CN106405233B - 一种信号处理方法及装置 - Google Patents

一种信号处理方法及装置 Download PDF

Info

Publication number
CN106405233B
CN106405233B CN201610727451.4A CN201610727451A CN106405233B CN 106405233 B CN106405233 B CN 106405233B CN 201610727451 A CN201610727451 A CN 201610727451A CN 106405233 B CN106405233 B CN 106405233B
Authority
CN
China
Prior art keywords
signal
input signal
layer
denoising
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610727451.4A
Other languages
English (en)
Other versions
CN106405233A (zh
Inventor
张延良
李兴旺
刘本仓
李亚
陈慧
师晨旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201610727451.4A priority Critical patent/CN106405233B/zh
Publication of CN106405233A publication Critical patent/CN106405233A/zh
Application granted granted Critical
Publication of CN106405233B publication Critical patent/CN106405233B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Image Analysis (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本方法涉及一种信号处理方法及装置,涉及信号处理技术领域。本方法包括:获取输入信号;对输入信号进行去噪处理;将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量。本方法在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。

Description

一种信号处理方法及装置
技术领域
本方法涉及信号处理技术领域,尤其涉及一种信号处理方法及装置。
背景技术
随着通信技术的进步,数字信号被广泛应用至各个领域。例如,电视领域中,模拟电视信号已被数字电视信号所替代,成为电视信号的主要形式。数字信号在传输过程中,会产生载波频率的偏移。因此,在对信号进行处理时,载波频率偏移量的确定是后续数字信号的解码、还原的基础。
目前,一种判断方法为:对输入数字信号进行快速傅里叶转换,获得频谱线,将频谱中高能量区域的中心点与快速傅里叶转换时运算点数的一半的差确定为载波频率偏移量。
信号在传输时,会受到传输介质中的杂讯或邻近频道的信号干扰产生噪声。噪声可能使得高能量区域不唯一,造成上述方法中频谱中高能量区域中心点的确定难度,降低了确定的载波频率偏移量的准确性。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本方法提供一种信号处理方法及装置,其可以在确定载波频率偏移量前,先对获取的输入信号进行去噪处理,再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。
(二)技术方案
为了达到上述目的,本方法采用的主要技术方案包括:
一种信号处理方法,其包括:
101,获取输入信号;
102,对所述输入信号进行去噪处理;
103,将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;
104,根据所述频谱线,确定载波频率偏移量;
其中,步骤102,包括如下子步骤:
102-1,将所述输入信号进行6层小波分解,计算各层高频系数和各层低频系数;
102-2,基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;
其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;
所述软阈值函数为:
wj,k为处理后的第j层高频系数;
其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;
102-3,根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;
其中,步骤104,包括如下子步骤:
104-1,确定所述频谱线中的最大能量和最小能量;
104-2,将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;
104-3,在频谱中,确定高于所述高能量阈值的范围;
104-4,将所述范围的中心点与512的差确定为载波频率偏移量。
可选地,步骤102执行之后,步骤103执行之前,还包括:
将去噪后的输入信号进行平滑处理;
所述步骤103,包括:
将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。
可选地,所述频谱线为F(t),所述t为时间;
步骤103执行之后,步骤104执行之前,还包括:
将F(t)变换为0.37*cos(F(t)π/12);
所述步骤104,包括:
根据变换后的F(t),确定载波频率偏移量。
本方法采用的主要技术方案还包括:
一种信号处理装置,所述装置包括:信号采集模块,信号去噪模块,信号处理模块;
所述信号采集模块,用于获取输入信号;
所述信号去噪模块,用于对所述信号采集模块采集到的输入信号进行去噪处理;
信号处理模块,用于将所述信号去噪模块去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据所述频谱线,确定载波频率偏移量;
其中,所述信号去噪模块,用于将所述输入信号进行6层小波分解,计算各层高频系数和各层低频系数;基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;
其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;
所述软阈值函数为:
wj,k为处理后的第j层高频系数;
其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;
