CN106435180A - 铷离子和铯离子的萃取方法 - Google Patents

铷离子和铯离子的萃取方法 Download PDF

Info

Publication number
CN106435180A
CN106435180A CN201610557108.XA CN201610557108A CN106435180A CN 106435180 A CN106435180 A CN 106435180A CN 201610557108 A CN201610557108 A CN 201610557108A CN 106435180 A CN106435180 A CN 106435180A
Authority
CN
China
Prior art keywords
extractant
extraction
premixed liquid
extractants
composite extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610557108.XA
Other languages
English (en)
Other versions
CN106435180B (zh
Inventor
王玮玮
徐月和
杜国山
吕东
周文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China ENFI Engineering Corp
Original Assignee
China ENFI Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China ENFI Engineering Corp filed Critical China ENFI Engineering Corp
Priority to CN201610557108.XA priority Critical patent/CN106435180B/zh
Publication of CN106435180A publication Critical patent/CN106435180A/zh
Application granted granted Critical
Publication of CN106435180B publication Critical patent/CN106435180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/402Mixtures of acyclic or carbocyclic compounds of different types
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/409Mixtures at least one compound being an organo-metallic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明提供了一种铷离子和铯离子的萃取方法。该萃取方法包括以下步骤:利用复合萃取剂对含铷离子和铯离子的混合溶液进行第一萃取处理,得到第一有机相和第一萃余液,复合萃取剂包括酸性萃取剂和中性有机物中的至少一种组分以及具有结构式I的苯酚类萃取剂;利用复合萃取剂对第一萃余液进行第二萃取处理,得到第二有机相和第二萃余液;利用反萃剂对第一有机相进行反萃取处理,得到含有铯盐的反萃取液;以及利用反萃剂对第二有机相进行反萃取处理,得到含有铷盐的反萃取液,其中,R1=CnH2n+1,0≤n≤25,R2=CmH2m+1,0≤m≤25。采用上述萃取方法提高了对Rb和Cs的萃取效果。

Description

铷离子和铯离子的萃取方法
技术领域
本发明涉及化学材料技术领域,具体而言,涉及一种铷离子和铯离子的萃取方法。
背景技术
铷(Rb)和铯(Cs)是重要的稀有贵重金属资源,Rb金属、Cs金属及其化合物在能源、化工、医学、生物等现代科技领域运用广泛,可用于制备生化试剂、催化剂、电子器件、光电管和特种玻璃等产品,因此,提取与生产Rb金属和Cs金属有着重要意义。
溶剂萃取方法是从溶液中分离铷(Rb)和铯(Cs)的有效方法之一。现有的萃取方法常用4-叔丁基-2(α-甲基苄基)苯酚(t-BAMBP)或4-仲丁基-2-(α-甲基苄基)苯酚(BAMBP)作为萃取剂的体系。
然而,由于上述萃取体系需要具有较高的碱度(pH值大于11),如在[OH-]=1mol/L的条件下进行萃取,而高碱度易使萃取体系乳化,从而导致分相困难;该高碱度还容易导致萃取剂和稀释剂的流失,进而导致萃取效率较低。
发明内容
