CN106456129B - 用于非侵入式光学测量流动血液特性的方法 - Google Patents

用于非侵入式光学测量流动血液特性的方法 Download PDF

Info

Publication number
CN106456129B
CN106456129B CN201580033653.2A CN201580033653A CN106456129B CN 106456129 B CN106456129 B CN 106456129B CN 201580033653 A CN201580033653 A CN 201580033653A CN 106456129 B CN106456129 B CN 106456129B
Authority
CN
China
Prior art keywords
frequency
light
blood
ultrasonic
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580033653.2A
Other languages
English (en)
Other versions
CN106456129A (zh
Inventor
V·赫尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIRLUS ENGINEERING AG
Original Assignee
NIRLUS ENGINEERING AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIRLUS ENGINEERING AG filed Critical NIRLUS ENGINEERING AG
Publication of CN106456129A publication Critical patent/CN106456129A/zh
Application granted granted Critical
Publication of CN106456129B publication Critical patent/CN106456129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0097Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying acoustic waves and detecting light, i.e. acoustooptic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7228Signal modulation applied to the input signal sent to patient or subject; demodulation to recover the physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4709Backscatter

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种用于对躯体内血管中流动的血液的特性进行非侵入式光学体内测量的方法,例如用于确定血液成分的浓度,其中,用具有超声波频率(fUS)的超声波辐射辐照躯体以便标记血管,其中,用具有至少一个光波长的光照射具有血管的躯体并且用探测器检测反向散射的光,其中,用如下频率(fMG)调制在血管外由躯体反向散射的光分量,该频率对应于超声波辐射的频率(fUS),其中,由于在流动的血液中的多普勒效应而用相对于超声波辐射的频率(fUS)以多普勒频移(fD)偏移的频率(fMB)调制在血管内反向散射的光分量,以及其中,利用分析单元从探测器处测量的探测信号中提取利用偏移频率(fMB)调制的信号分量。

