emitted by the second transmitter is s 2 (t).
  • the method of obtaining the vortex wave signal is not limited to the above specific examples, and in practical applications, it can be flexibly adjusted according to specific application scenarios.
  • the carrier frequency corresponding to the orbital angular momentum signal of each order is obtained first, and the frequency of the orbital angular momentum signal of each order corresponding to each transmitter is determined according to the number of transmitters, the serial number of the transmitter, and the order of the orbital angular momentum.
  • the initial phase determines the vortex wave signal corresponding to each transmitter according to the initial phase and carrier frequency, so that each transmitter transmits the corresponding vortex wave signal, and realizes the parallel emission of multi-order orbital angular momentum signals.
  • step S24 includes: based on beamforming, processing different orders of orbital angular momentum echo signals to obtain a distance-azimuth-elevation three-dimensional image.
  • the acquisition method of the distance-azimuth-elevation three-dimensional image is not limited to the above-mentioned specific examples, and can be flexibly adjusted according to specific application scenarios in practical applications.
  • step S24 may include the following steps:
  • Step S241 Perform beamforming on the distance based on the orbital angular momentum echo signals of different orders to obtain distance image data.
  • the distance is beamformed, so that distance image data can be obtained, where the distance is the distance between the imaging device and the object to be detected.
  • Step S242 Based on the orbital angular momentum echo signals of different orders, beamforming is performed on the elevation angle and the azimuth angle respectively, so as to obtain initial elevation angle-azimuth angle image data.
  • the first beamforming is performed for the elevation angle and the first beamforming is performed for the azimuth angle, so as to obtain the initial elevation angle-azimuth angle image data.
  • Step S243 Based on the initial pitch angle-azimuth angle image data, perform secondary beamforming on the pitch angle and the azimuth angle, respectively, to obtain final pitch angle-azimuth angle image data.
  • the second beamforming is performed for the pitch angle and the second beamforming is performed for the azimuth angle to obtain the final pitch-azimuth image data.
  • step S243 for any azimuth, the amplitude vector in the initial pitch angle-azimuth angle image data may be compared with the composite Bessel theoretical value to obtain a correlation coefficient; then, the initial pitch angle The angular-azimuth image data is divided by the correlation coefficient to enlarge, so that higher resolution pitch-azimuth image data can be obtained.
  • Step S244 Acquire a distance-azimuth-elevation three-dimensional image according to the range image data and the final pitch-azimuth image data.
  • a range-azimuth-elevation three-dimensional image can be obtained according to the range image data and the final pitch-azimuth image data.
  • beamforming is performed twice based on the orbital angular momentum echo signals of different orders, so that a higher-resolution distance-azimuth-elevation three-dimensional image can be obtained.
  • FIG. 5 provides a structural block diagram of an imaging system according to an embodiment of the present application.
  • the transmitter array 51 is used for transmitting vortex wave signals; wherein, the vortex wave signals include ⁇ -order orbital angular momentum signals, where ⁇ is an integer greater than or equal to 2, and the carrier frequencies of different-order orbital angular momentum signals are different.
  • the receiver array 52 is used for receiving echo signals of the vortex wave signal, and the echo signals include ⁇ -order orbital angular momentum echo signals.
  • the imager 53 is used to separate the signals with different carrier frequencies in the echo signals by means of filtering, so as to obtain the orbital angular momentum echo signals of different orders; process the orbital angular momentum echo signals of different orders to obtain the distance- Azimuth-elevation 3D image.
  • the transmitter array 51 is a transmitter array including N transmitters, where N is an integer greater than or equal to 2.
  • the transmitter array 51 is also used to: obtain the carrier frequency corresponding to the orbital angular momentum signal of each order; determine the initial phase of the orbital angular momentum signal of each order corresponding to each transmitter according to N; determine each transmitter according to the carrier frequency and the initial phase. vortex wave signal corresponding to the transmitter; through each transmitter in the transmitter array, the corresponding vortex wave signal is transmitted.
  • N is an integer greater than or equal to 2.
  • the transmitter array 51 is also used to: obtain the carrier frequency corresponding to the orbital angular momentum signal of each order; determine the initial phase of the orbital angular momentum signal of each order corresponding to each transmitter according to N; determine each transmitter according to the carrier frequency and the initial phase. vortex wave signal corresponding to the transmitter; through each transmitter in the transmitter array, the corresponding vortex wave signal is transmitted.
  • the transmitter array 51 is a circular transmitter array and the receiver array 52 is disposed within a circle formed by the circular transmitter array.
  • the receiver array 52 is helical.