其中,所述信号处理模块,用于确定所述频谱线中的最大能量和最小能量;将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;在频谱中,确定高于所述高能量阈值的范围;将所述范围的中心点与512的差确定为载波频率偏移量。
可选地,所述信号去噪模块,还用于将去噪后的输入信号进行平滑处理;
所述信号处理模块,用于将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。
可选地,所述频谱线为F(t),所述t为时间;
所述信号处理模块,还用于将F(t)变换为0.37*cos(F(t)π/12);根据变换后的F(t),确定载波频率偏移量。
(三)有益效果
本方法的有益效果是:本方法在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。
附图说明
图1是本发明实施例一提供的一种信号处理方法的流程图;
图2是本发明实施例二提供的一种信号处理装置的结构图。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
目前,获取到信号后,会对信号进行快速傅里叶转换,获得频谱线,将频谱中高能量区域的中心点与快速傅里叶转换时运算点数的一半的差确定为载波频率偏移量。但在实际应用过程中,信号在传输时,会受到传输介质中的杂讯或邻近频道的信号干扰产生噪声。噪声可能使得高能量区域不唯一,造成上述方法中频谱中高能量区域中心点的确定难度,降低了确定的载波频率偏移量的准确性。
本发明提供了一种信号处理方法,该方法在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。
实施例一
本实施例提供了一种信号处理方法,参见图1,本实施例提供的方法流程具体如下:
101,获取输入信号;
信号在传输时,会受到传输介质中的杂讯或邻近频道的信号干扰产生噪声,因此,本步骤中获取的输入信号X(t)包括原始信号S(t)和噪声N(t)。
现有技术中,会对X(t)进行快速傅里叶转换,获得频谱线,将频谱中高能量区域的中心点与快速傅里叶转换时运算点数的一半的差确定为载波频率偏移量。由于N(t)的存在使得能量区域不唯一,造成上述方法中频谱中高能量区域中心点的确定难度,降低了确定的载波频率偏移量的准确性。本实施例在获取到X(t)后,不会直接进行快速傅里叶转换,而是先去噪,再对去噪后的信号进行快速傅里叶转换,提升载波频率偏移量的确定准确性。
102,对输入信号进行去噪处理;
去噪处理方式有多种,本实施例提供一种可行方式:
102-1,将输入信号进行6层小波分解,计算各层高频系数和各层低频系数;
102-2,基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;
其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;
软阈值函数为:
wj,k为处理后的第j层高频系数;
其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;
102-3,根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号。
经过步骤102,会将步骤101中获取到的N(t)去除。
103,将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;
虽然执行步骤102后会得到原始信号S(t),但为了进一步确保最终确定的载波频率偏移量的准确性,在步骤102执行之后,步骤103执行之前,还会将步骤102得到的去噪后的输入信号进行平滑处理。步骤103,再将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。
104,根据频谱线,确定载波频率偏移量。
本步骤的一种实现方式可以为:
104-1,确定频谱线中的最大能量和最小能量;
104-2,将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;
104-3,在频谱中,确定高于高能量阈值的范围;
104-4,将范围的中心点与512的差确定为载波频率偏移量。
除此之外,还可以将步骤103中得到的频谱线进行变换,以更符合实际情况,步骤104再根据变换后的频谱线,确定载波频率偏移量。
以频谱线为F(t),t为时间为例,将步骤103中得到的频谱线进行变换的方式,包括但不限于:
将F(t)变换为0.37*cos(F(t)π/12)。
本实施例提供的方法,该方法在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。
实施例二
本实施例提供了一种信号处理装置,参见图2,由于该信号处理装置解决问题的原理与图1所示的信号处理方法相似,因此该装置的实施可以参见图1所示的方法的实施例,重复之处不再赘述。
参见图2,该装置包括:信号采集模块201,信号去噪模块202,信号处理模块203;
信号采集模块201,用于获取输入信号;
信号去噪模块202,用于对信号采集模块201采集到的输入信号进行去噪处理;
信号处理模块203,用于将信号去噪模块202去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量;
其中,信号去噪模块202,用于将输入信号进行6层小波分解,计算各层高频系数和各层低频系数;基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;
其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;
软阈值函数为:
wj,k为处理后的第j层高频系数;
其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;
其中,信号处理模块,用于确定频谱线中的最大能量和最小能量;将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;在频谱中,确定高于高能量阈值的范围;将范围的中心点与512的差确定为载波频率偏移量。
可选地,信号去噪模块202,还用于将去噪后的输入信号进行平滑处理;
信号处理模块203,用于将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。
可选地,频谱线为F(t),t为时间;
信号处理模块203,还用于将F(t)变换为0.37*cos(F(t)π/12);根据变换后的F(t),确定载波频率偏移量。
本实施例提供的装置,在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。

Claims (6)

1.一种信号处理方法,其特征在于,所述方法包括:
101,获取输入信号;
102,对所述输入信号进行去噪处理;
103,将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;
104,根据所述频谱线,确定载波频率偏移量;
其中,步骤102,包括如下子步骤:
102-1,将所述输入信号进行6层小波分解,计算各层高频系数和各层低频系数;
102-2,基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;
其中,第j层阈值为σ为中间参数,Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;
所述软阈值函数为:
wj,k为处理后的第j层高频系数;
其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;
102-3,根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;
其中,步骤104,包括如下子步骤:
104-1,确定所述频谱线中的最大能量和最小能量;
104-2,将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;
104-3,在频谱中,确定高于所述高能量阈值的范围;
104-4,将所述范围的中心点与512的差确定为载波频率偏移量。
2.根据权利要求1所述的方法,其特征在于,步骤102执行之后,步骤103执行之前,还包括:
将去噪后的输入信号进行平滑处理;
所述步骤103,包括:
将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。
3.根据权利要求1所述的方法,其特征在于,所述频谱线为F(t),所述t为时间;
步骤103执行之后,步骤104执行之前,还包括:
将F(t)变换为0.37*cos(F(t)π/12);
所述步骤104,包括:
根据变换后的F(t),确定载波频率偏移量。
4.一种信号处理装置,其特征在于,所述装置包括:信号采集模块,信号去噪模块,信号处理模块;
所述信号采集模块,用于获取输入信号;
所述信号去噪模块,用于对所述信号采集模块采集到的输入信号进行去噪处理;
信号处理模块,用于将所述信号去噪模块去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据所述频谱线,确定载波频率偏移量;
其中,所述信号去噪模块,用于将所述输入信号进行6层小波分解,计算各层高频系数和各层低频系数;基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;
其中,第j层阈值为σ为中间参数,Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;
所述软阈值函数为:
wj,k为处理后的第j层高频系数;
其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;
其中,所述信号处理模块,用于确定所述频谱线中的最大能量和最小能量;将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;在频谱中,确定高于所述高能量阈值的范围;将所述范围的中心点与512的差确定为载波频率偏移量。
5.根据权利要求4所述的装置,其特征在于,所述信号去噪模块,还用于将去噪后的输入信号进行平滑处理;
所述信号处理模块,用于将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。
6.根据权利要求4所述的装置,其特征在于,所述频谱线为F(t),所述t为时间;
所述信号处理模块,还用于将F(t)变换为0.37*cos(F(t)π/12);根据变换后的F(t),确定载波频率偏移量。
CN201610727451.4A 2016-08-25 2016-08-25 一种信号处理方法及装置 Expired - Fee Related CN106405233B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610727451.4A CN106405233B (zh) 2016-08-25 2016-08-25 一种信号处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610727451.4A CN106405233B (zh) 2016-08-25 2016-08-25 一种信号处理方法及装置

Publications (2)

Publication Number Publication Date
CN106405233A CN106405233A (zh) 2017-02-15
CN106405233B true CN106405233B (zh) 2018-11-20

