CN106431389B - 一种CaCu3Ti4O12的制备方法 - Google Patents

一种CaCu3Ti4O12的制备方法 Download PDF

Info

Publication number
CN106431389B
CN106431389B CN201610214114.5A CN201610214114A CN106431389B CN 106431389 B CN106431389 B CN 106431389B CN 201610214114 A CN201610214114 A CN 201610214114A CN 106431389 B CN106431389 B CN 106431389B
Authority
CN
China
Prior art keywords
cacu
acac
crystal powder
preparation
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610214114.5A
Other languages
English (en)
Other versions
CN106431389A (zh
Inventor
张文星
李立强
程文静
梁果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangqiu Normal University
Original Assignee
Shangqiu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangqiu Normal University filed Critical Shangqiu Normal University
Priority to CN201610214114.5A priority Critical patent/CN106431389B/zh
Publication of CN106431389A publication Critical patent/CN106431389A/zh
Application granted granted Critical
Publication of CN106431389B publication Critical patent/CN106431389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种CaCu3Ti4O12的制备方法,包括CaCu3Ti4O12晶体粉体和CaCu3Ti4O12陶瓷的制备方法。所述的CaCu3Ti4O12晶体粉体的制备方法乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CaCu3Ti4O12晶体粉体;所述CaCu3Ti4O12陶瓷的制备方法将CaCu3Ti4O12晶体粉体压片后通过高温烧结得到CaCu3Ti4O12陶瓷。本发明首次以有机金属化合物乙酰丙酮钙、乙酰丙酮铜和乙酰丙酮氧钛为前驱体原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过简单的搅拌、干燥,低温煅烧即可得到高纯度、晶型良好的CaCu3Ti4O12晶体粉体。该方法解决了固相氧化物法、溶胶凝胶法及液相合成法必须经过高温烧结过程,而无法在低温下得到高纯度CaCu3Ti4O12晶体粉体的技术问题。