Description

用于非侵入式光学测量流动血液特性的方法
技术领域
本发明涉及一种用于对躯体内血管中流动的血液的特性进行非侵入式光学体内测量的方法。流动血液特性的测量指的是例如确定血液成分的浓度,例如葡萄糖浓度、血红蛋白浓度亦或血液的氧饱和度。但按照本发明的方法也涉及测量躯体内流动的血液的温度。在此,在本发明的背景中有借助光、例如激光辐射通过分析反向散射的光进行光学分析,其中,借助于脉动式超声波辐射“标记”测量的位置,即血管。在此,例如激光光源的光射入到躯体内并且通过测量和分析反向散射的散射光以最不同的方法来确定寻求的参数。在此,通常使用可见区域和红外区域中的电磁辐射(例如激光辐射),因为活体组织对在约550nm至1000nm之间的电磁辐射基本上是透明的(生物学窗)。借助超声波辐射定位测量位置基于超声波场与血液或组织的相互作用。超声波场通过与血液和组织的相互作用引起光学特性、尤其是反射能力或散射能力的改变。这实现利用超声波辐射的频率调制反向散射的光,使得在分析过程中能够提取经调制的分量。
背景技术
例如由EP1601285B1已知一种这样的用于利用超声波定位光学测量流动血液特性的方法。超声波辐射聚焦在中央血管内部,并且用于超声波辐射的固定脉冲长度和重复时间被预先设定。此外,光源以及相邻的用于在血管上方的皮肤表面上检测反向散射的光的探测单元这样定位,使得光源与探测单元的多数光接收器之间的距离与检验的血液组织的深度一致。用至少两个离散的光波长照射目标组织,并且测量反向散射的光并且在探测器表面上大量超声波脉冲汇集。在考虑超声波焦点的有助于信号的体积和血液速度的情况下,能够由所确定的值计算血管中的浓度。在此重要的是,超声波场聚焦在测量位置上也就是在血管上,因为以这种方式实现源定位。
在DE102006036920B3中描述了一种用于测量脉动血液中葡萄糖浓度的方法,其中,在每个测量周期内,通过至少两个射入的NIR波长多次检测血液的透射能力和/或散射能力,并且计算与血糖浓度相关的指示值,并通过将该指示值与事先确定的校准表进行比较来确定血糖浓度。在此,选择在1560nm至1630nm波长范围内的第一波长,以及选择在790nm至815nm波长范围内的第二波长,计算所述两个波长的透射能力和/或散射能力之比,其中,该比例与血液温度有关地被用作用于从所述校准表中读取血糖浓度的指示值。在此重要的是,尽可能精确地确定血液温度。
在此背景下,DE102008006245A1描述一种用于非侵入式光学确定介质、尤其是含水介质的温度的方法,其中,利用红外线和/或可见光在位置取决于介质温度的吸收线范围内对所要检验的介质进行照射,并且测量吸收线范围内的光的吸收并通过与校准数据进行比较来由该测量确定温度。在此重要的是,利用至少两个在所述吸收线范围内位于吸收最大值不同侧上的离散光波波长照射所述介质,并且根据所确定的两个吸收值相互间的比率或函数关系确定至少一个与温度有关的测量值或与温度有关的测量函数,以及根据该测量值或该测量函数通过与先前所记录的校准数据进行比较来确定温度。在该光学温度测量中也可以借助脉动式超声波辐射标记躯体内的测量位置,例如血管。
“超声波标记”的原理在非侵入式光学测量流动血液特性中原则上已被证明。然而,该方法可进一步改进以优化测量的质量。这里使用本发明。
发明内容
本发明的目的是提供一种方法,该方法可以实现改进对躯体内血管中流动的血液的特性进行的体内测量。
为实现该目的,本发明教导一种用于对躯体内血管中流动的血液特性进行非侵入式光学体内测量的方法,例如用于确定血液成分的浓度,
其中,用具有超声波频率(fUS)的超声波辐射辐照躯体以便标记血管,
其中,用具有至少一个光波长的光照射具有血管的躯体,并且用探测器检测反向散射的光,
其中,利用如下频率fMG调制在血管外由躯体反向散射的光分量,该频率对应于超声波辐射的频率fUS
其中,由于与流动的血液的多普勒效应而利用以多普勒频移fD偏移的频率fMB调制在血管内反向散射的光分量,并且
其中,利用分析单元从探测器处测量的探测信号中提取利用偏移频率fMB调制的信号分量。然后,由该信号分量确定血液特性,例如血液成分的浓度亦或血液的温度。
本发明首先从已知的如下认识出发:可以用光学方法非侵入地和体内地测量躯体内流动的血液的特性,同时借助超声波辐射实现测量位置的标记。在已知的现有技术中,在分析过程中提取利用超声波辐射的频率调制的整个光分量,而且与光事实上是否从血液或可能从邻近的组织中反向散射无关。因此,这在现有技术中之所以可能是因为超声波辐射聚焦到血管上,使得在血管外反向散射的经调制的光分量应该很小。因此,该方法的结果尤其与超声波辐射的聚焦有关,因为当借助超声波辐射也调制血管外的组织时,测量信号将失真。
与此相反,通过按照本发明的方法保证:事实上仅反向散射的光的如下光分量进入到分析中,该光分量事实上从血液中反向散射。在此,本发明从如下认识出发:利用不同的调制频率调制一方面由流动的血液以及另一方面由包围的组织反向散射的光分量。在包围的组织中,调制频率fMG等于超声波频率fUS。然而,在流动的血液中由于多普勒效应利用改变的频率fMB进行调制。调制频率fMB由于血液运动以多普勒频移的频率fD不同于超声波频率fUS
fMB=fUS±fD