  • the transmitters in the transmitter array 51 are transmitter-receiver combined transmitters, and the transmitter array 51 is further configured to receive the echo signal of the vortex wave signal.
  • the imager 53 is further configured to process different orders of orbital angular momentum echo signals based on beamforming to obtain a range-azimuth-elevation three-dimensional image.
  • the imager 53 is further configured to perform beamforming on the distance based on the orbital angular momentum echo signals of different orders to obtain distance image data; based on the orbital angular momentum echo signals of different orders, the pitch angle and the azimuth are respectively calculated Perform beamforming on the pitch angle to obtain the initial pitch angle-azimuth angle image data; based on the initial pitch angle-azimuth angle image data, perform secondary beamforming on the pitch angle and azimuth angle respectively to obtain the final pitch angle-azimuth angle image data; According to the range image data and the final pitch-azimuth image data, a range-azimuth-elevation three-dimensional image is obtained.
  • the imaging system of the present application adopts all the technical solutions of all the above-mentioned imaging method embodiments, and therefore at least has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本申请涉及数据处理技术领域,公开了一种成像方法及系统。本申请的成像方法包括:通过发射器阵列发射涡旋波信号;其中,涡旋波信号包括α阶轨道角动量信号,α为大于等于2的整数,不同阶轨道角动量信号的载频不同;通过接收器阵列接收涡旋波信号的回波信号,回波信号包括α阶轨道角动量回波信号;通过滤波的方式,将回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号;对不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。

Description

一种成像方法及系统
优先权信息
本申请要求于2021年2月20日申请的、申请号为202110194969.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理领域,尤其涉及一种成像方法及系统。
背景技术
水下三维成像可以对水下目标进行多视角和高分辨的观测,在水下航行器避障、海底形貌测绘、石油管道检测等领域有着紧迫的应用需求和广泛的使用前景。
在水下三维成像时,通过发射涡旋波信号,接收回波信号,对回波信号进行处理,得到三维图像。
但是,采用现有的轨道角动量三维成像方法,成像速度慢。
发明内容
本申请的主要目的是提供一种成像方法及系统,旨在解决现有技术中轨道角动量水下三维成像速度慢的问题。
为实现上述目的,本申请提出一种成像方法,所述成像方法包括:
通过发射器阵列发射涡旋波信号;其中,所述涡旋波信号包括α阶轨道角动量信号,所述α为大于等于2的整数,不同阶轨道角动量信号的载频不同;
通过接收器阵列接收所述涡旋波信号的回波信号,所述回波信号包括α阶轨道角动量回波信号;
通过滤波的方式,将所述回波信号中载频不同的信号分离,以得到不同阶 轨道角动量回波信号;
对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
在一实施例中,所述发射器阵列为包括N个发射器的发射器阵列,所述N为大于等于2的整数;
所述通过发射器阵列发射涡旋波信号的步骤,包括:
获取每阶轨道角动量信号对应的载频;
根据所述N确定每个所述发射器对应的每阶轨道角动量信号的初始相位;
根据所述载频和所述初始相位,确定每个所述发射器对应的涡旋波信号;
通过所述发射器阵列中的每个发射器,发射对应的涡旋波信号。
在一实施例中,所述发射器阵列为圆形发射器阵列,所述接收器阵列设置在所述圆形发射器阵列形成的圆圈内
在一实施例中,所述接收器阵列呈螺旋形。
在一实施例中,所述发射器阵列中的发射器为收发合置发射器;
所述通过接收器阵列接收所述涡旋波信号的回波信号的步骤,包括:
通过所述接收器阵列和所述发射器阵列接收所述涡旋波信号的回波信号。
在一实施例中,对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像的步骤,包括:
基于波束成形,对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
在一实施例中,所述基于波束成形,对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像的步骤,包括:
基于所述不同阶轨道角动量回波信号,对距离进行波束形成,以得到距离图像数据;
基于所述不同阶轨道角动量回波信号,分别对俯仰角和方位角进行波束形成,以得到初始俯仰角-方位角图像数据;
基于所述初始俯仰角-方位角图像数据,分别对俯仰角和方位角进行二次波束形成,以得到最终俯仰角-方位角图像数据;
根据所述距离图像数据和所述最终俯仰角-方位角图像数据,获取距离-方位角-俯仰角三维图像。
此外,为实现上述目的,本申请还提出了一种成像系统,所述成像系统包括:发射器阵列、接收器阵列、以及成像器;
所述发射器阵列,用于发射涡旋波信号;其中,所述涡旋波信号包括α阶轨道角动量信号,所述α为大于等于2的整数,不同阶轨道角动量信号的载频不同;
所述接收器阵列,用于接收所述涡旋波信号的回波信号,所述回波信号包括α阶轨道角动量回波信号;
所述成像器,用于通过滤波的方式,将所述回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号;对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
在一实施例中,所述发射器阵列包括的发射器为收发合置发射器;
所述发射器阵列,还用于接收所述涡旋波信号的回波信号。
在一实施例中,所述发射器阵列为包括N个发射器的发射器阵列,所述N为大于等于2的整数;所述发射器阵列还用于:
获取每阶轨道角动量信号对应的载频;
根据所述N确定每个所述发射器对应的每阶轨道角动量信号的初始相位;
根据所述载频和所述初始相位,确定每个所述发射器对应的涡旋波信号;
通过所述发射器阵列中的每个发射器,发射对应的涡旋波信号。
本申请技术方案提出了一种成像方法及系统,通过发射器阵列发射涡旋波信号;其中,涡旋波信号包括α阶轨道角动量信号,α为大于等于2的整数,不同阶轨道角动量信号的载频不同;通过接收器阵列接收涡旋波信号的回波信号,回波信号包括α阶轨道角动量回波信号;通过滤波的方式,将回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号;对不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像;解决了现有技术 中水下三维成像速度慢的问题。
也即本申请技术方案中,采用不同载频同时发射不同阶轨道角动量信号并接收回波信号,对回波信号进行滤波,从而将回波信号中,载频不同的信号分离,以得到不同阶轨道角动量回波信号,对不同阶轨道角动量回波信号进行处理,从而可以获得距离-方位角-俯仰角三维图像,实现了α阶轨道角动量信号的并行发射、接收、处理,相对于现有收发一阶轨道角动量的涡旋波信号,才能发射下一阶轨道角动量信号,在收发多阶轨道角动量信号后,对回波信号进行处理才能得到三维图像的方案而言,本申请技术方案中,成像速度更快。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请实施例方案涉及的成像设备结构示意图;
图2为本申请成像方法第一实施例的结构框图;
图3-1为本申请圆形发射器阵列的排列示意图;
图3-2为本申请圆形发射器阵列和接收器阵列的排列示意图
图4为本申请不同轨道角动量信号的幅值和相位示意图;
图5为本申请成像系统的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的成像设备结构示意图。
成像设备可以任意具备信号处理功能的电子设备,例如,可以是声呐等设备。
通常,成像设备包括:至少一个处理器101、存储器102以及存储在所述存储器上并可在所述处理器上运行的成像程序,所述成像程序配置为实现如下任一实施例所述的成像方法的步骤。
处理器101可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器101可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器101也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central ProcessingUnit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器101可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。处理器101还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关成像方法操作,使得成像方法模型可以自主训练学习,提高效率和准确度。
存储器102可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器102还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器102中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器101所执行以实现本申请中成像方法对应的步骤。
在一些实施例中,成像设备还可选包括有:通信接口103和至少一个外围设备。处理器101、存储器102和通信接口103之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与通信接口103相连。具体地,外围设备包括:射频电路104、显示屏105和电源106中的至少一种。
通信接口103可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器101和存储器102。在一些实施例中,处理器101、存储器102和通信接口103被集成在同一芯片或电路板上;在一些其他实施例中,处理器101、 存储器102和通信接口103中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路104用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路104通过电磁信号与通信网络以及其他通信设备进行通信。射频电路104将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路104包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路104可以通过至少一种无线通信协议来与其它终端进行通信。该无线通信协议包括但不限于:城域网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WIFI(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路104还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。
显示屏105用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏105是触摸显示屏时,显示屏105还具有采集在显示屏105的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器101进行处理。此时,显示屏105还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏105可以为一个,电子设备的前面板;在另一些实施例中,显示屏105可以为至少两个,分别设置在电子设备的不同表面或呈折叠设计;在再一些实施例中,显示屏105可以是柔性显示屏,设置在电子设备的弯曲表面上或折叠面上。甚至,显示屏105还可以设置成非矩形的不规则图形,也即异形屏。显示屏105可以采用LCD(LiquidCrystal Display,液晶显示屏)、OLED(Organic Light-Emitting Diode,有机发光二极管)等材质制备。
电源106用于为电子设备中的各个组件进行供电。电源106可以是交流电、直流电、一次性电池或可充电电池。当电源106包括可充电电池时,该可充电电池可以支持有线充电或无线充电。该可充电电池还可以用于支持快充技术。本领域技术人员可以理解,图1中示出的结构并不构成对成像设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有对应的程序,所述程序被处理器执行时实现如下文任一实施例所述成像方法对应的步骤。因此,这里将不再进行赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。对于本申请所涉及的计算机可读存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述。确定为示例,程序指令可被部署为在一个计算设备上执行,或者在位于一个地点的多个计算设备上执行,又或者,在分布在多个地点且通过通信网络互连的多个计算设备上执行。
其中,上述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。
相关技术中,在进行水下三维成像时,通常是先发射第一阶轨道角动量的涡旋波信号并接收回波信号,再发射第二阶轨道角动量的涡旋波信号并接收回波信号,直到多阶轨道角动量的涡旋波信号均发射完成并接收到回波信号,才对回波信号进行处理以获得三维图像,从而导致三维成像速度慢。
为了解决上述技术问题,提出本申请的各个实施例。
成像方法实施例:
请参见图2所示,图2为本申请成像方法第一实施例的流程图。成像方法包括:
步骤S21:通过发射器阵列发射涡旋波信号。
应当理解的是,发射器阵列包括N个用于发射涡旋波的发射器,其中,N为大于等于2的整数,N的具体取值可以根据实际需要灵活设置。其中,发射器可以是换能器,在实际应用中,发射器可以根据具体应用场景做灵活调整。N个发射器能够同时独立地发射相同频率、相同幅值、但初始相位不同的信号。
需要说明的是,发射器阵列的排列形式可以根据实际需要灵活设置。在一些实施方式中,参见图3-1所示,发射器阵列可以为圆形发射器阵列,至少两个发射器分布在圆圈上。
本申请实施例中,通过发射器阵列中的每个发射器,发射涡旋波信号,其 中,涡旋波信号包括α阶轨道角动量信号,不同阶轨道角动量信号的载频不同,相同阶轨道角动量信号的载频相同,α为大于等于2的整数(α的具体取值,可以根据实际需要灵活设置)。也就是说,本申请实施例中,通过采用不同载频同时发射不同阶轨道角动量信号,从而实现了多阶轨道角动量信号的并行发射,相比现有收发一阶轨道角动量信号后,再发射下一阶轨道角动量信号的方式,降低了多阶轨道角动量信号的发射时间。
其中,各阶轨道角动量信号对应的载频可以根据实际需要灵活设置,例如,可以第一阶轨道角动量信号的载频可以是200KHz(赫兹);第二阶轨道角动量信号的载频可以是220KHz等。
需要说明的是,不同发射器发射的涡旋波信号不同,但是,每个发射器发射的涡旋波信号均包括α阶轨道角动量信号,并且,每个发射器发射的涡旋波信号中,不同阶轨道角动量信号的载频不同,不同发射器发射的涡旋波信号中,相同阶轨道角动量信号的载频相同。为了便于理解,此处,将第n个发射器发射的涡旋波信号记为
Figure PCTCN2021085085-appb-000001
其中,n的取值范围为[1,N],t为涡旋波信号发射时间,f m为第m阶轨道角动量信号的载频,m的取值范围为[1,α],y mn(f m)为载频为f m的第n个发射器发射的涡旋波信号。从中可以看出,不同发射器对应的同一阶轨道角动量信号的载频相同,同一发射器对应的不同阶轨道角动量信号的载频不同。
在一些实施方式中,涡旋波信号可以为声波信号。
应当理解的是,在单独发射轨道角动量信号、和并行发射α阶轨道角动量信号时,其对应的幅值和相位分布不同。例如,参见图4所示,图4中,第一行为信号的幅值分布示意图,第二行为相位分布示意图,第一列为平面波的幅值和相位分布示意图,第二列为第一阶轨道角动量信号的幅值和相位分布示意图,第三列为包括12阶轨道角动量信号的幅值和相位分布示意图,由图可知,多阶轨道角动量信号并行发射的声场和普通平面波及单阶轨道角动量信号的声场具有不同的特征。
步骤S22:通过接收器阵列接收涡旋波信号的回波信号。
应当理解的是,本申请实施例中,接收器阵列包括至少两个用于接收回波 信号的接收器,其中,接收器可以是换能器,在实际应用中,接收器可以根据具体应用场景做灵活调整。
需要说明的是,接收器阵列的设置位置可以根据实际需要灵活设置。在一些实施方式中,接收器阵列中的接收器可以均设置在圆形发射器阵列形成的圆圈外,或者,也可以部分设置在圆形发射器形成的圆圈外,部分设置在圆形发射器形成的圆圈内,或者,为了降低设备尺寸,接收器阵列中的接收器可以均设置在圆形发射器阵列形成的圆圈内。其中,接收器阵列的排列形式可以根据实际需要灵活设置,例如,接收器阵列中的接收器可以呈圆形排列(即圆形接收器阵列),或者,接收器阵列中的接收器可以随机排列,或者,为了提升信号接收质量,接收器阵列中的接收器可以呈螺旋形排列,且接收器阵列设置在圆形接收器阵列形成的圆圈内,例如,参见图3-2所示,图3-2为发射器阵列和接收器阵列的排列方式示意图,其中,发射器阵列呈圆形,接收器阵列呈螺旋形,接收器阵列设置在发射器阵列形成的圆圈内。
本申请实施例中,发射涡旋波信号后,涡旋波信号在传输过程中,被物体反射,从而形成回波信号,因此,通过接收器阵列中的接收器,接收涡旋波信号的回波信号。由于涡旋波信号中包括α阶轨道角动量信号,因此,回波信号中包括α阶轨道角动量回波信号。
在一些实施方式中,为了提升信号接收质量,提升数据获取量,从而提升成像质量,发射器阵列中的发射器可以是收发合置发射器(即,即可以接收信号,又可以发射信号的发射器),例如,可以是收发合置换能器,这样,在步骤S22中,可以通过接收器阵列和发射器阵列接收涡旋波信号的回波信号。
步骤S23:通过滤波的方式,将回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号。
需要说明的是,由于发射的涡旋波信号包括不同阶轨道角动量信号,且不同阶轨道角动量信号的载频不同,因此,接收到的回波信号也包括不同阶轨道角动量回波信号,且不同阶轨道角动量回波信号的载频不同。为了将不同阶轨道角动量回波信号分离,本申请实施例中,可以通过滤波器对接收到的回波信号进行滤波,以将回波信号中不同载频的信号分离,从而得到不同阶轨道角动 量回波信号。例如,假设涡旋波信号中,包括2阶轨道角动量信号,第一阶轨道角动量信号的载频为200KHz,第二阶轨道角动量信号的载频为250KHz,则接收到的回波信号中,包括2阶轨道角动量回波信号,第一阶轨道角动量信号对应的第一阶轨道角动量回波信号的载频为200KHz,第二阶轨道角动量信号对应的第二阶轨道角动量回波信号的载频为250KHz,通过滤波器对回波信号进行滤波,从而可以将第一阶轨道角动量回波信号和第二阶轨道角动量回波信号分离,从而得到第一阶轨道角动量回波信号和第二阶轨道角动量回波信号。
步骤S24:对不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
本申请实施例中,对不同阶轨道角动量回波信号进行处理,从而可以得到距离-方位角-俯仰角三维图像。其中,处理方式可以根据实际需要灵活设置。
本申请实施例提供的成像方法,通过发射器阵列发射涡旋波信号;其中,涡旋波信号包括α阶轨道角动量信号,α为大于等于2的整数,不同阶轨道角动量信号的载频不同;通过接收器阵列接收涡旋波信号的回波信号,回波信号包括α阶轨道角动量回波信号;通过滤波的方式,将回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号;对不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像,也就是说,本申请实施例中,采用不同载频同时发射不同阶轨道角动量信号并接收回波信号,对回波信号进行滤波,从而将回波信号中,载频不同的信号分离,以得到不同阶轨道角动量回波信号,对不同阶轨道角动量回波信号进行处理,从而可以获得距离-方位角-俯仰角三维图像,实现了α阶轨道角动量信号的并行发射、接收、处理,相对于现有发射一阶轨道角动量的涡旋波信号并接收回波信号后,才能发射下一阶轨道角动量的涡旋波信号并接收回波信号,在多阶轨道角动量的涡旋波信号发射并接收回波信号后,对回波信号进行处理才能得到三维图像的方案而言,成像速度更快、刷新速度更高;例如,假设探测距离为100米、水下声速为1500m/s为例,则每阶轨道角动量信号的收发至少需要100*2/1500=2/15s,按照现有成像方案而言,收发10阶轨道角动量的涡旋波信号,至少需要4/3s,即成像时间至少需要4/3s,成像的刷新帧率小于0.75Hz,而按照本申请实施例提供的方法, 收发10阶轨道角动量信号,相当于收发1阶轨道角动量的涡旋波信号,即2/15s,从而大大降低成像时间,提高成像速度,提升三维图像刷新帧率。
基于第一实施例,提出本申请成像方法的第二实施例。本申请实施例中,步骤S22包括:
步骤S221:获取每阶轨道角动量信号对应的载频。
其中,每阶轨道角动量信号对应的载频可以根据实际需要灵活设置。
步骤S222:根据N确定每个发射器对应的每阶轨道角动量信号的初始相位。
本申请实施例中,每个发射器对应的每阶轨道角动量信号的初始相位不同,其中,可以根据N(即发射器阵列中发射器的数量)确定每个发射器对应的每阶轨道角动量信号的初始相位。
在一些实施方式中,将第n个发射器对应的第m阶轨道角动量的初始相位记为
Figure PCTCN2021085085-appb-000002
可以根据以下公式确定:
Figure PCTCN2021085085-appb-000003
步骤S223:根据载频和初始相位,确定每个发射器对应的涡旋波信号。
其中,第n个发射器对应的涡旋波信号为:
Figure PCTCN2021085085-appb-000004
其中,i为复数单位,exp为指数函数,
Figure PCTCN2021085085-appb-000005
为第n个发射器对应的第m阶轨道角动量信号。
步骤S224:通过发射器阵列中的每个发射器,发射对应的涡旋波信号。
在确定每个发射器对应的涡旋波信号后,通过每个发射器,发射对应的涡旋波信号。例如,第一个发射器发射的涡旋波信号为s 1(t),第二个发射器发射的涡旋波信号为s 2(t)。
值得注意的是,涡旋波信号的获得方式并不局限于上述的具体示例,在实际应用中,可以根据具体应用场景做灵活调整。
本申请实施例中,先获取每阶轨道角动量信号对应的载频,根据发射器的数量、发射器的序号、轨道角动量的阶数确定每个发射器对应的每阶轨道角动 量信号的初始相位,根据初始相位和载频,确定每个发射器对应的涡旋波信号,从而每个发射器发射对应的涡旋波信号,实现多阶轨道角动量信号的并行发射。
基于前述实施例,提出本申请成像方法的第三实施例。本申请实施例中,步骤S24包括:基于波束成形,对不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
值得注意的是,距离-方位角-俯仰角三维图像的获取方式并不局限于上述的具体示例,在实际应用中,可以根据具体应用场景做灵活调整。
在一些实施方式中,为了得到分辨率更高的三维图像,步骤S24可以包括以下步骤:
步骤S241:基于不同阶轨道角动量回波信号,对距离进行波束形成,以得到距离图像数据。
基于不同阶轨道角动量回波信号,对距离进行波束形成,从而可以得到距离图像数据,其中,距离为成像装置与待探测物体之间的距离。
步骤S242:基于不同阶轨道角动量回波信号,分别对俯仰角和方位角进行波束形成,以得到初始俯仰角-方位角图像数据。
基于不同阶轨道角动量回波信号,对俯仰角进行第一次波束成形、对方位角进行第一次波束成形,从而得到初始俯仰角-方位角图像数据。
步骤S243:基于初始俯仰角-方位角图像数据,分别对俯仰角和方位角进行二次波束形成,以得到最终俯仰角-方位角图像数据。
基于初始俯仰角-方位角图像数据,对俯仰角进行第二次波束成形、对方位角进行第二次波束成形,从而得到最终俯仰角-方位角图像数据。
在一些实施方式中,步骤S243中,可以对任意一个方位,将初始俯仰角-方位角图像数据中的幅值向量与复合贝塞尔理论值比对,以求相关系数;然后,将初始俯仰角-方位角图像数据除以相关系数以进行放大,从而可以得到更高分辨率的俯仰角-方位角图像数据。
步骤S244:根据距离图像数据和最终俯仰角-方位角图像数据,获取距离-方位角-俯仰角三维图像。
在获取距离图像数据和最终俯仰角-方位角图像数据后,即可根据距离图像数据和最终俯仰角-方位角图像数据,获取距离-方位角-俯仰角三维图像。
本申请实施例提供的成像方法中,基于不同阶轨道角动量回波信号,进行两次波束成形,从而可以获取更高分辨率的距离-方位角-俯仰角三维图像。
基于前述成像方法实施例,提出一种成像系统,参见图5,图5为本申请实施例提供成像系统的结构框图,成像系统包括:发射器阵列51、接收器阵列52、以及成像器53。
其中,发射器阵列51,用于发射涡旋波信号;其中,涡旋波信号包括α阶轨道角动量信号,α为大于等于2的整数,不同阶轨道角动量信号的载频不同。
接收器阵列52,用于接收涡旋波信号的回波信号,回波信号包括α阶轨道角动量回波信号。
成像器53,用于通过滤波的方式,将回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号;对不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
在一些实施方式中,发射器阵列51为包括N个发射器的发射器阵列,N为大于等于2的整数。发射器阵列51还用于:获取每阶轨道角动量信号对应的载频;根据N确定每个发射器对应的每阶轨道角动量信号的初始相位;根据载频和初始相位,确定每个发射器对应的涡旋波信号;通过发射器阵列中的每个发射器,发射对应的涡旋波信号。具体的,请参见前述实施例,此处不再赘述。
在一些实施方式中,发射器阵列51为圆形发射器阵列,接收器阵列52设置在圆形发射器阵列形成的圆圈内。
在一些实施方式中,接收器阵列52呈螺旋形。
在一些实施方式中,发射器阵列51中的发射器为收发合置发射器,发射器阵列51还用于接收涡旋波信号的回波信号。