Family

ID=58005235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610727451.4A Expired - Fee Related CN106405233B (zh) 2016-08-25 2016-08-25 一种信号处理方法及装置

Country Status (1)

Country Link
CN (1) CN106405233B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109561437B (zh) 2017-09-26 2020-10-16 大唐移动通信设备有限公司 一种对信号进行处理的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256955A (zh) * 2013-04-22 2013-08-21 浙江大学 一种基于软阈值函数的机械脉冲信号检测方法
CN103268630A (zh) * 2013-05-22 2013-08-28 北京工业大学 一种基于血管内超声影像的血管三维可视化方法
CN104063569A (zh) * 2013-03-19 2014-09-24 中国人民解放军第二炮兵工程大学 一种基于emd去噪和渐消记忆的设备剩余寿命预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104063569A (zh) * 2013-03-19 2014-09-24 中国人民解放军第二炮兵工程大学 一种基于emd去噪和渐消记忆的设备剩余寿命预测方法
CN103256955A (zh) * 2013-04-22 2013-08-21 浙江大学 一种基于软阈值函数的机械脉冲信号检测方法
CN103268630A (zh) * 2013-05-22 2013-08-28 北京工业大学 一种基于血管内超声影像的血管三维可视化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
De-Noising by Soft-Thresholding;David L. Donoho;《IEEE TRANSACTIONS ON INFORMATION THEORY》;19950531;第41卷(第3期);第613-627页 *
基于信号相关性和小波方法的电能质量去噪算法;欧阳森 等;《电工技术学报》;20030630;第18卷(第3期);第111-116页 *
小波阈值去噪算法的新改进;叶重元 等;《计算机工程与应用》;20110421;第47卷(第12期);第141-145页 *

Also Published As

Publication number Publication date
CN106405233A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN105677035B (zh) 基于eemd和小波阈值的运动想象脑电信号消噪方法
CN108985179A (zh) 一种基于改进小波阈值函数的电能质量信号去噪方法
CN103870694B (zh) 一种基于修正小波阈值的经验模态分解去噪方法
Kopparapu et al. Identifying optimal Gaussian filter for Gaussian noise removal
CN110503060B (zh) 一种光谱信号去噪方法及其系统
CN104809357B (zh) 一种三维粗糙表面多尺度接触行为的分析方法及装置
CN112084845B (zh) 基于多尺度小波系数自相关的低频1/f噪声消除方法
CN102663695A (zh) 基于小波变换的dr图像去噪方法及系统
Varghese et al. Fourier transform‐based windowed adaptive switching minimum filter for reducing periodic noise from digital images
CN113723171A (zh) 基于残差生成对抗网络的脑电信号去噪方法
You et al. Research of an improved wavelet threshold denoising method for transformer partial discharge signal
CN105550998B (zh) 基于二代小波整数变换的图像增强方法及图像增强系统
CN106483563A (zh) 基于互补集合经验模态分解的地震能量补偿方法
CN104215833B (zh) 电力系统频率测量方法及装置
CN111079893B (zh) 用于干涉条纹图滤波的生成器网络的获取方法和装置
CN106405233B (zh) 一种信号处理方法及装置
CN114154546A (zh) 一种钢铁生产过程数据的降噪方法
CN111769844B (zh) 一种单通道同频干扰消除方法和装置
CN109724693A (zh) 一种基于平稳小波的融合光谱去噪方法
Zeng et al. The de-noising algorithm based on intrinsic time-scale decomposition
Limin et al. Low probability of intercept radar signal recognition based on the improved AlexNet model
Bindu et al. Performance analysis of multi source fused medical images using multiresolution transforms
CN103236041A (zh) 一种基于Contourlet变换的图像超分辨率重建方法
Tan et al. Research on speech signal denoising algorithm based on wavelet analysis
CN115293219A (zh) 一种融合小波和峭度的脉冲信号去噪方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181120

Termination date: 20210825