在超声波回声中记录的多普勒频移fDecho如下定义:
fDecho=(2VB·fUS·cosΦ)/US
与调制频率的变化密切相关的多普勒频移fD大约是超声波回声- 多普勒频移的二分之一(fDecho=2fD)。这由下面的方程式得到:
fD=(vB·fUS·cosΦ)/vUS
在此,fUS是超声波频率、fD是血液中的多普勒频移、fDecho是超声波接收器中的多普勒频移、VB是血液速度、vUS是血液中超声波的速度以及Φ是血液运动方向与超声波之间的角度。
因此,按照本发明在使用多普勒效应的情况下实现精确的血管定位,而且与是否利用聚焦的超声波辐射工作无关。虽然在已知的现有技术中已使用了多普勒效应,然而在那里仅用于准备测量,根本不是为了定位测量位置。这在本发明的范围内用相似的方式也是可能的。为了找到血管,脉动式超声波在相应的角度下射入到血管上方的组织中,并且分析超声波回声。通过分析超声波回声,在深度采样过程中可以首先找到并定位血管。然而不同于现有技术,本发明并不局限于在找到血管过程中利用多普勒效应,而是多普勒频移的影响也进入光学测量的分析中。因为在光学测量的分析过程中,不仅提取利用超声波辐射的频率调制的光分量,而且仅精确地提取利用以多普勒频移偏移的频率调制的光分量,原因在于仅这些光分量源于运动的血液内部的散射。因此,对从血液中反向散射的光子流的分量进行精确的隔离。
因此,反向散射的光包括来自整个组织的完全未经调制地反向散射的光子流、来自利用超声波辐射加载的组织的利用超声波频率调制的光子流以及利用偏移频率调制的事实上从流动的血液中反向散射的光子流。通过合适的分析,最后的分量可以从信号中提取并且用于确定所希望的血液特性。
因此,按照本发明的方法的特征在于非常好的信噪比。实现对运动的血液中反向散射的光分量的精确隔离,而不强制地必须利用聚焦的超声波辐射工作。此外,这也能在简单的仪器构造中实现。事实上重要的是可以利用简单的探测器工作,因为探测器在光频率方面既不必进行位置分辨地又不必进行频率分辨地测量。利用该探测器仅可以测量强度以及因此仅可以测量光子流。不需要分析反向散射的光的频率亦或相分析。然而,以所述方式就频率而言进行分析,利用该频率调制基于超声波辐射的光。因此,本发明的特征在于优化源定位和改进信噪比,而没有提高仪器的费用。
利用按照本发明的方法可以体内测量躯体内流动的血液的不同特性。在此,这例如是确定在流动的血液中的葡萄糖浓度。在此,例如可采用来自DE1020160360920B3或EP1601285B1的认识。同样可以考虑确定血红蛋白浓度或血液的氧饱和度(参考例如EP1601285B1)。替代地或补充地,也可以利用按照本发明的方法确定躯体内流动的血液的温度。在此,可采用来自DE102008006245A1的认识。与使用何种光波长以及然后用何种方式由光学测量确定所希望的测量值无关,按照本发明总是可以以所述方式提取重要的从流动的血液中反向散射的光分量,从而优化相应的分析。
优选地,在本发明的范围中也利用聚焦的超声波辐射工作。然而利用未聚焦的超声波辐射工作同样在本发明的范围中,因为也在这种情况中出于所解释的原因而可以精确提取所述重要的光分量。优选地,利用具有预先设定的脉冲长度和重复时间的脉冲式超声波辐射辐照躯体。在此,在探测器处在以一延迟而时间偏移的时间窗中测量光强度。该时间窗对应于脉冲长度,其中,光强度在该时间窗内汇集。该操作方式能够实现在重要的区域上减少测量范围以及尤其是明显减少接收数据的量,因为所述测量被限制在这种时间窗上,在该时间窗中超声脉冲到达血管。
如在现有技术中那样适宜的是,首先利用超声波装置在测量的准备阶段定位血管。为此,一方面使用超声波源,另一方面使用超声波接收器,其中,该超声波接收器分析超声波回声。由于(可听见的) 多普勒频移,在深度采样过程中能够找到血管,使得然后所述测量可以集中在该区域。特别优选的是,在此以原则上已知的方式使用超声换能器,因此,该超声换能器同时是超声波源和超声波接收器。
此外为了优化分析而适宜的是,进行无光射入的基准测量以及在分析过程中考虑该基准测量。
尤其优选使用至少一个激光器作为光源,该激光器例如产生具有预先给定波长的单色聚合连续的激光。在此,原则上使用已知的波长,该波长对于相应的光学测量是适宜的并且由现有技术原则上是已知的。在此对于相应测量也可以适宜的是,射入多个不同的波长以及必要时利用多个激光源工作。如果例如应该确定葡萄糖浓度,那么提供至少两个一方面在1560nm至1630nm、另一方面在790nm至815nm 波长范围内的波长的辐射(参考DE102006036920B3)。在确定血红蛋白浓度或氧饱和度的情况中可以考虑其他的波长(参考例如 EP1601285B1)。在温度测量的情况中,可以考虑在水的相应吸收线的范围内的波长,其中,可以例如在970nm左右的水吸收线范围内工作(参考DE1020080062451)。
附图说明
下面借助示出一个实施例的仅一个附图对本发明进行详细说明。
图 1 示意性地示出用于实施所述方法的装置。
具体实施方式