在一些实施方式中,成像器53还用于基于波束成形,对不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
在一些实施方式中,成像器53还用于基于不同阶轨道角动量回波信号,对 距离进行波束形成,以得到距离图像数据;基于不同阶轨道角动量回波信号,分别对俯仰角和方位角进行波束形成,以得到初始俯仰角-方位角图像数据;基于初始俯仰角-方位角图像数据,分别对俯仰角和方位角进行二次波束形成,以得到最终俯仰角-方位角图像数据;根据距离图像数据和最终俯仰角-方位角图像数据,获取距离-方位角-俯仰角三维图像。
本申请的成像系统采用了上述所有成像方法实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种成像方法,其中,所述成像方法包括:
    通过发射器阵列发射涡旋波信号;其中,所述涡旋波信号包括α阶轨道角动量信号,所述α为大于等于2的整数,不同阶轨道角动量信号的载频不同;
    通过接收器阵列接收所述涡旋波信号的回波信号,所述回波信号包括α阶轨道角动量回波信号;
    通过滤波的方式,将所述回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号;
    对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
  2. 如权利要求1所述的成像方法,其中,所述发射器阵列为包括N个发射器的发射器阵列,所述N为大于等于2的整数;
    所述通过发射器阵列发射涡旋波信号的步骤,包括:
    获取每阶轨道角动量信号对应的载频;
    根据所述N确定每个所述发射器对应的每阶轨道角动量信号的初始相位;
    根据所述载频和所述初始相位,确定每个所述发射器对应的涡旋波信号;
    通过所述发射器阵列中的每个发射器,发射对应的涡旋波信号。
  3. 如权利要求1所述的成像方法,其中,所述发射器阵列为圆形发射器阵列,所述接收器阵列设置在所述圆形发射器阵列形成的圆圈内。
  4. 如权利要求3所述的成像方法,其中,所述接收器阵列呈螺旋形。
  5. 如权利要求1所述的成像方法,其中,所述发射器阵列中的发射器为收发合置发射器;
    所述通过接收器阵列接收所述涡旋波信号的回波信号的步骤,包括:
    通过所述接收器阵列和所述发射器阵列接收所述涡旋波信号的回波信号。
  6. 如权利要求1-5任一项所述的成像方法,其中,所述对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像的步骤,包括:
    基于波束成形,对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像。
  7. 如权利要求6所述的成像方法,其中,所述基于波束成形,对所述不同阶轨道角动量回波信号进行处理,以获取距离-方位角-俯仰角三维图像的步骤,包括:
    基于所述不同阶轨道角动量回波信号,对距离进行波束形成,以得到距离图像数据;
    基于所述不同阶轨道角动量回波信号,分别对俯仰角和方位角进行波束形成,以得到初始俯仰角-方位角图像数据;
    基于所述初始俯仰角-方位角图像数据,分别对俯仰角和方位角进行二次波束形成,以得到最终俯仰角-方位角图像数据;
    根据所述距离图像数据和所述最终俯仰角-方位角图像数据,获取距离-方位角-俯仰角三维图像。
  8. 一种成像系统,其中,所述成像系统包括:发射器阵列、接收器阵列、以及成像器;
    所述发射器阵列,用于发射涡旋波信号;其中,所述涡旋波信号包括α阶轨道角动量信号,所述α为大于等于2的整数,不同阶轨道角动量信号的载频不同;
    所述接收器阵列,用于接收所述涡旋波信号的回波信号,所述回波信号包括α阶轨道角动量回波信号;
    所述成像器,用于通过滤波的方式,将所述回波信号中载频不同的信号分离,以得到不同阶轨道角动量回波信号;对所述不同阶轨道角动量回波信号进 行处理,以获取距离-方位角-俯仰角三维图像。
  9. 如权利要求8所述的成像系统,其中,所述发射器阵列包括的发射器为收发合置发射器;
    所述发射器阵列,还用于接收所述涡旋波信号的回波信号。
  10. 如权利要求8所述的成像系统,其中,所述发射器阵列为包括N个发射器的发射器阵列,所述N为大于等于2的整数;所述发射器阵列还用于:
    获取每阶轨道角动量信号对应的载频;
    根据所述N确定每个所述发射器对应的每阶轨道角动量信号的初始相位;
    根据所述载频和所述初始相位,确定每个所述发射器对应的涡旋波信号;
    通过所述发射器阵列中的每个发射器,发射对应的涡旋波信号。
PCT/CN2021/085085 2021-02-20 2021-04-01 一种成像方法及系统 WO2022174500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110194969.7 2021-02-20
CN202110194969.7A CN113009480B (zh) 2021-02-20 2021-02-20 一种成像方法及系统

Publications (1)

Publication Number Publication Date
WO2022174500A1 true WO2022174500A1 (zh) 2022-08-25

Family

ID=76405025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085085 WO2022174500A1 (zh) 2021-02-20 2021-04-01 一种成像方法及系统

Country Status (2)

Country Link
CN (1) CN113009480B (zh)
WO (1) WO2022174500A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106886020A (zh) * 2017-03-06 2017-06-23 中国人民解放军国防科学技术大学 一种单天线接收条件下的电磁涡旋成像方法
US20190334609A1 (en) * 2016-12-28 2019-10-31 Intel Corporation Orbital angular momentum-based multiplexing with shared antenna elements
CN110501707A (zh) * 2019-08-27 2019-11-26 中国人民解放军国防科技大学 基于轨道角动量双模态复用的电磁涡旋成像方法
CN112083430A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 一种适用于轨道角动量三维成像声呐的旁瓣抑制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154253B2 (en) * 2016-08-29 2018-12-11 Disney Enterprises, Inc. Multi-view displays using images encoded with orbital angular momentum (OAM) on a pixel or image basis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190334609A1 (en) * 2016-12-28 2019-10-31 Intel Corporation Orbital angular momentum-based multiplexing with shared antenna elements
CN106886020A (zh) * 2017-03-06 2017-06-23 中国人民解放军国防科学技术大学 一种单天线接收条件下的电磁涡旋成像方法
CN110501707A (zh) * 2019-08-27 2019-11-26 中国人民解放军国防科技大学 基于轨道角动量双模态复用的电磁涡旋成像方法
CN112083430A (zh) * 2020-09-10 2020-12-15 天津水聿方舟海洋工程技术有限公司 一种适用于轨道角动量三维成像声呐的旁瓣抑制方法

Also Published As

Publication number Publication date
CN113009480A (zh) 2021-06-22
CN113009480B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN103338079B (zh) 水下无线声光通信装置和通信方法
CN103941231A (zh) 超声射频信号联合处理的室内定位系统及定位方法
WO2006124063A3 (en) Collision alerting and avoidance system
US9306647B2 (en) Tracking system with orthogonal polarizations and a retro-directive array
CN104569917A (zh) 一种auv平台自适应定位与导航系统及方法
CN104244055B (zh) 多媒体设备有效空间范围内实时交互方法
WO2022174500A1 (zh) 一种成像方法及系统
CN107544071B (zh) 水中探测系统
WO2022100621A1 (zh) 工作模式确定方法、装置、设备及存储介质
WO2022156001A1 (zh) 成像系统和方法
CN114374279A (zh) 一种无线充电方法、装置和电子设备
CN212207653U (zh) 一种基于uwb技术的测距系统
CN211237737U (zh) 一种超声云平台系统
US20230251345A1 (en) Location information adjustment method and system, and device
WO2022155998A1 (zh) 成像系统和方法
CN105372644A (zh) 一种基于动态重修正的自适应波束形成方法及系统
WO2022156000A1 (zh) 定位系统及定位方法
CN211830779U (zh) 水下无线光通信系统
KR101813811B1 (ko) 통신 기능을 구비한 터치스크린 장치 및 이의 동작 방법
CN114261398B (zh) 自动驾驶方法、车载装置、移动装置和车载电子设备
EP4372414A1 (en) Method for transmitting and receiving radar signal and device for same
JPH03210491A (ja) 測量システム
CN113364530B (zh) 基于超声波的比吸收率sar调整方法及装置
JP4683888B2 (ja) 水中探知システム
CN203310995U (zh) 一种数字化彩色液晶多普勒计程仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926217

Country of ref document: EP

Kind code of ref document: A1