Description

一种CaCu3Ti4O12的制备方法
技术领域
本发明涉及一种CaCu3Ti4O12(CCTO)的制备方法,特别是涉及一种CCTO晶体粉体和CCTO陶瓷的制备方法,属于电子陶瓷制备及应用技术领域。
背景技术
ACu3Ti4O12(A=Ca,Ba,Sr)系列材料发现于1967年,其精确结构确定于1979年,直到 2000年Subramanian等人才首先发现CCTO的介电性能。ACu3Ti4O12类型的氧化物具有较为复杂的钙钛矿结构和与其钙钛矿结构相关的巨大的介电常数,因此在不同领域有着极高的潜在应用价值。目前应用较为广泛的BaTiO3和非环境友好型Pb(Mg1/3Nb2/3)O3(PMN)等类型的材料均具有较高的介电常数。BaTiO3是一种铁电型钙钛矿材料,其性质随温度变化而产生相变,介电常数随温度变化产生明显的不稳定性因此不适用于高温环境,PMN等材料因对环境影响其应用受到限制。与上述材料相比,CCTO的优点在于:首先具有极高的介电常数(104~106);其次其介电常数在100-600K温度范围内几乎不发生变化,具有优异的温度稳定性;另外在室温下CCTO的介电性能在20Hz-1MHz范围显示良好的稳定性。上述特点使得CCTO材料在储电、微电子和记忆装置等诸多领域有广泛的应用前景,例如多层陶瓷电容(MLCC)、随机存储器(DRAMs)、微波装置、汽车和航空器的电子装置等。目前制约CCTO 应用的主要因素是其具有较高的介电损耗值(>0.5),其介电性能的特点与其结构之间的关系仍不明确。
CCTO陶瓷主要采用传统的高温固相法以CuO、TiO2和CaCO3为原料高温烧结得到,其晶粒粒度大小、纯度、团聚程度等因素都会影响CCTO陶瓷的晶粒尺寸和形态,对产品的介电性能有较大的影响,由于烧结温度一般在1000℃以上,难以在低温下获得CCTO晶体粉体,不利于研究CCTO晶体的动力学特性。溶胶-凝胶法及液相合成法制备CCTO,虽然工艺过程较固相合成法简单,但制备过程较为繁琐,仍然需要高温(>800℃)烧结过程才能获得CCTO 陶瓷。因此如何在较低的温度下得到晶型良好的CCTO晶体粉体仍然是一个挑战性的课题。
发明内容
本发明利用乙酰丙酮盐混合后在升温分解时的协同作用,提供一种低温条件下CCTO晶体粉体的制备方法,同时提供了一种CCTO陶瓷的制备方法,本发明工艺简单,制得的CCTO 晶体粉体及CCTO陶瓷晶型良好,无杂质,纯度高。
为了实现上述目的,本发明所采用的技术方案是:一种CaCu3Ti4O12晶体粉体的制备方法,所述的制备方法是以乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CCTO晶体粉体,具体包括以下步骤:
(1)按照Ca、Cu和Ti摩尔比1:3.0-3.5:4的比例称取Ca(acac)2、Cu(acac)2和TiO(acac)2,加入无水乙醇中,剧烈搅拌,得到混合溶液;
(2)在混合溶液中加入无水柠檬酸调节pH值至1.2-1.8,得到淡蓝色溶液,继续搅拌;
(3)将步骤(2)的溶液干燥,得到淡蓝色针状晶体;
(4)将淡蓝色针状晶体充分研磨,再以15-25℃/min的速率升温至400-600℃,保温1.5-2.5h,得到CCTO晶体粉体。
步骤(2)中继续搅拌的时间为0.5-1h。
步骤(3)中干燥的温度为80-90℃,时间为10-15h。
本发明所采用的技术方案还在于:一种CaCu3Ti4O12陶瓷的制备方法,所述的制备方法是以乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CCTO晶体粉体,压片后通过高温烧结得到CCTO陶瓷,具体包括以下步骤:
(1)按照Ca、Cu和Ti摩尔比1:3.0-3.5:4的比例称取Ca(acac)2、Cu(acac)2和TiO(acac)2,加入无水乙醇中,剧烈搅拌,得到混合溶液;
(2)在混合溶液中加入无水柠檬酸调节pH值至1.2-1.8,得到淡蓝色溶液,继续搅拌;
(3)将步骤(2)的溶液干燥,得到淡蓝色针状晶体;
(4)将淡蓝色针状晶体充分研磨,再以15-25℃/min的速率升温至400-600℃,保温1.5-2.5h,得到CCTO晶体粉体;
(5)将CCTO晶体粉体充分研磨,在8-12MPa压力下压片,再以15-25℃/min的速率升温至900-1250℃,保温2-10h,得到CCTO陶瓷。
步骤(2)中继续搅拌的时间为0.5-1h。
步骤(3)中干燥的温度为80-90℃,时间为10-15h。
有益效果
1、本发明以有机金属化合物乙酰丙酮钙、乙酰丙酮铜和乙酰丙酮氧钛为前驱体原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过简单的搅拌、干燥,低温煅烧即可得到高纯度、晶型良好的CCTO晶体粉体。该方法解决了固相氧化物法、溶胶凝胶法及液相合成法必须经过高温烧结过程,而无法在低温下得到高纯度CCTO晶体粉体的技术问题。
2、本发明通过优化反应物的比例、升温速率,煅烧温度和时间等影响因素,在低温(450℃) 下即可得到CCTO晶体粉体。通过XRD、SEM和介电性能检测等手段对本发明的CCTO晶体粉体进行分析,结果表明,本发明制得的晶体粉体符合CCTO晶体特征,晶型良好,无杂质,晶粒均匀,粒度分布范围窄,无团聚,为深入研究CCTO的介电性能提供了基础。
3、本发明制得的CCTO晶体粉体再经过高温烧结,即可得到CCTO陶瓷。本发明通过对烧结工艺的优化,提高了CCTO陶瓷的介电性能,为后续可开展稀土元素、碱金属掺杂CCTO陶瓷的介电性能研究奠定了基础。
4、本发明方法简单,耗时短,节约能耗,对设备要求不高,用途广泛,易于工业化推广,具有良好的社会和经济效益。
附图说明
图1是实施例1的制备CCTO晶体的原料乙酰丙酮盐的TG/DTA图。
图2是实施例1的CCTO晶体粉体的XRD图。
图3是实施例1的CCTO晶体粉体的SEM图。
图4是实施例1的CCTO陶瓷的XRD图。
图5是实施例1的CCTO陶瓷的SEM图。
具体实施方式
以下结合实施例对本发明的具体实施方式作进一步详细说明。
实施例1
本实施例CCTO晶体粉体的制备方法,是以乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CCTO晶体粉体,具体包括以下步骤:
(1)称取0.01mol的Ca(acac)2、0.03mol的Cu(acac)2和0.04mol的TiO(acac)2,加入20ml 无水乙醇中,磁力搅拌器剧烈搅拌,得到混合溶液;
(2)在混合溶液中加入无水柠檬酸调节pH值至1.5,得到淡蓝色溶液,继续搅拌1h;
(3)将步骤(2)的溶液在80℃条件下干燥12h,得到淡蓝色针状晶体;
(4)将淡蓝色针状晶体充分研磨,再以25℃/min的速率升温至450℃,保温2.5h,得到 CCTO晶体粉体。
本实施例CCTO陶瓷的制备方法,是将所制得的CCTO晶体粉体充分研磨,在10MPa压力下压片,再以20℃/min的速率升温至1000℃,保温2h即得。
本发明三种反应前躯体混合物按照实施例1配比的TG/DTA结果见图1。图1结果显示,反应物在420℃以上,TG/DTA数值无明显变化,重量损失与理论值基本一致,处于较为稳定的状态,表明在此温度下反应基本完成。同时,420℃低于三种反应前躯体单独的最终分解温度,表明混合后的反应产生一定的温度协同效应。
将本发明制得的CCTO晶体粉体进行XRD分析,结果见图2。图2结果表明,本发明制得的CCTO晶体粉体符合CCTO晶体特征,晶型良好,无其他杂质出现。
将本发明制得的CCTO晶体粉体进行SEM分析,结果见图3。图3结果表明,本发明制得的CCTO晶体粉体晶粒较为均匀,粒度分布范围窄,无团聚。
将本发明制得的CCTO陶瓷进行XRD分析,结果见图4。图4表明,CCTO陶瓷与CCTO 晶体粉体结构特征一致。
将本发明制得的CCTO陶瓷进行SEM分析,结果见图5。图5表明CCTO陶瓷晶粒小于 1μm,较致密。
本发明制备的CCTO陶瓷的介电常数,在外加频率<10Hz时,随频率增加介电常数从数万迅速降至10000,介电损耗值随之迅速降低;10Hz~100Hz时随频率增加变化幅度减小,0.01MHz~1MHz时,介电常数稳定于8000左右,介电损耗值0.25。
实施例2
本实施例CCTO晶体粉体的制备方法,是以乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CCTO晶体粉体,具体包括以下步骤:
(1)称取0.01mol的Ca(acac)2、0.033mol的Cu(acac)2和0.04mol的TiO(acac)2,加入20ml 无水乙醇中,磁力搅拌器剧烈搅拌,得到混合溶液;
(2)在混合溶液中加入无水柠檬酸调节pH值至1.8,得到淡蓝色溶液,继续搅拌0.5h;
(3)将步骤(2)的溶液在85℃条件下干燥15h,得到淡蓝色针状晶体;
(4)将淡蓝色针状晶体充分研磨,再以15℃/min的速率升温至500℃,保温1.5h,得到 CCTO晶体粉体。
本实施例CCTO陶瓷的制备方法,是将所制得的CCTO晶体粉体充分研磨,在8MPa压力下压片,再以15℃/min的速率升温至900℃,保温10h,得到CCTO陶瓷。
实施例3
本实施例CCTO晶体粉体的制备方法,是以乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CCTO晶体粉体,具体包括以下步骤:
(1)称取0.01mol的Ca(acac)2、0.035mol的Cu(acac)2和0.04mol的TiO(acac)2,加入20ml 无水乙醇中,磁力搅拌器剧烈搅拌,得到混合溶液;
(2)在混合溶液中加入无水柠檬酸调节pH值至1.2,得到淡蓝色溶液,继续搅拌1h;
(3)将步骤(2)的溶液在90℃条件下干燥10h,得到淡蓝色针状晶体;
(4)将淡蓝色针状晶体充分研磨,再以25℃/min的速率升温至600℃,保温2h,得到CCTO晶体粉体。
本实施例CCTO陶瓷的制备方法,是将所制得的CCTO晶体粉体充分研磨,在12MPa压力下压片,再以25℃/min的速率升温至1250℃,保温5h,得到CCTO陶瓷。

Claims (6)

1.一种CaCu3Ti4O12晶体粉体的制备方法,其特征在于,所述的制备方法是以乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CaCu3Ti4O12晶体粉体,具体包括以下步骤:
(1)按照Ca、Cu和Ti摩尔比1:3.0-3.5:4的比例称取Ca(acac)2、Cu(acac)2和TiO(acac)2,加入无水乙醇中,剧烈搅拌,得到混合溶液;
(2)在混合溶液中加入无水柠檬酸调节pH值至1.2-1.8,得到淡蓝色溶液,继续搅拌;
(3)将步骤(2)的溶液干燥,得到淡蓝色针状晶体;
(4)将淡蓝色针状晶体充分研磨,再以15-25℃/min的速率升温至400-600℃,保温1.5-2.5h,得到CaCu3Ti4O12晶体粉体。
2.根据权利要求1所述的CaCu3Ti4O12晶体粉体的制备方法,其特征在于,步骤(2)中继续搅拌的时间为0.5-1h。
3.根据权利要求1所述的CaCu3Ti4O12晶体粉体的制备方法,其特征在于,步骤(3)中干燥的温度为80-90℃,时间为10-15h。
4.一种CaCu3Ti4O12陶瓷的制备方法,其特征在于,所述的制备方法是以乙酰丙酮钙Ca(acac)2、乙酰丙酮铜Cu(acac)2和乙酰丙酮氧钛TiO(acac)2为原料,以无水乙醇为溶剂,无水柠檬酸为稳定剂,通过低温煅烧得到CaCu3Ti4O12晶体粉体,压片后通过高温烧结得到CaCu3Ti4O12陶瓷,具体包括以下步骤:
(1)按照Ca、Cu和Ti摩尔比1:3.0-3.5:4的比例称取Ca(acac)2、Cu(acac)2和TiO(acac)2,加入无水乙醇中,剧烈搅拌,得到混合溶液;
(2)在混合溶液中加入无水柠檬酸调节pH值至1.2-1.8,得到淡蓝色溶液,继续搅拌;
(3)将步骤(2)的溶液干燥,得到淡蓝色针状晶体;
(4)将淡蓝色针状晶体充分研磨,再以15-25℃/min的速率升温至400-600℃,保温1.5-2.5h,得到CaCu3Ti4O12晶体粉体;
(5)将CaCu3Ti4O12晶体粉体充分研磨,在8-12MPa压力下压片,再以15-25℃/min的速率升温至900-1250℃,保温2-10h,得到CaCu3Ti4O12陶瓷。
5.根据权利要求4所述的CaCu3Ti4O12陶瓷的制备方法,其特征在于,步骤(2)中继续搅拌的时间为0.5-1h。
6.根据权利要求4所述的CaCu3Ti4O12陶瓷的制备方法,其特征在于,步骤(3)中干燥的温度为80-90℃,时间为10-15h。
CN201610214114.5A 2016-04-08 2016-04-08 一种CaCu3Ti4O12的制备方法 Active CN106431389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610214114.5A CN106431389B (zh) 2016-04-08 2016-04-08 一种CaCu3Ti4O12的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610214114.5A CN106431389B (zh) 2016-04-08 2016-04-08 一种CaCu3Ti4O12的制备方法

Publications (2)

Publication Number Publication Date
CN106431389A CN106431389A (zh) 2017-02-22
CN106431389B true CN106431389B (zh) 2019-04-16

Family

ID=58183922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610214114.5A Active CN106431389B (zh) 2016-04-08 2016-04-08 一种CaCu3Ti4O12的制备方法

Country Status (1)

Country Link
CN (1) CN106431389B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759216A (zh) * 2017-11-03 2018-03-06 太原理工大学 一种溶胶‑凝胶法制备锰酸锶镧/钛酸铜钙复合磁电陶瓷材料的方法
CN113327736B (zh) * 2021-05-17 2022-02-22 湖北微硕电子科技有限公司 一种宽频、五高性能的软磁铁氧体材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553589A (zh) * 2013-10-21 2014-02-05 常州大学 一种制备CaCu3Ti4O12陶瓷材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553589A (zh) * 2013-10-21 2014-02-05 常州大学 一种制备CaCu3Ti4O12陶瓷材料的方法

Also Published As

Publication number Publication date
CN106431389A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN107151029B (zh) 一种四方相钛酸钡粉体的溶胶-水热法制备工艺
CN101767821B (zh) 一种锆钛酸钡基介质材料的合成方法
CN105330286A (zh) 一种巨介电常数纳米钛酸铜钙陶瓷材料的制备方法
CN103922734A (zh) 一种宽温稳定储能介质陶瓷及其制备方法
CN103553589A (zh) 一种制备CaCu3Ti4O12陶瓷材料的方法
Bafrooei et al. Sintering behavior and microwave dielectric characteristics of ZnTiNb2O8 ceramics achieved by reaction sintering of ZnO–TiO2–Nb2O5 nanosized powders
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN103214235A (zh) 一种微波介质陶瓷材料的制备方法
CN106431389B (zh) 一种CaCu3Ti4O12的制备方法
CN108046795B (zh) 一种高介电可调的钛酸锶钡基复合硅铝酸盐陶瓷介质材料
CN107188557A (zh) 一种微波介质陶瓷材料及其制备方法
CN108530056B (zh) 一种巨介电低损耗钛酸锶钡陶瓷及其制备方法
CN103992102B (zh) 一种采用溶胶凝胶法制备钛酸铜钇巨介电陶瓷材料的方法
CN113045307B (zh) 一种高介电低损耗钛酸钡基陶瓷及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN102674442A (zh) 采用微波水热法制备钛酸锶纳米粉体的方法
CN100467421C (zh) 一种钙铜钛镧氧介电陶瓷粉体的制备方法
CN105254295B (zh) 一种钕掺杂钛酸钡纳米陶瓷粉体的制备方法
CN109456058B (zh) 一种锆钛酸钡和铌锌酸钡的复合电容器瓷料及其制备方法
CN103992103B (zh) 二元系钛酸铜钇-钛酸锶巨介电陶瓷材料及其制备方法
CN101269974B (zh) 用于制备织构层状结构的钙钛矿系陶瓷纳米粉体合成方法
CN107935586B (zh) 一种铌酸钾改性的bt-kbt基储能陶瓷及其制备方法
CN107188558B (zh) 一种高储能密度氧化铝掺杂钛酸铜镉巨介电陶瓷材料及其制备方法
CN104108931A (zh) 一种亚微米级别弛豫铁电体的制备方法
Thongchanthep et al. The synthesis of Ba0. 7Sr0. 3TiO3 ceramics prepared by sol–gel combustion method with urea as fuel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant