CN114154546A - 一种钢铁生产过程数据的降噪方法 - Google Patents

一种钢铁生产过程数据的降噪方法 Download PDF

Info

Publication number
CN114154546A
CN114154546A CN202111490619.1A CN202111490619A CN114154546A CN 114154546 A CN114154546 A CN 114154546A CN 202111490619 A CN202111490619 A CN 202111490619A CN 114154546 A CN114154546 A CN 114154546A
Authority
CN
China
Prior art keywords
noise
imf
steel production
production process
noise reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111490619.1A
Other languages
English (en)
Inventor
孙杰
单鹏飞
丁肇印
李梦琴
乔继柱
李树
刘云霄
李霄剑
彭文
张殿华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202111490619.1A priority Critical patent/CN114154546A/zh
Publication of CN114154546A publication Critical patent/CN114154546A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • G06F2218/06Denoising by applying a scale-space analysis, e.g. using wavelet analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)

Abstract

本发明提供一种钢铁生产过程数据的降噪方法,涉及钢铁生产过程的自动控制技术领域。首先建立EEMD‑WT降噪模型,对含有噪声的钢铁生产过程数据进行EEMD分解,然后采用连续均方误差的方法(CMSE)计算噪声能量突变点b,计算出b值后,将前面相应的高频IMF分量进行小波变换降噪处理,除去高频中的噪声,保留高频信号段的剩余信息,最后与低频其余的IMF分量重构,完成EEMD‑WT降噪模型的建立;将含噪的钢铁生产过程数据导入到EEMD‑WT降噪模型中,得到最后的降噪后数据。本发明提出的EEMD‑WT降噪方法降噪效果好,相比于SVD降噪方法和均值降噪方法能更好地还原出原始数据,可以广泛地投入到钢铁生产过程当中。

Description

一种钢铁生产过程数据的降噪方法
技术领域
本发明涉及钢铁生产过程的自动控制技术领域,尤其涉及一种钢铁生产过程数据的降噪方法。
背景技术
在现代钢铁生产过程中,钢铁企业每日产生并存储大量生产过程数据,这些数据蕴含了与钢铁生产设备、钢铁生产过程相关的规律性知识。以数据为核心,应用智能分析技术对钢铁生产过程中关键质量指标与工艺参数间进行关联规则挖掘,为钢铁生产过程中质量参数控制提供了新思路。数据是构建模型的基石,只有准确有效的数据才能确保算法的精度,这就要求数据本身具有良好的可用性。随着钢铁生产过程控制技术的发展以及工业大数据应用的普及,往往采用实际生产数据对钢铁生产过程中的质量参数进行分析建模,会使结果更加符合实际情况,避免了传统方法的局限性。但是钢铁生产现场采集到的数据中往往混杂着大量噪声,噪声会很大程度地影响算法的计算效果,对控制量的求解以及质量参数的预测过程造成了困难。因此,结合数据降噪技术,对钢铁生产过程数据进行降噪处理,对提升钢铁生产过程关键质量参数的控制水平具有重要意义。
Fourier变换是数据降噪中常用的一种频域处理方法,它可以将给定的信号进行展开,分解为多个不同频率的正弦信号的和。19世纪70年代,Beltrami提出了一种针对于实正方矩阵的奇异值分解(SVD)理论,该理论通过正交变换的手段将信号分解为众多线性分量,以SVD 理论为基础的众多分析方法在特征提取和信号降噪领域得到了广泛的应用。1998年,Huang 等人以瞬时频率为基础提出了一种经验模态分解(EMD)方法,并以此为基础,提出了希尔伯特-黄变换(HHT)。同时,为改善EMD方法中存在的模态混叠问题,Wu等人利用高斯白噪声频率均匀的特点,向原始信号中人为增添了高斯白噪声,提出了集成经验模态分解法 EEMD。
近些年,各类数据降噪方法也在不断发展,有的方法会针对自身算法缺陷进行改进,也有的方法会对于整体的计算过程进行优化。对于一些实际生产过程而言,现场状况更加复杂多变,数据呈现复杂的非线性,单一的降噪手段不能达到预期效果,因此多种降噪手段联合的方法也逐渐兴起。为了提高钢铁生产过程中质量参数控制水平,解决噪声对控制模型建立的干扰,需要提出一种针对钢铁生产过程的合理、有效的数据降噪手段。
发明内容
针对现有技术的不足,本发明提出了一种钢铁生产过程数据的降噪方法。
一种钢铁生产过程数据的降噪方法,具体为以下步骤:
步骤1:采集含噪声的钢铁生产过程原始数据,建立EEMD-WT降噪模型;
步骤1.1:对含噪声的钢铁生产过程原始数据进行集成经验模态分解EEMD,得到频率从高至低的若干组噪声主导和信号主导的各本征模态函数IMF分量;
Figure BDA0003398278680000021
式中wi(t)为第i次分解选取的高斯白噪声,xi(t)为第i次加入高斯白噪声后的数据,x(t)为含噪声的钢铁生产过程原始数据,ri为余项,N为EEMD分解的IMF数目,IMFij为第i次加入高斯白噪声时分解出的第j个IMF分量;
步骤1.1.1:向钢铁生产过程原始数据中加入正态分布的高斯白噪声;
步骤1.1.2:提取出加入高斯白噪声后数据xi(t)的所有局部极值,包括局部最大值以及局部最小值;
步骤1.1.3:采用三次样条插值的方法,分别对局部最大值和局部最小值进行拟合,得到上、下包络线;
步骤1.1.4:求上、下包络线的平均值,并将其定义为均值包络线m1(t);
步骤1.1.5:定义h1(t)=xi(t)-m1(t),判断h1(t)是否为IMF;如果h1(t)是IMF,则一阶IMF 分量为c1(t)=h1(t);如果h1(t)不是IMF,则将其视为加入高斯白噪声的数据,并重步骤 1.1.2-1.1.4,直到标准差SD小于设定值停止;
Figure BDA0003398278680000022
式中t为每个时刻点,T为总时刻,hk(t)为k-1阶含噪声的数据与k阶IMF包络线的差值;
步骤1.1.6:剔除一阶IMF分量,得到剩余的新数据r1(t)=xi(t)-c1(t),对r1(t)重复进行步骤1.1.2-1.1.5,得到二阶IMF分量c2(t),以此类推,直到第n阶分量小于预设值;
步骤1.1.7:重复m次操作步骤1.1.1到步骤1.1.6,每次重新选取新的高斯白噪声序列,得到m组IMF分量;
步骤1.1.8:将m组IMF分量进行集成均值处理,得到EEMD分解后的最终结果:
Figure BDA0003398278680000031
式中m为总体平均次数;
得到频率从高至低的若干组噪声主导和信号主导的各本征模态函数IMF分量;
步骤1.2:采用连续均方误差的方法CMSE计算噪声能量突变点b;
信号主导的分量和噪声信号主导的分量的分界点b为噪声能量突变点:
Figure BDA0003398278680000032
Figure BDA0003398278680000033
式中N为数据样本量,C为本征模态函数总数,CMSE(IMFk,IMFk+1)为k阶IMF与k+1阶IMF的连续均方误差,IMFk(ti)为第k阶本征模态分量中第i个本征模态分量,argfirstlocalmin为CMSE(IMFk,IMFk+1)最小时,求IMF阶数k的值;
步骤1.3:计算出噪声能量突变点b值后,将噪声主导的高频IMF分量进行小波变换WT 降噪处理,除去高频中的噪声,保留高频数据段的剩余信息;
步骤1.4:最后高频数据段的剩余信息与信号主导的低频IMF分量重构,完成EEMD-WT 降噪模型的建立;
步骤2:把含噪声的钢铁生产过程数据导入EEMD-WT降噪模型,得到利用EEMD-WT降噪模型降噪后的数据。
本发明的有益效果:本发明提供一种钢铁生产过程数据的降噪方法,涉及钢铁生产过程的自动控制技术领域。
本发明提出的集成经验模态分解结合小波变换EEMD-WT的降噪方法降噪效果好,相比于 SVD降噪方法和均值降噪方法能更好地还原出原始数据,可以广泛地投入到钢铁生产过程当中。
附图说明
图1为本发明具体实施时含噪原始数据经EEMD分解后的IMFs图。
图2为本发明具体实施时利用小波变换对IMF1~IMF4进行降噪的结果图。
图3为本发明集成经验模态分解结合小波变换(EEMD-WT)降噪模型的算法流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
为验证降噪模型有效性,以钢铁生产的轧制过程为例,将轧制现场中带有噪声的弯辊力数据作为对象进行降噪性能测试。
步骤1:采集含噪声的钢铁生产过程原始数据,建立EEMD-WT降噪模型;
步骤1.1:对含噪声的钢铁生产过程原始数据进行集成经验模态分解EEMD,得到频率从高至低的若干组各本征模态函数IMF分量;分解后结果如图1所示,本实施例把数据分解为 10个频率从高至低排序的本征模态函数;
Figure BDA0003398278680000041
式中wi(t)为第i次分解选取的高斯白噪声,xi(t)为第i次加入高斯白噪声后的数据,x(t)为含噪声的钢铁生产过程原始数据,ri为余项,N为EEMD分解的IMF数目,IMFij为第i次加入高斯白噪声时分解出的第j个IMF分量;
步骤1.1.1:向钢铁生产过程原始数据中加入正态分布的高斯白噪声;
步骤1.1.2:提取出加入高斯白噪声后数据xi(t)的所有局部极值,包括局部最大值以及局部最小值;
步骤1.1.3:采用三次样条插值的方法,分别对局部最大值和局部最小值进行拟合,得到上、下包络线;
步骤1.1.4:求上、下包络线的平均值,并将其定义为均值包络线m1(t);
步骤1.1.5:定义h1(t)=xi(t)-m1(t),判断h1(t)是否为IMF;如果h1(t)是IMF,则一阶IMF 分量为c1(t)=h1(t);如果h1(t)不是IMF,则将其视为加入高斯白噪声的数据,并重步骤 1.1.2-1.1.4,直到标准差SD小于设定值停止;
Figure BDA0003398278680000042
式中t为每个时刻点,T为总时刻,hk(t)为k-1阶含噪声的数据与k阶IMF包络线的差值;
步骤1.1.6:剔除一阶IMF分量,得到剩余的新数据r1(t)=xi(t)-c1(t),对r1(t)重复进行步骤1.1.2-1.1.5,得到二阶IMF分量c2(t),以此类推,直到第n阶分量小于预设值;
步骤1.1.7:重复m次操作步骤1.1.1到步骤1.1.6,每次重新选取新的高斯白噪声序列,得到m组IMF分量;
步骤1.1.8:将m组IMF分量进行集成均值处理,得到EEMD分解后的最终结果:
Figure BDA0003398278680000051
式中m为总体平均次数;
得到频率从高至低的若干组噪声主导主导和信号主导的各本征模态函数IMF分量;
步骤1.2:采用连续均方误差的方法CMSE计算噪声能量突变点b;
信号主导的分量和噪声信号主导的分量的分界点b为噪声能量突变点:
Figure BDA0003398278680000052
Figure BDA0003398278680000053
式中N为数据样本量,C为本征模态函数总数,CMSE(IMFk,IMFk+1)为k阶IMF与k+1阶IMF的连续均方误差,IMFk(ti)为第k阶本征模态分量中第i个本征模态分量,argfirstlocalmin为CMSE(IMFk,IMFk+1)最小时,求IMF阶数k的值;计算各相邻IMF 分量间的连续均方差CMSE结果如表1所示,CMSE(IMF3,IMF4)为出现的第一个极小值,因此判定b=4,需要对前四个本征模态分量采取进一步的降噪处理;
表1相邻IMF的连续均方误差;
Figure BDA0003398278680000054
步骤1.3:计算出噪声能量突变点b值后,将噪声主导的高频IMF分量进行小波变换WT 降噪处理,除去高频中的噪声,保留高频数据段的剩余信息;
将IMF1~IMF4进行小波变换降噪处理,得到降噪后的高频数据A1~A4,如图2所示;
步骤1.4:最后高频数据段的剩余信息与信号主导的低频IMF分量重构,完成EEMD-WT 降噪模型的建立;
将小波变换处理后的数据A1~A4与IMF5~IMF10进行重构,得到EEMD-WT降噪后的数据;EEMD-WT降噪模型的算法流程如图3所示;
步骤2:把含噪声的钢铁生产过程数据导入EEMD-WT降噪模型,得到利用EEMD-WT降噪模型降噪后的数据。
采用常见的SVD降噪方法和工程领域常用的均值降噪方法与本发明的EEMD-WT降噪模型进行比较。并根据信噪比(SNR)来衡量三种方法的降噪性能,其计算公式为:
SNR(dB)=10log10(Psignal/Pnoise)=20log10(Asignal/Anoise)
式中,Psignal为信号功率;Pnoise为噪声功率;Asignal为信号幅度;Anoise为噪声幅度;
表2三种降噪方法信噪比对比结果。
Figure BDA0003398278680000061
EEMD-WT降噪方法的信噪比为24.94dB,优于SVD降噪方法的22.19dB和均值降噪方法20.10dB,更能说明EEMD-WT降噪方法的准确性。

Claims (7)

1.一种钢铁生产过程数据的降噪方法,其特征在于,包括以下步骤:
步骤1:采集含噪声的钢铁生产过程原始数据,建立EEMD-WT降噪模型;
步骤1.1:对含噪声的钢铁生产过程原始数据进行集成经验模态分解EEMD,得到频率从高至低的若干组噪声主导和信号主导的各本征模态函数IMF分量;
步骤1.2:采用连续均方误差的方法CMSE计算噪声能量突变点b;
步骤1.3:计算出噪声能量突变点b值后,将噪声主导的高频IMF分量进行小波变换WT降噪处理,除去高频中的噪声,保留高频信号段的剩余信息;
步骤1.4:最后高频信号段的剩余信息与信号主导的低频IMF分量重构,完成EEMD-WT降噪模型的建立;
步骤2:把含噪声的钢铁生产过程数据导入EEMD-WT降噪模型,得到利用EEMD-WT降噪模型降噪后的数据。
2.根据权利要求1所述的一种钢铁生产过程数据的降噪方法,其特征在于,所述的步骤1.1对含噪声的钢铁生产过程原始数据进行集成经验模态分解EEMD,得到频率从高至低的若干组噪声主导和信号主导的各本征模态函数IMF分量;具体为:
Figure FDA0003398278670000011
式中wi(t)为第i次分解选取的高斯白噪声,xi(t)为第i次加入高斯白噪声后的数据,x(t)为含噪声的钢铁生产过程原始数据,ri为余项,N为EEMD分解的IMF数目,IMFij为第i次加入高斯白噪声时分解出的第j个IMF分量。
3.根据权利要求1所述的一种钢铁生产过程数据的降噪方法,其特征在于,所述的步骤1.1具体为:
步骤1.1.1:向钢铁生产过程原始数据中加入正态分布的高斯白噪声;
步骤1.1.2:提取出加入高斯白噪声后数据xi(t)的所有局部极值;
步骤1.1.3:采用三次样条插值的方法,分别对局部最大值和局部最小值进行拟合,得到上、下包络线;
步骤1.1.4:求上、下包络线的平均值,并将其定义为均值包络线m1(t);
步骤1.1.5:定义h1(t)=xi(t)-m1(t),判断h1(t)是否为IMF;
步骤1.1.6:剔除一阶IMF分量,得到剩余的新数据r1(t)=xi(t)-c1(t),对r1(t)重复进行步骤1.1.2-1.1.5,得到二阶IMF分量c2(t)以此类推,直到第n阶分量小于预设值;
步骤1.1.7:重复m次操作步骤1.1.1到步骤1.1.6;
步骤1.1.8:将m组IMF分量进行集成均值处理,得到EEMD分解后的最终结果:
Figure FDA0003398278670000021
式中m为总体平均次数。
4.根据权利要求3所述的一种钢铁生产过程数据的降噪方法,其特征在于,所述的步骤1.1.2中的局部极值具体为:
所述局部极值包括局部最大值以及局部最小值。
5.根据权利要求3所述的一种钢铁生产过程数据的降噪方法,其特征在于,所述的步骤1.1.5中的判断h1(t)是否为IMF具体为:
如果h1(t)是IMF,则一阶IMF分量为c1(t)=h1(t);如果h1(t)不是IMF,则将其视为加入高斯白噪声的信号,并重步骤1.1.2-1.1.4,直到标准差SD小于设定值停止;
Figure FDA0003398278670000022
式中t为每个时刻点,T为总时刻,hk(t)为k-1阶含噪声的信号与k阶IMF包络线的差值。
6.根据权利要求3所述的一种钢铁生产过程数据的降噪方法,其特征在于,所述的步骤1.1.7重复m次操作步骤1.1.1到步骤1.1.6;具体为:
每次重新选取新的高斯白噪声序列,得到m组IMF分量。
7.根据权利要求1所述的一种钢铁生产过程数据的降噪方法,其特征在于,所述的步骤1.2采用连续均方误差的方法CMSE计算噪声能量突变点b;具体为:
信号主导的分量和噪声信号主导的分量的分界点b为噪声能量突变点:
Figure FDA0003398278670000023
Figure FDA0003398278670000024
式中N为数据样本量,C为本征模态函数总数,CMSE(IMFk,IMFk+1)为k阶IMF与k+1阶IMF的连续均方误差,IMFk(ti)为第k阶本征模态分量中第i个本征模态分量,arg firstlocalmin为CMSE(IMFk,IMFk+1)最小时,求IMF阶数k的值。
CN202111490619.1A 2021-12-08 2021-12-08 一种钢铁生产过程数据的降噪方法 Pending CN114154546A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111490619.1A CN114154546A (zh) 2021-12-08 2021-12-08 一种钢铁生产过程数据的降噪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111490619.1A CN114154546A (zh) 2021-12-08 2021-12-08 一种钢铁生产过程数据的降噪方法

Publications (1)

Publication Number Publication Date
CN114154546A true CN114154546A (zh) 2022-03-08

Family

ID=80453673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111490619.1A Pending CN114154546A (zh) 2021-12-08 2021-12-08 一种钢铁生产过程数据的降噪方法

Country Status (1)

Country Link
CN (1) CN114154546A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116320176A (zh) * 2023-05-16 2023-06-23 泰坦(天津)能源技术有限公司 一种提高井下语音识别精度的处理方法及系统
CN116756490A (zh) * 2023-06-15 2023-09-15 沈阳航空航天大学 一种基于贝塔分布与eemd-cmse的滚动轴承故障预警方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179974A1 (en) * 2009-01-10 2010-07-15 Industrial Technology Research Institute Signal Processing Method for Hierarchical Empirical Mode Decomposition and Apparatus Therefor
CN110132403A (zh) * 2019-04-02 2019-08-16 天津大学 一种基于eemd和小波阈值的真空泵振动信号降噪方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179974A1 (en) * 2009-01-10 2010-07-15 Industrial Technology Research Institute Signal Processing Method for Hierarchical Empirical Mode Decomposition and Apparatus Therefor
CN110132403A (zh) * 2019-04-02 2019-08-16 天津大学 一种基于eemd和小波阈值的真空泵振动信号降噪方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
井波: "基于EEMD的高速列车安全性态数据的特征研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *
孙杰等: "基于数据降噪的冷轧板形调控功效系数获取", 《钢铁》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116320176A (zh) * 2023-05-16 2023-06-23 泰坦(天津)能源技术有限公司 一种提高井下语音识别精度的处理方法及系统
CN116320176B (zh) * 2023-05-16 2023-08-15 泰坦(天津)能源技术有限公司 一种提高井下语音识别精度的处理方法及系统
CN116756490A (zh) * 2023-06-15 2023-09-15 沈阳航空航天大学 一种基于贝塔分布与eemd-cmse的滚动轴承故障预警方法

Similar Documents

Publication Publication Date Title
CN114154546A (zh) 一种钢铁生产过程数据的降噪方法
CN112446323B (zh) 基于改进emd模态混叠和端点效应的hht谐波分析方法
CN107315991B (zh) 一种基于小波阈值去噪的ifra频响曲线去噪方法
CN103675617A (zh) 一种用于高频局部放电信号检测的抗干扰方法
CN104881567A (zh) 一种基于统计模型的桥梁健康监测数据小波降噪方法
CN110503060B (zh) 一种光谱信号去噪方法及其系统
CN114492538B (zh) 一种城市中压配电电缆局部放电信号去噪方法
CN115700544A (zh) 一种联合经验模态分解及小波软阈值的色谱信号去噪方法
CN112070788A (zh) 基于分块梯度分割的快速统计形变孪晶的图像处理方法
CN113568058B (zh) 一种基于多分辨率奇异值分解的大地电磁信噪分离方法及系统
CN112183407B (zh) 一种基于时频域谱减法的隧道地震波数据去噪方法及系统
CN110673210B (zh) 一种地震原始数据信噪比定量分析评价方法
CN110287853B (zh) 一种基于小波分解的暂态信号去噪方法
CN110632191B (zh) 一种基于决策树算法的变压器色谱峰定性方法和系统
CN109558857B (zh) 一种混沌信号降噪方法
CN113375065B (zh) 管道泄漏监测中趋势信号的消除方法及装置
CN111611686A (zh) 一种通信信号时频域的检测方法
CN115859054A (zh) 基于mic和ceemdan的水电机组尾水管压力脉动数据滤波方法
CN115797318A (zh) 一种光谱数据预处理方法、装置、计算机设备及存储介质
CN114676734A (zh) 一种基于wpd-emd-wpd的微震信号降噪方法
CN114417928A (zh) 一种基于城市管道泄漏的监测数据降噪方法
CN103376108B (zh) 一种星敏感器降噪方法
CN112394258B (zh) 一种基于Nios II的配电电缆综合状态检测SoC系统及方法
CN106405233B (zh) 一种信号处理方法及装置
CN113031074B (zh) 一种测井曲线消噪方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220308

WD01 Invention patent application deemed withdrawn after publication