本发明的主要目的在于提供一种铷离子和铯离子的萃取方法,以解决现有技术中Rb和Cs的萃取效率较低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种铷离子和铯离子的萃取方法,包括以下步骤:利用复合萃取剂对含铷离子和铯离子的混合溶液进行第一萃取处理,得到第一有机相和第一萃余液,复合萃取剂包括酸性萃取剂和中性有机物中的至少一种组分以及具有结构式I的苯酚类萃取剂;利用复合萃取剂对第一萃余液进行第二萃取处理,得到第二有机相和第二萃余液;利用反萃剂对第一有机相进行反萃取处理,得到含有铯盐的反萃取液;以及利用反萃剂对第二有机相进行反萃取处理,得到含有铷盐的反萃取液,其中,R1=CnH2n+1,0≤n≤25,R2=CmH2m+1,0≤m≤25。
进一步地,所述结构式I中n小于等于10;所述结构式I中m小于等于5。
进一步地,苯酚类萃取剂为4-叔丁基-2(α-甲基苄基)苯酚和/或4-仲丁基-2-(α-甲基苄基)苯酚;优选酸性萃取剂包括酸性有机磷萃取剂和/或有机羧酸萃取剂,进一步优选为二(2-乙基己基)磷酸、2-乙基己基磷酸单-2-乙基己基酯和环烷酸中的任一种或多种;优选中性有机物包括烷基醇,进一步优选为甲庚醇和/或正辛醇。
进一步地,复合萃取剂还包括烃类溶剂,烃类溶剂优选为烷烃类有机溶剂和/或芳香烃类有机溶剂。
进一步地,复合萃取剂包括苯酚类萃取剂和酸性萃取剂时,苯酚类萃取剂与酸性萃取剂的摩尔比>0.05。
进一步地,在利用复合萃取剂对混合溶液进行萃取处理的步骤中,复合萃取剂与混合溶液的体积比为1:10~10:1。
进一步地,在利用复合萃取剂对混合溶液进行萃取处理的步骤中,萃取处理的萃取时间为5~15min。
进一步地,萃取方法还包括:在第一萃取处理的步骤之前,将混合溶液的pH值调至7~9;在第二萃取处理的步骤之前,将第一萃余液的pH值调至9~11。
进一步地,混合溶液还含有锂离子,在第二萃取处理的步骤中,得到含有锂离子的第二萃余液。
进一步地,萃取方法还包括制备复合萃取剂的过程,过程包括:将苯酚类萃取剂与中性有机物混合形成预混液,然后将酸性萃取剂加入至预混液中,得到复合萃取剂;或将酸性萃取剂与中性有机物混合形成预混液,然后将苯酚类萃取剂加入至预混液中,得到复合萃取剂;或将中性有机物分为第一中性有机物部分和第二中性有机物部分,将苯酚类萃取剂与第一中性有机物部分混合形成第一预混液,将酸性萃取剂与第二中性有机物部分混合形成第二预混液,将第一预混液和第二预混液混合,得到复合萃取剂,优选第一中性有机物部分和第二中性有机物部分的体积比为1:10~10:1。
进一步地,复合萃取剂还包括烃类溶剂时,萃取方法还包括制备复合萃取剂的过程,过程包括:将苯酚类萃取剂与烃类溶剂混合形成预混液,并将酸性萃取剂加入预混液中,以形成复合萃取剂;或将酸性萃取剂与烃类溶剂混合形成预混液,并将苯酚类萃取剂加入预混液中,以形成复合萃取剂;或将烃类溶剂为第一烃类溶剂部分和第二烃类溶剂部分,将苯酚类萃取剂与第一烃类溶剂部分混合形成第一预混液,将酸性萃取剂与第二烃类溶剂部分混合形成第二预混液,将第一预混液和第二预混液混合,得到复合萃取剂。
进一步地,在利用反萃剂对第一有机相或第二有机相进行反萃取处理的步骤中,反萃剂与第一有机相或反萃剂与第二有机相溶液的体积比为1:10~10:1,优选反萃取处理的萃取时间为5~15min。
应用本发明的技术方案,提供了一种铷离子和铯离子的萃取方法,该萃取方法采用包括酸性萃取剂和中性有机物中的至少一种组分以及具有结构式为的苯酚类萃取剂的复合萃取剂对含铷离子和铯离子的混合溶液进行第一萃取处理,得到第一有机相和第一萃余液,利用上述复合萃取剂对第一萃余液进行第二萃取处理,得到第二有机相和第二萃余液,然后分别利用反萃剂对第一有机相和第二有机相进行反萃处理,得到含有铯盐的萃取液和含有铷盐的萃取液,由于上述苯酚类萃取剂与酸性萃取剂和/或中性有机物能够发生协同作用,从而使形成的复合萃取剂不仅具有对Rb和Cs较大的分离系数,且降低了萃取体系对碱度的需求,进而提高了对Rb和Cs的萃取效果,使复合萃取剂具有相比于组成复合萃取剂的任一种组分单独使用时的效果之和更大的萃取率,对Cs的萃取率能够达到80%以上,提高了对Cs的回收率;并且,由于上述萃取方法中通过对含铷离子和铯离子的混合溶液进行调节时,不需要使其具有较大的碱度(pH值大于11),就能够实现对Rb和Cs有效地萃取,从而不仅避免了由于高碱度易使萃取体系乳化而导致的分相困难,还避免了由于高碱度而导致的萃取剂和稀释剂的流失,从而提高了Rb和Cs的萃取效率。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将对本发明作进一步详细的说明。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