在图1 中示出具有血管2的躯体1以及邻接血管的组织3。为了非侵入式光学测量血液特性,设置激光器单元4、超声波单元5、探测器单元6以及控制及分析单元7。利用具有至少一个波长的光的激光器单元4照射具有血管2的躯体1。利用探测器单元6检测反向散射的光。该探测器单元6仅测量强度,也就是说,在探测器处在不进行位置分辨或频率分辨的情况下确定反向散射的光子流。射入的激光的波长与应用有关以及因此与应该分析何种血液特性或成分有关。
按照本发明,用具有超声波频率fUS的超声波辐射辐照躯体1以便标记血管2。由于超声波辐射与血液或组织的相互作用,反向散射的光强度利用超声波辐射的频率进行调制。在此,具有特别重要意义的是如下事实:在血管2外,也就是说在邻接的组织3中,反向散射的光分量利用频率fMG进行调制,该频率恰好对应于超声波频率fUS。与此相反,在血管2内,反向散射的光分量由于在流动的血液中的多普勒效应利用频率fMB进行调制,该频率相对于超声波频率fUS以多普勒频移fD偏移。
因此在图中表示,探测器单元6既实现利用频率fMB调制的光分量,又实现利用频率fMG调制的光分量。所述利用频率fMG调制的光分量源于组织3中的散射,而利用频率fMB的光分量事实上源于血管2 内的散射。但是此外探测器单元6也实现完全未经调制的光分量,因为该光分量来自未与超声波脉冲相互作用的区域。
按照本发明仅提取利用频率fMB调制的并且因此事实上从运动的血液的区域中反向散射的光子流分量。因此,在光学信号中分析多普勒频移。整个反向散射的光子流包括一个时间上恒定的组分和两个经调制的组分,也就是一方面利用频率fMG在组织中经调制的组分和另一方面利用频率fMB在血液中经调制的组分。
补充地也在探测器处检测与射入的光无关的背景噪声。
利用所述方法的测量可以例如如下实施:
首先寻找血管。为此,脉动的超声波在躯体1内的血管2上方以相应的角度Φ射入。轴向地在选定的运行时间内进行深度采样。通过分析超声波回声可以定位血管2。最大超声波回声与运行时间相对应,在该运行时间中超声波脉冲位于血管中。最大超声波回声的运行时间对应于超声波从超声波换能器途经组织到达超声波接收器所需的一半时间。然后,以此方式分析的超声波回声产生例如声音信号、光信号或类似信号的信号。然后,基于如下延迟设定触发器信号,其中,该延迟与在脉冲产生后最大超声波回声的运行时间相对应。然后,该触发器信号开始下面的光学测量。
为了光学测量,激光射入到躯体1中。探测器数据的检测在经设定的用于最大超声波回声信号的时间窗中进行。以此方式保证,测量的时间间隔以及因此接收的数据也限制在如下时间范围内,在该时间范围内事实上也预期借助超声波脉冲在血管范围内进行调制。通过接收由激光辐射反向散射的光的测量过程包括在时间窗中利用探测器进行的一系列重复的光学接收。以此方式,从超声波频率(MHz范围) 的光学信号中提取低频率-多普勒频移(在Hz、KHz范围内的可听见的频率)的光学信号。在测量过程内的重复过程中连续地射入激光辐射,也就是说,在重复过程中保持接通激光器。在进行测量后,激光器断开或激光辐射结束。
为了能够提取背景噪声,该测量过程也无激光辐射地重复。如果为了特定测量利用多个波长工作以及例如使用多个激光器,必要时可以重复单个步骤。
在分析过程中现在考虑,到达探测器的信号(也就是说光子流) 除了与激光无关的背景噪声外包含未经调制的分量和因此一个时间上持续的组分(直流值)。此外,该信号包含两个经调制的分量和因此两个“交流组分”。其中一个经调制的分量源于来自组织的反向散射。该分量利用频率fMG调制,该频率恰好对应于超声波辐射的频率fUS。因此,来自组织的静止部分的分量周期性地利用兆赫兹数量级的超声波频率fUS调制。此外,第二经调制的分量进入探测器,其由于在流动的血液中的多普勒频移利用偏移的频率fMB进行调制。因此,频率 fMB以多普勒频移fD偏离超声波频率fUS(fMB=fUS±fD)。由于血液的脉动,探测赫兹和千赫兹数量级的多个低频率的混合。以此方式,提取源于血管中散射的信号分量并且从中以已知的方式确定相应的血液特性,例如特定血液成分的浓度亦或温度。
因此,按照本发明的装置以原则上已知的方式由超声波元件5、至少一个光源4(例如激光光源)和探测器单元6以及尤其是控制和分析单元7组成,其中,控制和分析单元7以按照本发明的方式适配。超声波单元5产生超声波辐射,其中,该超声波辐射不必一定要聚焦。超声波单元发射出脉冲信号。除了超声波源外,超声波单元6也具有一个或多个接收器,该接收器接收在设定的时间窗中观察的信号。超声波发射器和超声波接收器也可以组合成一个共同的换能器。优选使用激光光源作为光源4,该激光光源产生具有希望波长的连续单色聚合的光。因此优选是连续波激光器。
探测器单元6具有一个或多个探测器,这些探测器串联或并联地彼此连接并且非常简单地探测从躯体中发出的光。在此,放弃在探测器中进行位置分辨的测量和频率分辨的测量。仅进行光强度的测量。
控制分析单元7首先控制超声波单元5。该控制分析单元设定时间窗并且产生用于开始和结束光学接收的触发器信号。该控制分析单元也可以接通或断开激光器4,或者说开始或结束激光辐射。该控制分析单元也实施测量和分析算法,并且用于相应的信号调节(增强、过滤等)。然后,借助控制分析单元7也进行将未经调制和经调制的分量从探测器信号中分离。在此,可以采用原则上已知的用于从高频混合信号中隔离出低频率的传统方法,例如傅里叶分析。

Claims (6)

1.用于对躯体内血管中流动的血液的特性进行非侵入式光学体内测量的方法,
其中,利用具有超声波频率(fUS)的超声波辐射辐照躯体以便标记血管,
其中,利用具有至少一个光波长的光照射具有血管的躯体并且用探测器检测反向散射的光,
其中,利用如下频率(fMG)调制在血管外由躯体反向散射的光分量,该频率对应于超声波辐射的频率(fUS),
其中,由于在流动的血液中的多普勒效应而用相对于超声波辐射频率(fUS)以多普勒频移(fD)偏移的频率(fMB)调制在血管内反向散射的光分量,
其中,利用分析单元从探测器处测量的探测信号中提取利用偏移频率(fMB)调制的信号分量。
2.按照权利要求1所述的方法,其中,利用具有预先设定的脉冲长度和重复时间的脉动式超声波辐射辐照躯体,并且在以一延迟时间偏移的时间窗中在探测器处测量光强度,该时间窗对应于超声波辐射的脉冲长度。
3.按照权利要求1或2所述的方法,其中,在光学测量之前首先通过声学分析从躯体射回的超声波回声来定位血管。
4.按照权利要求1或2所述的方法,其中,无光射入地实施基准测量,并且在分析时考虑该基准测量。
5.按照权利要求1或2所述的方法,其中,利用至少一个激光光源产生光。
6.按照权利要求5所述的方法,其中,利用多个激光光源射入多个不同光波长的光,在时间上依次或同时进行射入和测量。
CN201580033653.2A 2014-05-22 2015-05-19 用于非侵入式光学测量流动血液特性的方法 Active CN106456129B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014107261.8A DE102014107261A1 (de) 2014-05-22 2014-05-22 Verfahren zur nichtinvasiven optischen Messung von Eigenschaften von fließendem Blut
DE102014107261.8 2014-05-22
PCT/EP2015/061005 WO2015177156A1 (de) 2014-05-22 2015-05-19 VERFAHREN ZUR NICHTINVASIVEN OPTISCHEN MESSUNG VON EIGENSCHAFTEN VON FLIEßENDEM BLUT

Publications (2)

Publication Number Publication Date
CN106456129A CN106456129A (zh) 2017-02-22
CN106456129B true CN106456129B (zh) 2020-06-23

Family

ID=53181297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580033653.2A Active CN106456129B (zh) 2014-05-22 2015-05-19 用于非侵入式光学测量流动血液特性的方法

Country Status (7)

Country Link
US (1) US11412934B2 (zh)
EP (1) EP3145412B1 (zh)
JP (1) JP6749250B2 (zh)
CN (1) CN106456129B (zh)
DE (1) DE102014107261A1 (zh)
RU (1) RU2703894C2 (zh)
WO (1) WO2015177156A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108864A1 (en) * 2015-12-21 2017-06-29 Koninklijke Philips N.V. A system and a method for estimation of arterial blood gas
EP3375352A1 (en) 2017-03-13 2018-09-19 Koninklijke Philips N.V. Device, system and method for determining a tissue characteristic of a subject
DE102018124537A1 (de) 2018-10-04 2020-04-09 Nirlus Engineering Ag Verfahren und Vorrichtung zur nichtinvasiven optischen Messung von Eigenschaften von lebendem Gewebe
DE102018124531A1 (de) 2018-10-04 2020-04-09 Nirlus Engineering Ag Verfahren und Vorrichtung zur nichtinvasiven optischen Messung von Eigenschaften von lebendem Gewebe
KR20210104409A (ko) 2020-02-17 2021-08-25 삼성전자주식회사 신호 검출 센서, 대상체의 성분 분석 장치 및 방법
CN111693465B (zh) * 2020-07-15 2021-06-22 南京大学 一种同时获得光吸收和光散射双对比度的显微成像法
DE102020134911A1 (de) 2020-12-23 2022-06-23 Nirlus Engineering Ag Verfahren und Vorrichtung zur nicht-invasiven optischen In-vivo-Bestimmung der Glukosekonzentration
CN116773664A (zh) * 2023-06-15 2023-09-19 中国科学院苏州生物医学工程技术研究所 一种仿血体模性能检测方法以及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279054A (zh) * 2000-06-27 2001-01-10 华南师范大学 聚焦超声调制光学层析成像方法及其装置
CN1422597A (zh) * 2002-12-31 2003-06-11 华南师范大学 聚焦超声调制反射式光学层析成像方法及其装置
CN101557752A (zh) * 2006-08-04 2009-10-14 尼尔鲁斯工程股份公司 脉动血中的葡萄糖浓度测量方法
CN101981422A (zh) * 2008-01-25 2011-02-23 尼尔鲁斯工程股份公司 介质温度的非侵入式光学确定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934372A (en) * 1985-04-01 1990-06-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US5127405A (en) * 1990-02-16 1992-07-07 The Boc Group, Inc. Biomedical fiber optic probe with frequency domain signal processing
IL137447A (en) * 2000-07-23 2007-03-08 Israel Atomic Energy Comm Apparatus and method for probing light absorbing agents in biological tissues
US6939310B2 (en) * 2001-10-10 2005-09-06 Lifescan, Inc. Devices for physiological fluid sampling and methods of using the same
DE10311408B3 (de) * 2003-03-13 2004-09-02 Universität Zu Lübeck Verfahren zur nichtinvasiven Messung der Konzentration von Blutbestandteilen
US20070085995A1 (en) * 2003-07-09 2007-04-19 Glucon, Inc. Wearable glucometer
US7747301B2 (en) * 2005-03-30 2010-06-29 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of parameters relating to blood
US20070093702A1 (en) * 2005-10-26 2007-04-26 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of parameters relating to blood
JP4939236B2 (ja) * 2007-01-15 2012-05-23 オリンパスメディカルシステムズ株式会社 被検体情報分析装置、内視鏡装置及び被検体情報分析方法
JP2007195780A (ja) * 2006-01-27 2007-08-09 Toshiba Corp 生体光計測装置及び生体光計測方法
EP2074418B1 (en) * 2006-09-29 2013-03-06 Koninklijke Philips Electronics N.V. Ultrasonic determination of optical absorption coefficients
US20100081912A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Ultrasound-Optical Doppler Hemometer and Technique for Using the Same
JP5672104B2 (ja) * 2011-03-28 2015-02-18 コニカミノルタ株式会社 超音波変調光計測装置および超音波変調光計測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279054A (zh) * 2000-06-27 2001-01-10 华南师范大学 聚焦超声调制光学层析成像方法及其装置
CN1422597A (zh) * 2002-12-31 2003-06-11 华南师范大学 聚焦超声调制反射式光学层析成像方法及其装置
CN101557752A (zh) * 2006-08-04 2009-10-14 尼尔鲁斯工程股份公司 脉动血中的葡萄糖浓度测量方法
CN101981422A (zh) * 2008-01-25 2011-02-23 尼尔鲁斯工程股份公司 介质温度的非侵入式光学确定方法

Also Published As

Publication number Publication date
WO2015177156A1 (de) 2015-11-26
US11412934B2 (en) 2022-08-16
JP6749250B2 (ja) 2020-09-02
RU2016150548A (ru) 2018-06-22
RU2016150548A3 (zh) 2018-12-07
JP2017520291A (ja) 2017-07-27
DE102014107261A1 (de) 2015-11-26
CN106456129A (zh) 2017-02-22
EP3145412A1 (de) 2017-03-29
US20170181633A1 (en) 2017-06-29
RU2703894C2 (ru) 2019-10-22
EP3145412B1 (de) 2024-06-26

Similar Documents

Publication Publication Date Title
CN106456129B (zh) 用于非侵入式光学测量流动血液特性的方法
EP0832599B1 (en) Apparatus for non-invasive measurement of a substance
RU2727242C2 (ru) Способ и устройство для неинвазивного оптического определения in vivo концентрации глюкозы в протекающей крови
JP4104456B2 (ja) 光音響を調べること及びイメージングシステム
EP2138101B1 (en) Biological observation apparatus and method
US9706977B2 (en) Imaging apparatus and method
US9833187B2 (en) Detection, diagnosis and monitoring of osteoporosis by a photo-acoustic method
US9027412B2 (en) Method and system for non-invasively monitoring fluid flow in a subject
ATE445355T1 (de) Blutoptode
US20100130866A1 (en) Method for determining flow and flow volume through a vessel
CN110361357B (zh) 一种用于皮肤检测的单阵元光声谱信号获取系统及方法
US8336391B2 (en) Method and system for non-invasively monitoring fluid flow in a subject
JP6564402B2 (ja) 血管認識装置
JPH06317566A (ja) 光音響分析方法および装置並びにこれを利用した血液成分測定装置
EP3256845A1 (en) Method and system for noninvasively monitoring conditions of a subject
US8981300B2 (en) Electromagnetic wave pulse measuring device and method, and application device using the same
JP2007117342A (ja) 成分濃度測定装置及び成分濃度測定装置制御方法
JP2007082658A (ja) 脳循環血流測定装置
JP2000088742A (ja) 光計測装置
JP2008080101A (ja) 光トモグラフィ装置
JP2005118304A (ja) 加速度脈波測定装置
JP2010017375A (ja) 超音波変調光断層画像化装置、およびそれを用いた超音波変調光断層画像化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant