CN106399299B - 一种通过点突变提高大片段嗜热脂肪地芽孢杆菌dna聚合酶活性的方法及应用 - Google Patents

一种通过点突变提高大片段嗜热脂肪地芽孢杆菌dna聚合酶活性的方法及应用 Download PDF

Info

Publication number
CN106399299B
CN106399299B CN201610865232.2A CN201610865232A CN106399299B CN 106399299 B CN106399299 B CN 106399299B CN 201610865232 A CN201610865232 A CN 201610865232A CN 106399299 B CN106399299 B CN 106399299B
Authority
CN
China
Prior art keywords
dna polymerase
mutant
seq
archaeal dna
large fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610865232.2A
Other languages
English (en)
Other versions
CN106399299A (zh
Inventor
李杉
王菊芳
马毅
张蓓蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610865232.2A priority Critical patent/CN106399299B/zh
Publication of CN106399299A publication Critical patent/CN106399299A/zh
Application granted granted Critical
Publication of CN106399299B publication Critical patent/CN106399299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general
    • G01N2333/91245Nucleotidyltransferases (2.7.7)
    • G01N2333/9125Nucleotidyltransferases (2.7.7) with a definite EC number (2.7.7.-)
    • G01N2333/9126DNA-directed DNA polymerase (2.7.7.7)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开一种通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法及应用,属于基因工程领域的基因重组表达技术领域。酶的基因来源于嗜热脂肪地芽孢杆菌(Geobacillus stearothermophilus)。通过基因重组获得大片段Bst DNA聚合酶质粒。将大片段Bst DNA聚合酶的第310位氨基酸G突变为L或A,或将510位氨基酸D突变为E,突变位点氨基酸均为保守氨基酸。结果显示与野生型Bst DNA聚合酶相比,突变体G310L、G310A和D540E的聚合效率均有显著提高,且都高于商业化Bst DNA聚合酶,具有较大的应用价值,为Bst DNA聚合酶国产化提供便利。

Description

一种通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶 活性的方法及应用
技术领域
本发明属于基因工程领域的基因重组表达技术领域,具体涉及一种通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶(Bst DNA聚合酶)活性的方法及应用。
背景技术
核酸扩增技术广泛应用于医学研究的各个领域,特别是传染病病原的检测,近年来以等温扩增为代表的新方法因检测简单、快速以及高特异性高灵敏性,具有更为广泛的的应用价值。(Tsugunori Notomi,HarumiMasubuchi,Toshhihiro Yonekawa et al.,“Loop-mediated isothermal amplification of DNA,”Nucleic Acids Research,vol,28,No.12,2000)。
IsothermalMultiple-Self-Matching-InitiatedAmplification(IMSA)等温扩增是 Loop-mediated isothermal amplification(LAMP)等温扩增基础上发展起来的另一种新型等温扩增方法,与之相比具有更高的灵敏度,检测限更低等优点(Xio ng Ding,KaiNie,Lei Shi,Xuejun Ma,“Improved Detection Limit in Rapid Detection of HumanEnterovirus71 and Coxsackievirus A16 by a Novel Revers eTranscription–IsothermalMultiple-Self-Matching-Initiated AmplificationAssay,”J ournal ofClinical Microbiology,vol.52,no.6,pp.1862–1870,2014),因此本发明所涉及的等温扩增方法均选择IMSA。
等温扩增依赖于Bst DNA聚合酶,其属于I型DNA聚合酶,来源于嗜热脂肪芽孢杆菌属,完整序列包含三种活性(i):5′-3′外切酶活性(ii)5′-3′聚合酶活性(iii)3′-5′外切酶活性,与其他DNA聚合酶相比,Bst DNA聚合酶有着较强的热稳定性、链置换活性及聚合酶活性,因此吸引了越来越多的人的研究兴趣 (Seng-Meng Phang,Chai-Yaw Teo,Victor WongThi Wong,et al.,“Cloning and complete sequence of the DNA polymerase-encodinggene(BstpolⅠ)and characterisation of the Kleow-like fragment fromBacillusstearothermophilus,” Gene,vol.163,pp.65-68,1995)。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法。酶的基因来源于嗜热脂肪地芽孢杆菌(Geobacillus stearothermophilus)GIM1.543(购自中国工业微生物菌种保藏中心)。通过基因重组获得大片段Bst DNA聚合酶质粒。将大片段Bst DNA聚合酶的第310位氨基酸G突变为L或A,或将510位氨基酸D 突变为E,突变位点氨基酸均为保守氨基酸。结果显示与野生型Bst DNA聚合酶相比,突变体G310L、G310A和D540E的聚合效率均有显著提高,且都高于商业化Bst DNA聚合酶,具有较大的应用价值。
本发明的另一目的在于提供一种定量检测Bst DNA聚合酶聚合效率的方法。
本发明的目的通过下述技术方案实现:
一种通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法,是通过酶切连接将野生型Bst DNA聚合酶基因克隆到原核表达载体上,并通过 RF克隆技术对氨基酸G310或D540进行点突变构建突变体,并转入原核表达载体进行表达,纯化,并进行酶活检测;
所述的野生型Bst DNA聚合酶的氨基酸序列如SEQ ID NO:1所示。
编码野生型Bst DNA聚合酶的核苷酸序列如SEQ ID NO:2所示。
所述的突变体为G310L、G310A或D540E。
所述的突变体G310L的氨基酸序列如SEQ ID NO:3所示。
所述的突变体G310L的核苷酸序列如SEQ ID NO:4所示。
所述的突变体G310A的氨基酸序列如SEQ ID NO:5所示。
所述的突变体G310A的核苷酸序列如SEQ ID NO:6所示。
所述的突变体D540E的氨基酸序列如SEQ ID NO:7所示。
所述的突变体D540E的核苷酸序列如SEQ ID NO:8所示。
所述的原核表达载体优选为pET28a;
所述的突变体的具体获得步骤如下:以野生型pET28a-Bst质粒为模板,设计突变引物,通过RF克隆,经核酸扩增及DpnⅠ酶消化后,转化。
所述的纯化是镍柱亲和层析方法进行纯化。
一种定量检测Bst DNA聚合酶聚合效率的方法,是用HPLC方法检测等温扩增反应前后dCTP的减少量,继而计算酶或突变体的Kcat。
Kcat值越大,表明聚合效率越高,其酶活性越高。
在本发明的一种实施方案中,IMSA等温扩增方法用到的模板为手足口病 EV71病毒的VP1基因。
所述的通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法在提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性中的应用。
所述的定量检测Bst DNA聚合酶聚合效率的方法在定量检测Bst DNA聚合酶聚合效率中的应用。
本发明的机理是:本研究从嗜热脂肪地芽孢杆菌(Geobacillusstearothermophilus)GIM1.543中获得Bst DNA聚合酶基因组,并对Bst DNA聚合酶进行克隆,表达,纯化及定向改造,以满足不断增长的市场需要。
大片段Bst DNA聚合酶具有5′-3′聚合酶活性,无5′-3′外切酶活性,热稳定性高,链置换活性好等优点。
本发明相对于现有技术,具有如下的优点及效果:
(1)由于专利保护制度严谨,Bst DNA聚合酶目前仅有NEW ENGLAND BioLabs公司有售,且价格比普通的聚合酶都要昂贵,国内却鲜少有公司出售。因此我们在实验室自主研发大片段Bs DNA聚合酶。
(2)在大片段Bst DNA聚合酶基础上对G310L(A)和D540E两个位点进行点突变,与野生型Bst DNA聚合酶相比,G310L和G310A的突变体聚合效率都有所提高,且都高于商业化Bst DNA聚合酶,而D540E与野生型聚合效率略有改变。
说明G310L,G310A和D540E的突变体聚合效率显著高于野生型Bst DNA 聚合酶,远高于商业化Bst DNA聚合酶。
本发明通过点突变提高Bst DNA聚合酶活性,为科研及实际检测提供更高效率的Bst DNA聚合酶,应用价值明显。
(3)本发明运用高效液相(HPLC)方法定量检测IMSA等温扩增方法消耗的dCTP。
(4)本发明提供一种快捷简便的方法表达Bst DNA聚合酶,并使其与商业化的BstDNA聚合酶有更快的聚合速率,为Bst DNA聚合酶国产化提供便利。
附图说明
图1是大片段pET28a-Bst重组质粒构建图;其中,(a)泳道M:DNA Marker,泳道1:基因组PCR图;(b)泳道M:DNA Marker,泳道1:重组质粒双酶切。
图2是WT大片段Bst DNA聚合酶表达的SDS-PAGE鉴定;其中,泳道M: proteinMarker,泳道1:未诱导全菌,泳道2:未诱导上清,泳道3:未诱导沉淀,泳道4:诱导全菌,泳道5:诱导上清,泳道6:诱导沉淀。
图3是IMSA颜色判定法定性检测酶活;其中,每个反应管对应加入的蛋白为1:商业化,2:野生型,3:D540E,4:G310A,5:G310L,6:阴性对照。
图4是恒温荧光扩增仪DEAOU-3080C检测聚合效率;其中,1:商业化, 2:野生型,3:D540E,4:G310A,5:G310L。
图5是高效液相检测定量检测聚合效率;其中,(a)阴性对照,dCTP保留时间为16.583min,对应峰面积为2459.42;(b)G310L,dCTP保留时间为17.447 min,对应峰面积为1781.62;(c)野生型(WT),dCTP保留时间为17.059min,对应峰面积为1840.69;(d)商业化,dCTP保留时间为17.454min,对应峰面积为1941.52。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如无特别说明,均认为常规方法。
实施例1:野生型pET28a-Bst重组蛋白工程菌构建
1、嗜热脂肪地芽孢杆菌基因组的获得
(1)取少量甘油冻存菌种嗜热脂肪地芽孢杆菌划线至无抗LB平板中,55℃恒温培养箱静置培养48h。
(2)挑取单菌落至无抗液体LB培养基中55℃,220rpm摇床培养过夜。
(3)用细菌基因组提取试剂盒(天根DP302)对嗜热脂肪地芽孢杆菌进行基因组提取。
2、以提取的基因组为模板对Bst DNA聚合酶基因进行扩增。
(1)扩增引物序列的设计
引物名称 序列
Bst-F 5′-CTGTTCCATATG(NdeI)GAAGGCGAAAAGCCGCTC-3′
Bst-R 5′-CCGCTCGAG(XhoI)TTTGGCGTCGTACCACGTC-3′
(2)PCR反应体系(50μL):
反应组分 含量
Genome DNA 1μL
PrimeSTAR HS(Premix) 25μL
Bst-F(10μM) 1μL
Bst-R(10μM) 1μL
ddH<sub>2</sub>O Up to 50μL
(3)PCR扩增反应程序:
(4)PCR反应结束后,进行1%(w/v)琼脂糖凝胶电泳鉴定。
(5)PCR产物37℃双酶切2h,体系如下:
反应组分 体积
Bst基因 2μg
NdeI 2μL
XhoI 2μL
10×FastDigest buffer 5μL
ddH<sub>2</sub>O Up to 50μL
(6)载体37℃双酶切2h,体系如下:
反应组分 体积
pET28a 2μg
NdeI 2μL
XhoI 2μL
10×FastDigest buffer 5μL
ddH<sub>2</sub>O Up to 50μL
(7)16℃连接过夜,连接体系如下:
反应组分 体积
pET28a双酶切产物 80μg
Bst双酶切产物 40μg
T4DNA Ligase 0.5μL
10×T4DNA Ligase Buffer 1μL
ddH<sub>2</sub>O Up to 10μL
结果见图1,测序结果与理论结果一致,并与预期核苷酸序列完全一致。
结论:pET28a-Bst重组质粒构建成功。
3、pET28a-Bst重组蛋白的表达
(1)上述步骤2中的阳性克隆质粒转化大肠杆菌表达菌株感受态细胞BL21 (DE3)中,挑取单克隆接种至5mL含有50μg/mL Kan LB液体培养基中37℃扩大培养。
(2)于OD600为0.5时加入1mM IPTG,37℃诱导6h后离心收集菌体。
(3)超声裂解,上清和沉淀分别加入上样缓冲液沸水煮10min。
(4)浓缩胶80V,分离胶120V进行SDS-PAGE电泳。
(5)电泳完毕用考马斯亮蓝染色液染色,脱色液脱色。
结果:如图2所示,重组pET28a-Bst蛋白得到成功诱导表达。蛋白主要分布于上清中。
结论:pET28a-Bst重组蛋白成功表达。
4、pET28a-Bst重组蛋白的纯化
(1)pET28a-Bst在37℃,180rpm的情况下诱导表达6h。
(2)收集菌体,用纯化Binding Buffer重悬,镍柱亲和层析方法纯化。
(3)收集纯化前后的样品,SDS-PAGE检测,并将上样样品进行Western Blot 检测。
(4)将纯化后的蛋白4℃透析过夜,BCA试剂盒测定蛋白浓度。
结果:如图2所示,200mM咪唑洗脱下来的蛋白条带大小为61kDa与重组蛋白理论大小一致。
结论:成功纯化获得野生型重组蛋白。
实施例2:突变体蛋白工程菌构建
1、RF克隆法构建各突变体
(1)扩增引物序列的设计
(2)PCR反应体系(20μL):
反应组分 含量
野生型pET28a-Bst 0.3μL
PrimeSTAR HS(Premix) 10μL
F(10μM) 0.4μL
R(10μM) 0.4μL
ddH<sub>2</sub>O Up to 20μL
(3)PCR扩增反应程序:
DpnⅠ消化
反应组分 含量
PCRF反应液 17μL
10×FastDigest Buffer 2μL
DpnⅠ 1μL
条件:37℃反应2h。
(4)取消化后的产物10μL转化E.Coil DH5a。
2、各个突变体的表达与纯化:
方法参照实施例1中pET28a-Bst重组蛋白的表达及纯化。
结果:各突变体蛋白得到成功诱导表达且主要分布于上清中。200mM咪唑洗脱下来的蛋白条带大小为61kDa与理论大小一致,与商业化Bst DNA聚合酶 67kDa相比,重组蛋白分子量小于商业化蛋白。
结论:成功纯化获得G310L(A),D540E突变体蛋白。
实施例3:IMSA法酶活验证
1、HNB染色法定性检测酶活
(1)以EV71病毒C4亚型VP1基因的2978~3248nt序列依据Primer Explorer V4(http://primerexplorer.jp/elamp4.0.0/)在线软件设计引物,引物序列如下:
Primer name Sequence(5′-3′)
DsF-EV71 5′-ACCATTGATAAGCACTCGCAGGGTCAAGCTGTCAGACCCTCC-3′
DsR-EV71 5′-GAACACAAACAGGAGAAAGATCTTGTGAGAACGTGCCCATCA-3′
FIT-EV71 5′-TCCGAATGTGGGATATCCGTCATAAGTTTCAGTGCCATTCATGTC-3′
RIT-EV71 5′-TTATGACGGATATCCCACATTCGGAAGGACATGCCCCGTATT-3′
SteF-EV71 5′-GAACACAAACAGGAGAAAGATCTTG-3′
SteR-EV71 5′-ACCATTGATAAGCACTCGCAGG-3′
(2)IMSA等温扩增反应体系
反应组分 含量
模板 0.3μL
Bst DNA pol(NEB) 1μL
DsF-EV71(5.0mM) 1μL
DsR-EV71(5.0mM) 1μL
FIT-EV71(20.0mM) 1μL
RIT-EV71(20.0mM) 1μL
SteF-EV71(40.0mM) 1μL
SteR-EV71(40.0mM) 1μL
2×RM 12.5μL
HNB 1μL
ddH<sub>2</sub>O Up to 25μL
以上反应体系是商业化Bst DNA聚合酶作为阳性对照,在本发明中参照阳性对照设置了5个反应体系,1中加入的商业化Bst DNA聚合酶,2~5分别加入与商业化Bst DNA聚合酶等量的各种蛋白,顺序依次为:商业化,野生型, D540E,G310L,G310A;6为阴性对照。
(3)IMSA等温扩增反应程序
63℃ 60min
85℃ 2min
结果:如图3所示,1~5为阳性,显示天蓝色;6为阴性对照,显示紫色。其中,每个数字标记对应的蛋白如下表所示:
NO. 1 2 3 4 5 6
sample NEB WT D540E G310A G310L
-/+ + + + + +
Tt(min) 18:30 15:00 16:00 13:30 12:00
结论:野生型及突变体D540E,G310A,G310L均有活性。
2、荧光法检测酶活
方法参照上述1、HNB染色法定性检测酶活,各反应体系中不加HNB,均改为加入1μL荧光染料,所用荧光染料为稀释1000倍的syto 9。实验所需仪器为广州迪奥生物科技有限公司的恒温荧光扩增仪,反应时间为60min。以反应时间检测酶反应的效率。
结果:如图4所示,1~5为阳性,有S型曲线;阴性无S型曲线。其中1 代表NEB商业化Bst DNA聚合酶,2代表WT,3代表D540E,4代表G310A, 5代表G310L。其中,G310L反应时间最短为12min,野生型为15min,商业化为18:30min。
结论:与野生型Bst DNA聚合酶相比,G310L和G310A的突变体聚合效率都有所提高,且都高于商业化Bst DNA聚合酶,而D540E比野生型聚合效率略有提高。
3、HPLC法定量检测酶活并对Kcat值进行研究
(1)HPLC条件
采用Waters symmetry C18色谱柱(3.5μm,4.6×150mm),流动相缓冲液 A:10mM氢氧化四丁基铵作为离子对试剂,10mM磷酸二氢钠及0.25%甲醇。缓冲液B:5.6mM氢氧化四丁基铵作为离子对试剂,50mM磷酸二氢钠及30%甲醇。采用梯度洗脱方法:0~30min为60%A及40%B,30~60min为40%A 及60%B。流速:1.0mL/min。柱温:27℃。
(2)以不同浓度的dCTP(sigma HPLC级)作标准曲线,2倍梯度稀释,最终为5个浓度梯度:0,3mM,0.15mM,0.075mM,0.0375mM,0.0187mM。 0.22μm的膜进行过滤。绘制标准曲线。
按照上述IMSA反应体系及程序进行反应,其中不含HNB和荧光染料,且反应体系为75μL。
IMSA反应完成后的反应液10稀释,HPLC检测,并进行数据分析。
结果:dCTP标准曲线线性关系良好,线性方程为y=-174.22+26309.69x (R2=0.997)
a:阴性对照:保留时间为16.583min峰面积为2459.42;见图5(a)。
b:G310L:突变体保留时间为17.447min,峰面积为1781.62;见图5(b)。
c:WT:保留时间为17.059min,峰面积为1840.69;见图5(c)。
d:NEB:商业化Bst DNA聚合酶为17.454min,峰面积为1941.52;见图5(d)。
结论:以表格形式呈现dCTP的Kcat其中IMSA反应体系为75μL。
从表中可以看出G310L突变体聚合反应效率最高,野生型其次,商业化最慢,与荧光法检测酶活结论一致。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法,其特征在于是通过酶切连接将野生型Bst DNA聚合酶基因克隆到原核表达载体上,并通过RF克隆技术对氨基酸G310或D540进行点突变构建突变体,并转入原核表达载体进行表达,纯化;
所述的野生型Bst DNA聚合酶的氨基酸序列如SEQ ID NO:1所示;
所述的突变体为G310L、G310A或D540E;
所述的突变体G310L的氨基酸序列如SEQ ID NO:3所示;
所述的突变体G310A的氨基酸序列如SEQ ID NO:5所示;
所述的突变体D540E的氨基酸序列如SEQ ID NO:7所示。
2.根据权利要求1所述的通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法,其特征在于:
编码野生型Bst DNA聚合酶的核苷酸序列如SEQ ID NO:2所示。
3.根据权利要求1所述的通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法,其特征在于:
所述的突变体G310L的核苷酸序列如SEQ ID NO:4所示;
所述的突变体G310A的核苷酸序列如SEQ ID NO:6所示;
所述的突变体D540E的核苷酸序列如SEQ ID NO:8所示。
4.一种突变体G310L,其特征在于:所述的突变体G310L的氨基酸序列如SEQ ID NO:3所示。
5.一种突变体G310A,其特征在于:所述的突变体G310A的氨基酸序列如SEQ ID NO:5所示。
6.一种突变体D540E,其特征在于:所述的突变体D540E的氨基酸序列如SEQ ID NO:7所示。
7.权利要求1~3任一项所述的通过点突变提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性的方法在提高大片段嗜热脂肪地芽孢杆菌DNA聚合酶活性中的应用。
CN201610865232.2A 2016-09-29 2016-09-29 一种通过点突变提高大片段嗜热脂肪地芽孢杆菌dna聚合酶活性的方法及应用 Active CN106399299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610865232.2A CN106399299B (zh) 2016-09-29 2016-09-29 一种通过点突变提高大片段嗜热脂肪地芽孢杆菌dna聚合酶活性的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610865232.2A CN106399299B (zh) 2016-09-29 2016-09-29 一种通过点突变提高大片段嗜热脂肪地芽孢杆菌dna聚合酶活性的方法及应用

Publications (2)

Publication Number Publication Date
CN106399299A CN106399299A (zh) 2017-02-15
CN106399299B true CN106399299B (zh) 2019-01-29

Family

ID=59227969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610865232.2A Active CN106399299B (zh) 2016-09-29 2016-09-29 一种通过点突变提高大片段嗜热脂肪地芽孢杆菌dna聚合酶活性的方法及应用

Country Status (1)

Country Link
CN (1) CN106399299B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809366C1 (ru) * 2022-12-28 2023-12-11 Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) Способ получения большого фрагмента Bst-полимеразы (варианты)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175980B (zh) * 2019-07-04 2022-10-11 赛纳生物科技(北京)有限公司 通过定点突变提高聚合酶大片段活性的方法及应用
CN114561444A (zh) * 2022-03-22 2022-05-31 武汉翌圣生物科技有限公司 Bst DNA聚合酶活性的检测方法
CN114891761B (zh) * 2022-03-25 2024-01-12 上海威高医疗技术发展有限公司 Tth DNA聚合酶突变体及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071739A1 (en) * 1999-05-22 2000-11-30 Epicentre Technologies Corporation Reverse transcription activity from bacillus stearothermophilus dna polymerase in the presence of magnesium
WO2002004022A1 (en) * 2000-07-12 2002-01-17 Invitrogen Corp High fidelity polymerases and uses thereof
CN101948853A (zh) * 2010-09-07 2011-01-19 广州华峰生物科技有限公司 嗜热脂肪芽孢杆菌dna聚合酶
CN103898077A (zh) * 2012-12-24 2014-07-02 财团法人工业技术研究院 单离的脱氧核糖核酸聚合酶、套组及其应用
CN103987844A (zh) * 2011-12-08 2014-08-13 霍夫曼-拉罗奇有限公司 具有改进活性的dna聚合酶
CN104854237A (zh) * 2012-12-13 2015-08-19 霍夫曼-拉罗奇有限公司 具有改进活性的dna聚合酶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071739A1 (en) * 1999-05-22 2000-11-30 Epicentre Technologies Corporation Reverse transcription activity from bacillus stearothermophilus dna polymerase in the presence of magnesium
WO2002004022A1 (en) * 2000-07-12 2002-01-17 Invitrogen Corp High fidelity polymerases and uses thereof
CN101948853A (zh) * 2010-09-07 2011-01-19 广州华峰生物科技有限公司 嗜热脂肪芽孢杆菌dna聚合酶
CN103987844A (zh) * 2011-12-08 2014-08-13 霍夫曼-拉罗奇有限公司 具有改进活性的dna聚合酶
CN104854237A (zh) * 2012-12-13 2015-08-19 霍夫曼-拉罗奇有限公司 具有改进活性的dna聚合酶
CN103898077A (zh) * 2012-12-24 2014-07-02 财团法人工业技术研究院 单离的脱氧核糖核酸聚合酶、套组及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACC37139.1;Riggs,M.G等;《GenBank》;19971024;第1-2页 *
Construction of single amino acid substitution mutants of cloned Bacillus stearothermophilus DNA polymerase I which lack 5" 3" exonuclease activity;Michael G. Riggs等;《Biochimica et Biophysica Acta》;19961231;第1307卷;第178-186页 *
Contacts between the 5 Nuclease of DNA Polymerase I and Its DNA Substrate;Yang Xu等;《THE JOURNAL OF BIOLOGICAL CHEMISTRY》;20010510;第276卷(第32期);第30167-30177页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809366C1 (ru) * 2022-12-28 2023-12-11 Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) Способ получения большого фрагмента Bst-полимеразы (варианты)

Also Published As

Publication number Publication date
CN106399299A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106399299B (zh) 一种通过点突变提高大片段嗜热脂肪地芽孢杆菌dna聚合酶活性的方法及应用
Liu et al. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production
CN104762409A (zh) 采用重组酶介导等温扩增技术检测猕猴桃溃疡病菌的方法
CN102517393B (zh) 转基因大豆gts40-3-2核酸定量检测的质粒标准分子
CN104774813B (zh) 一种亮氨酸脱氢酶及其制备方法和应用
CN102191213B (zh) 一种萤火虫荧光素酶的编码基因及制备方法和应用
CN111073871B (zh) 热稳定性提高的dna聚合酶突变体及其构建方法和应用
Klijn et al. Construction of a reporter vector for the analysis of Bifidobacterium longum promoters
CN102174557A (zh) 一种表面展示家蚕乙醇脱氢酶重组芽孢及其制备方法
CN112094934A (zh) 一种结合多种内标对样本中真菌进行绝对定量的方法
CN105200020B (zh) 一种通过复合点突变改造的高底物特异性短小芽胞杆菌CotA漆酶
CN103088039A (zh) 一种猪流行性腹泻病毒s基因抗原表位的扩增方法
CN105219744B (zh) 一种催化活性提高的短小芽胞杆菌CotA漆酶突变体及其制备方法
CN106916797B (zh) 一种高活性漆酶突变体蛋白及其制备方法
CN104250641B (zh) 一种高保真dna聚合酶及其制备和应用
CN105176940B (zh) 一种通过基因工程构建的短小芽胞杆菌CotA漆酶
CN107841490B (zh) 双功能亚甲基四氢叶酸脱氢酶/环化酶及其多克隆抗体
CN112175980B (zh) 通过定点突变提高聚合酶大片段活性的方法及应用
CN111118193A (zh) 一种适用于18种转基因大豆转化体及其衍生物特异性检测的质粒dna
CN103173547B (zh) 一种检测活细胞内环二鸟苷酸含量的报告系统及其应用
CN102618628A (zh) 用于检测水稻白叶枯病菌的引物、方法以及试剂盒
CN109777818B (zh) 标准质粒及制备方法、使用该质粒检测重组ev71疫苗外源基因拷贝数的方法及方法的应用
CN109777819B (zh) 一种检测重组cva16疫苗外源基因拷贝数的标准质粒、检测方法及其应用
CN102392000A (zh) 一种耐高温Pyrolobus聚合酶及其高效表达质粒和应用
Wang et al. Transcriptional activation of virulence genes of Rhizobium etli

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Shan

Inventor after: Wang Jufang

Inventor after: Ma Yi

Inventor after: Zhang Beilei

Inventor before: Li Bin

Inventor before: Wang Jufang

Inventor before: Ma Yi

Inventor before: Zhang Beilei

GR01 Patent grant
GR01 Patent grant