由背景技术可知,现有技术中用于萃取Rb和Cs的萃取剂的萃取体系需要具有较高的碱度(pH值大于11),而高碱度易使萃取体系乳化,从而导致分相困难以及萃取剂和稀释剂的 流失,进而导致萃取效率较低。本发明的发明人针对上述问题进行研究,提供了一种铷离子和铯离子的萃取方法,包括以下步骤:利用复合萃取剂对含铷离子和铯离子的混合溶液进行第一萃取处理,得到第一有机相和第一萃余液,复合萃取剂包括酸性萃取剂和中性有机物中的至少一种组分与具有结构式的苯酚类萃取剂;利用复合萃取剂对第一萃余液进行第二萃取处理,得到第二有机相和第二萃余液;利用反萃剂对第一有机相进行反萃处理,得到含有铯盐的反萃取液;利用反萃剂对第二有机相进行反萃处理,得到含有铷盐的反萃取液,其中,R1=CnH2n+1,0≤n≤25,R2=CmH2m+1,0≤m≤25。
该萃取方法中由于苯酚类萃取剂与酸性萃取剂和/或中性有机物能够发生协同作用,从而使形成的复合萃取剂不仅具有对Rb和Cs较大的分离系数,且降低了萃取体系对碱度的需求,进而提高了对Rb和Cs的萃取效果,使复合萃取剂具有相比于组成复合萃取剂的任一种组分单独使用时的效果之和更大的萃取率,对Cs的萃取率能够达到80%以上,提高了对Cs的回收率;并且,由于上述萃取方法中通过对含铷离子和铯离子的混合溶液进行调节时,不需要使其具有较大的碱度(pH值大于11),就能够实现对Rb和Cs有效地萃取,从而不仅避免了由于高碱度易使萃取体系乳化而导致的分相困难,还避免了由于高碱度而导致的萃取剂和稀释剂的流失,从而提高了Rb和Cs的萃取效率。
本发明的上述复合萃取剂中,结构式I中的R1和R2均为烷基,如甲基、乙基、烷基、异烷基、正丁基、异丁基、仲丁基或叔丁基等。优选地,结构式I中n小于等于10;结构式I中m小于等于5,此时,形成的苯酚类萃取剂优选为4-叔丁基-2(α-甲基苄基)苯酚和/或4-仲丁基-2-(α-甲基苄基)苯酚。具有上述优选结构式I的苯酚类萃取剂在与酸性萃取剂和/或中性有机物混合后能够具有对Rb和Cs更大的分离系数,且进一步降低了萃取体系对碱度的需求,从而进一步提高了对Rb和Cs的萃取效果。
本发明的上述复合萃取剂中,优选地,苯酚类萃取剂为4-叔丁基-2(α-甲基苄基)苯酚和/或4-仲丁基-2-(α-甲基苄基)苯酚。采用上述优选的苯酚类萃取剂既能够保证苯酚类萃取剂在有机物中有较大溶解度以便于提高萃取效率,又能够在水溶液中有较低的溶解度以减少萃取剂的溶解损失。
本发明的上述复合萃取剂中,优选地,酸性萃取剂包括酸性有机磷萃取剂和/或有机羧酸萃取剂,优选为二(2-乙基己基)磷酸、2-乙基己基磷酸单-2-乙基己基酯和环烷酸中的任一种或多种。采用上述优选的酸性萃取剂能够发挥更大的协同萃取作用。
本发明的上述复合萃取剂中,优选地,中性有机物包括烷基醇,优选为甲庚醇和/或正辛醇。采用上述优选的中性有机物能够有效地降低形成的复合萃取剂的黏度,使其更容易成分稳定,具有更好的萃取效果。
当复合萃取剂包括苯酚类萃取剂和酸性萃取剂时,优选地,酸性萃取剂与苯酚类萃取剂的摩尔比>0.05。具有上述摩尔比的苯酚类萃取剂与酸性萃取剂能够具有更好的协同作用,从而使形成的复合萃取剂具有对Rb和Cs更大的分离系数,且进一步地降低了萃取体系对碱度的需求,进而进一步地提高了对Rb和Cs的萃取效果。
在一种优选的实施方式中,上述复合萃取剂中包括苯酚类萃取剂、酸性萃取剂和中性有机物。由于上述优选的复合萃取剂中包括更多种类的萃取剂,且萃取剂选自苯酚类萃取剂、酸性萃取剂和中性有机物,从而不仅能够使复合萃取剂具有对Rb和Cs更大的分离系数,而且上述三种萃取剂的混合还能够进一步地降低萃取体系对碱度的需求,进而提高了复合萃取剂对Rb和Cs的萃取效果。
在上述优选的实施方式中,更为优选地,复合萃取剂中苯酚类萃取剂的重量百分比可以为0.1~60%,酸性萃取剂的重量百分比可以为0.01~40%,中性有机物的重量百分比可以为39~99%。将复合萃取剂中各组分的重量限定在上述优选的范围内不仅能够保证复合萃取剂具有对Rb和Cs较大的分离系数,且还能够使复合萃取剂的萃取体系对碱度具有较低的需求,从而提高了复合萃取剂对Rb和Cs的萃取效果。
在本发明的上述复合萃取剂中,优选地,复合萃取剂还包括烃类溶剂,烃类溶剂优选为烷烃类有机溶剂和/或芳香烃类有机溶剂。上述烃类溶剂可以选自煤油、甲苯和二甲苯中的任一种或多种。上述烃类溶剂能够进一步提高复合萃取剂对Rb和Cs的分离系数,且进一步降低复合萃取剂的萃取体系对碱度的需求,从而提高了复合萃取剂对Rb和Cs的萃取效果。
上述复合萃取剂可以包括苯酚类萃取剂、酸性萃取剂、中性有机物和烃类溶剂。优选地,该复合萃取剂中苯酚类萃取剂的重量百分比为0.1~60%,酸性萃取剂的重量百分比为0.1~40%,中性有机物的重量百分比为20~60%,且烃类溶剂的重量百分比为19~59%。将复合萃取剂中各组分的重量限定在上述优选的范围内不仅能够保证复合萃取剂具有对Rb和Cs较大的分离系数,且还能够使复合萃取剂的萃取体系对碱度具有较低的需求,从而提高了复合萃取剂对Rb和Cs的萃取效果。
下面将更详细地描述根据本发明提供的铷离子和铯离子的萃取方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。
首先,利用上述复合萃取剂对含铷离子和铯离子的混合溶液进行第一萃取处理,得到第一有机相和第一萃余液,复合萃取剂包括酸性萃取剂和中性有机物中的至少一种组分与具有结构式I的苯酚类萃取剂。采用上述第一萃取处理能够使萃取之后的混合溶液形成含有铯离子的有机相和含有其它金属离子的水相(萃余液),从而实现了对铯离子的初步萃取。
在上述第一萃取处理的步骤中,混合溶液可以为酸性溶液或碱性溶液,如混合溶液中可以含有SO4 2-离子、Cl-离子和/或NO3 -离子。并且,上述混合溶液中除了包含有大量铯离子和 铷离子之外,还可以包含有其它种类的金属离子,如当上述混合溶液为锂云母提取液时,混合溶液中还可以包含有大量锂离子,通过第一萃取处理后,得到具有锂离子的第一萃余液。在上述第一萃取处理的步骤之前,可以通过调整混合溶液的pH值,提高上述第一有机相中铯离子的含量和第一萃余液中铷离子的含量,从而实现对铯离子和铷离子的有效分离。优选地,将混合溶液的pH值调至7~9。
在上述第一萃取处理的步骤中,优选地,复合萃取剂与混合溶液的体积比为1:10~10:1;上述第一萃取处理的萃取时间为5~15min。采用上述优选的萃取条件能够使复合萃取剂将混合溶液中更多的铯离子萃取出来,从而通过对第一有机相进行反萃取处理得到含有铯盐的萃取液,有效地提高了铯离子的萃取效果。
在上述第一萃取处理的步骤中,萃取方法还可以包括制备复合萃取剂的过程。在一种优选的实施方式中,该制备复合萃取剂的过程包括:将苯酚类萃取剂与中性有机物混合形成预混液,然后将酸性萃取剂加入至预混液中,得到复合萃取剂;或将酸性萃取剂与中性有机物混合形成预混液,然后将苯酚类萃取剂加入至预混液中,得到复合萃取剂;或将中性有机物分为第一中性有机物部分和第二中性有机物部分,将苯酚类萃取剂与第一中性有机物部分混合形成第一预混液,将酸性萃取剂与第二中性有机物部分混合形成第二预混液,将第一预混液和第二预混液混合,得到复合萃取剂,优选第一中性有机物部分和第二中性有机物部分的体积比为1:10~10:1。在上述优选的实施方式中,先将苯酚类萃取剂和/或酸性萃取剂先与中性有机物混合,再将混合溶液与加入组分的萃取剂中,能够有效地降低形成的复合萃取剂的黏度,使复合萃取剂的成分更为稳定,从而能够具有更好的萃取效果。
当复合萃取剂还包括烃类溶剂时,优选地,上述制备复合萃取剂的过程可以包括:将苯酚类萃取剂与烃类溶剂混合形成预混液,并将酸性萃取剂加入预混液中,以形成复合萃取剂;或将酸性萃取剂与烃类溶剂混合形成预混液,并将苯酚类萃取剂加入预混液中,以形成复合萃取剂;或将烃类溶剂为第一烃类溶剂部分和第二烃类溶剂部分,将苯酚类萃取剂与第一烃类溶剂部分混合形成第一预混液,将酸性萃取剂与第二烃类溶剂部分混合形成第二预混液,将第一预混液和第二预混液混合,得到复合萃取剂。在上述优选的实施方式中,先将苯酚类萃取剂和/或酸性萃取剂先与烃类溶剂混合,再将混合溶液与加入组分的萃取剂中,能够有效地降低形成的复合萃取剂的黏度,使复合萃取剂的成分更为稳定,从而能够具有更好的萃取效果。
制备复合萃取剂的过程并不局限于上述优选的实施方式,当复合萃取剂包括苯酚类萃取剂、酸性萃取剂、中性有机物和烃类溶剂时,上述制备方法还可以包括:将苯酚类萃取剂、烃类溶剂和中性有机物混合形成预混液,并将酸性萃取剂加入预混液中,以形成复合萃取剂;或将酸性萃取剂、烃类溶剂和中性有机物混合形成预混液,并将苯酚类萃取剂加入预混液中,以形成复合萃取剂;或将中性有机物分为第一中性有机物部分和第二中性有机物部分,将烃类溶剂分为第一烃类溶剂部分和第二烃类溶剂部分,将苯酚类萃取剂、第一中性有机物部分 和第一烃类溶剂部分混合形成第一预混液,将酸性萃取剂、第二中性有机物部分和第二烃类溶剂部分混合形成第二预混液,将第一预混液和第二预混液混合得到复合萃取剂。
在上述第一萃取处理的步骤之后,利用上述复合萃取剂对第一萃余液进行第二萃取处理,得到第二有机相和第二萃余液。采用上述第二萃取处理能够使上述第一萃余液形成含有铷离子的第二有机相和含有其它金属离子的第二萃余液,从而实现对铷离子的初步萃取。在上述第二萃取处理的步骤之前,可以通过调整第一萃余液的pH值,提高萃取得到的第二有机相中铷离子的含量,从而实现其它金属离子中铷离子的有效分离。优选地,将混合溶液的pH值调至9~11。通过上述处理过程,实现了对铯离子和铷离子的分离和萃取,铯离子和铷离子分别分离开,铯离子和铷离子也跟其它金属离子分离开,并且铯离子和铷离子分别被萃取富集于第一有机相和第二有机相。并且,当混合溶液为锂云母提取液时,上述第一萃余液中含有大量锂离子,通过第二萃取处理后,得到具有大量锂离子的第二萃余液,可以通过对第二萃余液进行蒸发结晶,得到含有锂盐的固体化合物,或者可对第二萃余液进行蒸发浓缩处理后,加入碳酸铵沉淀剂以得到碳酸锂沉淀。
在上述第二萃取处理的步骤中,可以根据本申请的上述教导对复合萃取剂进行制备;并且,复合萃取剂与第一萃余液的体积比可以根据实际需求进行设定。优选地,上述第二萃取处理的萃取时间为5~15min。采用上述优选的萃取条件能够使复合萃取剂将第一萃余液中更多的铷离子萃取出来,从而通过对上述第二有机相进行反萃取处理得到含有铷盐的萃取液,有效地提高了铷离子的萃取效果。
在上述第一萃取处理的步骤之后,利用反萃剂对第一有机相进行反萃取处理,得到含有铯盐的反萃取液;以及利用反萃剂对第二有机相进行反萃处理,得到含有铷盐的反萃取液。上述反萃剂主要起破坏有机相中被萃组分结构的作用,使被萃组分生成易溶于水的化合物。还可以通过调节有机相与反萃取剂溶液的比例,进一步实现铯离子和铷离子的进一步富集,优选所述反萃剂与所述第一有机相或所述反萃剂与第二有机相溶液的体积比为1:10~10:1。本领域技术人员可以根据现有技术选择所需的反萃剂,如H2SO4、HNO3、HCl等无机酸或NaOH、NH4OH、Na2CO3等无机碱,反萃取处理的时间和温度可以根据现有技术进行设定,优选反萃取处理的萃取时间为5~15min。
在上述分别对第一有机相和第二有机相进行反萃取处理的步骤之前,上述萃取方法还可以包括分别对上述第一有机相和上述第二有机相进行洗涤处理的步骤。通过对上述第一有机相和上述第二有机相进行洗涤处理,能够去除掉在萃取步骤中进入负载有机相中的铁锰氯等影响电解金属质量的杂质离子,以保证反萃取料液的纯净;并且,洗涤处理之后的洗液可以与新的混合溶液进行混合,重新进行萃取处理和反萃取处理。
在上述分别对第一有机相和第二有机相进行反萃取处理的步骤之后,上述萃取方法还可以包括对含有铯盐的萃取液和含有铷盐的萃取液分别进行蒸发、结晶,从而分别得到铷盐和铯盐的固体化合物产品,或者依次进行pH值调节、沉淀和过滤的步骤,从而分别得到铷盐和铯盐的沉淀物产品,实现了对铯离子和铷离子的进一步富集。通过将上述含有铯盐的萃取液 和含有铷盐的萃取液的pH值调节至大于9的范围内进行萃取,并通过对萃取液进行沉淀和过滤,能够有效地提高从萃取液中获取铯盐和铷盐的效率。本领域技术人员可以根据现有技术选择沉淀-过滤步骤中所需的沉淀试剂,如(NH4)2CO3,且滤液能够作为母液与新的混合溶液进行混合,重新进行萃取处理和反萃取处理。
下面将结合实施例进一步说明本发明提供的铷离子和铯离子的萃取方法。
实施例1
本实施例提供的铷离子和铯离子的萃取方法包括以下步骤:
首先,提供一种含123mg/L Cs离子、690mg/L Rb离子的硫酸盐溶液作为混合溶液,其pH=9.0,利用复合萃取剂对该混合溶液进行第一萃取处理,复合萃取剂与混合溶液的体积比为1:11,室温下萃取15min,得到第一有机相和第一萃余液;然后,再利用复合萃取剂对第一萃余液进行第二萃取处理,复合萃取剂与混合溶液的体积比为1:1,萃取时间为20min,得到第二有机相和第二萃余液;最后,利用反萃剂H2SO4质量浓度为10%的溶液对第一有机相进行反萃处理,所用反萃剂与所述第一有机相的体积比为1:11,得到含有铯盐的萃取液,并利用反萃剂H2SO4质量浓度为10%的溶液对第二有机相进行反萃处理,所用反萃剂与所述第二有机相溶液的体积比为1:11,得到含有铷盐的萃取液。
其中,上述复合萃取剂包括酸性萃取剂和具有结构式的苯酚类萃取剂,且上述结构式中R1和R2均为丙基,酸性萃取剂为为二(2-乙基己基)磷酸,且苯酚类萃取剂与酸性萃取剂的摩尔比为1:0.05。
实施例2
本实施例提供的萃取方法与实施例1的区别在于:
苯酚类萃取剂与酸性萃取剂的摩尔比为1:0.1。
实施例3
本实施例提供的萃取方法与实施例1的区别在于:
复合萃取剂包括具有结构式的苯酚类萃取剂和中性有机物,上述结构式中R1和R2均为乙基,中性有机物为甲庚醇,且苯酚类萃取剂和中性有机物的摩尔比为1:0.5。
实施例4
本实施例提供的萃取方法与实施例1的区别在于:
复合萃取剂包括具有结构式的苯酚类萃取剂、酸性萃取剂和中性有机物,上述结构式中R1和R2均为丁基,酸性萃取剂为为二(2-乙基己基)磷酸,中性有机物为甲庚醇,且苯酚类萃取剂与酸性萃取剂的摩尔比为1:0.1,中性有机物的重量百分比为35%。
实施例5
本实施例提供的萃取方法与实施例1的区别在于:
复合萃取剂包括具有结构式的苯酚类萃取剂、酸性萃取剂、中性有机物和芳香烃类有机溶剂,上述结构式中R1和R2均为丙基,酸性萃取剂为为二(2-乙基己基)磷酸,中性有机物为甲庚醇,芳香烃类有机溶剂为二甲苯,且苯酚类萃取剂与酸性萃取剂的摩尔比为1:0.1,中性有机物的重量百分比为35%,芳香烃类有机溶剂的的重量百分比为35%。
实施例6
本实施例提供的复合萃取剂与实施例1的区别在于:
复合萃取剂与混合溶液的体积比为1:10,且萃取处理的萃取时间为15min。
实施例7
本实施例提供的复合萃取剂与实施例1的区别在于:
复合萃取剂与混合溶液的体积比为10:1,且萃取处理的萃取时间为5min。
实施例8
本实施例提供的复合萃取剂与实施例1的区别在于:
复合萃取剂与混合溶液的体积比为1:1,且萃取处理的萃取时间为10min。
实施例9
本实施例提供的复合萃取剂与实施例1的区别在于:
在第一萃取处理的步骤之前,将混合溶液的pH值调至7;
在第二萃取处理的步骤之前,将第一萃余液的pH值调至9。
实施例10
本实施例提供的复合萃取剂与实施例1的区别在于:
在第二萃取处理的步骤之前,将第一萃余液的pH值调至11。
实施例11
本实施例提供的复合萃取剂与实施例1的区别在于:
反萃剂与第一有机相的体积比为1:10,反萃剂与第二有机相的体积比为1:10,且反萃取处理的萃取时间为15min。
实施例12
本实施例提供的复合萃取剂与实施例1的区别在于:
反萃剂与第一有机相的体积比为10:1,反萃剂与第二有机相的体积比为10:1,且反萃取处理的萃取时间为5min。
实施例13
本实施例提供的复合萃取剂与实施例1的区别在于:
反萃剂与第一有机相的体积比为1:1,反萃剂与第二有机相的体积比为1:1,且反萃取处理的萃取时间为10min。
对比例1
本实施例提供的复合萃取剂与实施例1的区别在于:
复合萃取剂包括酸性萃取剂和芳香烃类有机溶剂,上述酸性萃取剂为为二(2-乙基己基)磷酸,芳香烃类有机溶剂为二甲苯,且酸性萃取剂和芳香烃类有机溶剂的重量比为2:3。
对上述实施例和对比例中的萃取液进行测试,测试结果如下:
从上述测试结果可以看出,与对比例1中的萃取方法相比,采用本申请的萃取方法能够获得对Cs和Rb更高的萃取率,并且,复合萃取剂具有相比于组成复合萃取剂的任一种组分单独使用时的效果之和更大的萃取率。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1、采用本申请的萃取方法,由于上述苯酚类萃取剂与酸性萃取剂和/或中性有机物能够发生协同作用,从而使形成的复合萃取剂不仅具有对Rb和Cs较大的分离系数,且降低了萃取体系对碱度的需求,进而提高了对Rb和Cs的萃取效果,使复合萃取剂具有相比于组成复合 萃取剂的任一种组分单独使用时的效果之和更大的萃取率,对Cs的萃取率能够达到80%以上,提高了对Cs的回收率;
2、本申请的萃取方法中不需要对含铷离子和铯离子的混合溶液进行调节而使其具有较大的碱度(pH值大于11),就能够实现对Rb和Cs有效地萃取,从而不仅避免了由于高碱度易使萃取体系乳化而导致的分相困难,还避免了由于高碱度而导致的萃取剂和稀释剂的流失,从而提高了Rb和Cs的萃取效率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种铷离子和铯离子的萃取方法,其特征在于,包括以下步骤:
利用复合萃取剂对含铷离子和铯离子的混合溶液进行第一萃取处理,得到第一有机相和第一萃余液,所述复合萃取剂包括酸性萃取剂和中性有机物中的至少一种组分以及具有结构式I的苯酚类萃取剂;
利用所述复合萃取剂对所述第一萃余液进行第二萃取处理,得到第二有机相和第二萃余液;
利用反萃剂对所述第一有机相进行反萃取处理,得到含有铯盐的反萃取液;以及
利用反萃剂对所述第二有机相进行反萃取处理,得到含有铷盐的反萃取液,
其中,R1=CnH2n+1,0≤n≤25,R2=CmH2m+1,0≤m≤25。
2.根据权利要求1所述的萃取方法,其特征在于,
所述结构式I中n小于等于10;
所述结构式I中m小于等于5。
3.根据权利要求1所述的萃取方法,其特征在于,
所述苯酚类萃取剂为4-叔丁基-2(α-甲基苄基)苯酚和/或4-仲丁基-2-(α-甲基苄基)苯酚;
优选所述酸性萃取剂包括酸性有机磷萃取剂和/或有机羧酸萃取剂,进一步优选为二(2-乙基己基)磷酸、2-乙基己基磷酸单-2-乙基己基酯和环烷酸中的任一种或多种;
优选所述中性有机物包括烷基醇,进一步优选为甲庚醇和/或正辛醇。
4.根据权利要求1所述的萃取方法,其特征在于,所述复合萃取剂还包括烃类溶剂,所述烃类溶剂优选为烷烃类有机溶剂和/或芳香烃类有机溶剂。
5.根据权利要求1至4中任一项所述的萃取方法,其特征在于,所述复合萃取剂包括所述苯酚类萃取剂和所述酸性萃取剂时,所述苯酚类萃取剂与所述酸性萃取剂的摩尔比>0.05。
6.根据权利要求1至4中任一项所述的萃取方法,其特征在于,在利用所述复合萃取剂对所述混合溶液进行萃取处理的步骤中,所述复合萃取剂与所述混合溶液的体积比为1:10~10:1。
7.根据权利要求1至4中任一项所述的萃取方法,其特征在于,在利用所述复合萃取剂对所述混合溶液进行萃取处理的步骤中,所述萃取处理的萃取时间为5~15min。
8.根据权利要求1至4中任一项所述的萃取方法,其特征在于,所述萃取方法还包括:
在所述第一萃取处理的步骤之前,将所述混合溶液的pH值调至7~9;
在所述第二萃取处理的步骤之前,将所述第一萃余液的pH值调至9~11。
9.根据权利要求1至4中任一项所述的萃取方法,其特征在于,所述混合溶液还含有锂离子,在所述第二萃取处理的步骤中,得到含有锂离子的第二萃余液。
10.根据权利要求1至3中任一项所述的萃取方法,其特征在于,所述萃取方法还包括制备所述复合萃取剂的过程,所述过程包括:
将所述苯酚类萃取剂与所述中性有机物混合形成预混液,然后将所述酸性萃取剂加入至所述预混液中,得到所述复合萃取剂;或
将所述酸性萃取剂与所述中性有机物混合形成预混液,然后将苯酚类萃取剂加入至所述预混液中,得到所述复合萃取剂;或
将所述中性有机物分为第一中性有机物部分和第二中性有机物部分,将所述苯酚类萃取剂与所述第一中性有机物部分混合形成第一预混液,将所述酸性萃取剂与所述第二中性有机物部分混合形成第二预混液,将所述第一预混液和所述第二预混液混合,得到所述复合萃取剂,优选所述第一中性有机物部分和第二中性有机物部分的体积比为1:10~10:1。
11.根据权利要求4所述的萃取方法,其特征在于,所述复合萃取剂还包括所述烃类溶剂时,所述萃取方法还包括制备所述复合萃取剂的过程,所述过程包括:
将所述苯酚类萃取剂与所述烃类溶剂混合形成预混液,并将所述酸性萃取剂加入所述预混液中,以形成所述复合萃取剂;或
将所述酸性萃取剂与所述烃类溶剂混合形成预混液,并将所述苯酚类萃取剂加入所述预混液中,以形成所述复合萃取剂;或
将所述烃类溶剂为第一烃类溶剂部分和第二烃类溶剂部分,将所述苯酚类萃取剂与所述第一烃类溶剂部分混合形成第一预混液,将所述酸性萃取剂与所述第二烃类溶剂部分混合形成第二预混液,将所述第一预混液和所述第二预混液混合,得到所述复合萃取剂。
12.根据权利要求1至4中任一项所述的萃取方法,其特征在于,在利用所述反萃剂对所述第一有机相或第二有机相进行反萃取处理的步骤中,所述反萃剂与所述第一有机相或所述反萃剂与第二有机相溶液的体积比为1:10~10:1,优选所述反萃取处理的萃取时间为5~15min。
CN201610557108.XA 2016-07-14 2016-07-14 铷离子和铯离子的萃取方法 Active CN106435180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610557108.XA CN106435180B (zh) 2016-07-14 2016-07-14 铷离子和铯离子的萃取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610557108.XA CN106435180B (zh) 2016-07-14 2016-07-14 铷离子和铯离子的萃取方法

Publications (2)

Publication Number Publication Date
CN106435180A true CN106435180A (zh) 2017-02-22
CN106435180B CN106435180B (zh) 2019-01-08

Family

ID=58184286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610557108.XA Active CN106435180B (zh) 2016-07-14 2016-07-14 铷离子和铯离子的萃取方法

Country Status (1)

Country Link
CN (1) CN106435180B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217156A (zh) * 2017-04-12 2017-09-29 天齐锂业股份有限公司 从锂辉石提锂母液中提取铷铯盐的方法
WO2019114817A1 (zh) * 2017-12-16 2019-06-20 虔东稀土集团股份有限公司 一种用于萃取分离锂元素的萃取溶剂及其萃取分离锂元素的方法
CN112359228A (zh) * 2020-10-22 2021-02-12 北京大学 萃取-结晶联用技术分离铷铯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037127A (zh) * 1988-05-12 1989-11-15 李久成 岩石风化土吸附型稀散贵金属的提取技术方案
CN102312110A (zh) * 2010-07-09 2012-01-11 何涛 膜萃取-反萃从盐湖卤水和海水中提取碱金属的方法
CN103555969A (zh) * 2013-10-21 2014-02-05 昆明冶金研究院 一种钾钠分离新方法
CN103787375A (zh) * 2014-02-19 2014-05-14 中国科学院青海盐湖研究所 一种提取铷盐和铯盐的方法
CN104326496A (zh) * 2014-10-14 2015-02-04 中国地质科学院郑州矿产综合利用研究所 卤水中铷盐的提取方法、卤水中铯盐的提取方法
CN104843747A (zh) * 2015-05-19 2015-08-19 江西稀有金属钨业控股集团有限公司 从锂云母提锂母液中提取铷盐和铯盐的方法与系统
CN105435487A (zh) * 2014-09-02 2016-03-30 中国科学院上海高等研究院 一种立式混合澄清萃取设备及塔萃取工艺方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037127A (zh) * 1988-05-12 1989-11-15 李久成 岩石风化土吸附型稀散贵金属的提取技术方案
CN102312110A (zh) * 2010-07-09 2012-01-11 何涛 膜萃取-反萃从盐湖卤水和海水中提取碱金属的方法
CN103555969A (zh) * 2013-10-21 2014-02-05 昆明冶金研究院 一种钾钠分离新方法
CN103787375A (zh) * 2014-02-19 2014-05-14 中国科学院青海盐湖研究所 一种提取铷盐和铯盐的方法
CN105435487A (zh) * 2014-09-02 2016-03-30 中国科学院上海高等研究院 一种立式混合澄清萃取设备及塔萃取工艺方法和应用
CN104326496A (zh) * 2014-10-14 2015-02-04 中国地质科学院郑州矿产综合利用研究所 卤水中铷盐的提取方法、卤水中铯盐的提取方法
CN104843747A (zh) * 2015-05-19 2015-08-19 江西稀有金属钨业控股集团有限公司 从锂云母提锂母液中提取铷盐和铯盐的方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"《石油炼制工程 上册 (第二版)》" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217156A (zh) * 2017-04-12 2017-09-29 天齐锂业股份有限公司 从锂辉石提锂母液中提取铷铯盐的方法
WO2019114817A1 (zh) * 2017-12-16 2019-06-20 虔东稀土集团股份有限公司 一种用于萃取分离锂元素的萃取溶剂及其萃取分离锂元素的方法
CN112359228A (zh) * 2020-10-22 2021-02-12 北京大学 萃取-结晶联用技术分离铷铯

Also Published As

Publication number Publication date
CN106435180B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN101391800B (zh) 利用含铜蚀刻废液生产碱式氯化铜、五水硫酸铜的方法
CN101787451B (zh) 提高酸性磷型萃取剂萃取分离稀土元素效率的方法
CN100529123C (zh) 一种酸性萃取剂络合萃取分离稀土元素的方法
CN106315535B (zh) 一种从含铁锌废磷化渣制备纯磷酸铁的方法
CN111057848A (zh) 一种溶剂萃取从含锂溶液中提取锂的方法
CN107447110A (zh) 一种电池级硫酸锰的制备方法
CN108624885A (zh) 一种废酸性及碱性蚀刻液处理的方法
CN106435180A (zh) 铷离子和铯离子的萃取方法
CN107245582B (zh) 一种从废盐酸中回收铁、锌的方法
CN106244828B (zh) 一种含钒浸出液的除杂方法
BR112017001370B1 (pt) método para recuperação de terras raras por meio de extração fracionada
CN104831065A (zh) 高锰钴比镍钴锰原料中镍钴与锰分离的方法
CN103014340A (zh) 一种硫酸体系溶液中铬和铁的选择性分离方法
CN106521190A (zh) 含氨基中性膦萃取剂用于萃取分离锆和/或铪的用途和方法
CN105296753A (zh) 氧化镍矿酸浸液中钴、镍、镁的分离方法
CN106348273A (zh) 一种盐酸法制工业磷酸的萃取剂及其萃取方法
CN105969994A (zh) 一种从粉煤灰中提取镧的方法
CN105712383A (zh) 利用萃取法除去富锂溶液中钙、镁杂质的方法
CN102206748A (zh) 钾铷铯矾的提取方法
CN104532020B (zh) 从生产磷酸后的磷矿渣中回收稀土的方法
EP2118016B1 (de) Verfahren zur herstellung von ammoniumheptamolybdat
CN105161746A (zh) 酸性富钒液制备钒电池电解液的方法
CN106435218A (zh) 复合萃取剂及复合萃取剂的制备方法
CN102887534A (zh) 从硫酸镍溶液萃取镍的萃余液中回收试剂级无水硫酸钠的方法
CN106495205B (zh) 一种电镀级硫酸铜及其生产工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant