CN106396410A - 微晶玻璃的制备方法 - Google Patents

微晶玻璃的制备方法 Download PDF

Info

Publication number
CN106396410A
CN106396410A CN201610756811.3A CN201610756811A CN106396410A CN 106396410 A CN106396410 A CN 106396410A CN 201610756811 A CN201610756811 A CN 201610756811A CN 106396410 A CN106396410 A CN 106396410A
Authority
CN
China
Prior art keywords
incineration
preparation
refuse flyash
melt
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610756811.3A
Other languages
English (en)
Other versions
CN106396410B (zh
Inventor
陈德喜
高术杰
马明生
刘海威
姚建明
彭孝容
胡立琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China ENFI Engineering Corp
Original Assignee
China ENFI Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China ENFI Engineering Corp filed Critical China ENFI Engineering Corp
Priority to CN201610756811.3A priority Critical patent/CN106396410B/zh
Publication of CN106396410A publication Critical patent/CN106396410A/zh
Application granted granted Critical
Publication of CN106396410B publication Critical patent/CN106396410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0063Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing waste materials, e.g. slags

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明公开了一种微晶玻璃的制备方法。该制备方法包括以下步骤:将垃圾焚烧飞灰和成分调节剂混合并进行熔融处理,得到混合熔体;对混合熔体进行浇铸成型,得到成型物;以及将成型物进行晶化处理,得到微晶玻璃;其中,成分调节剂为硅砂、菱镁矿和铝矾土中的一种或多种。本发明上述工艺,是对垃圾焚烧飞灰的无害化处理和资源有效利用,其能够将呋喃和二噁英类物质尽量消除,将重金属固化在玻璃结构中,得到实用的微晶玻璃产品。同时,本发明在熔融处理的步骤中,添加了成分调节剂,这能够降低垃圾焚烧飞灰的熔融温度,从而降低微晶玻璃的生产成本。再者,通过添加成分调节剂,经熔融、直接浇铸成型、晶化得到的微晶玻璃,其等综合性能更佳。

Description

微晶玻璃的制备方法
技术领域
本发明涉及垃圾焚烧飞灰的回收利用领域,具体而言,涉及一种微晶玻璃的制备方法。
背景技术
垃圾焚烧飞灰是垃圾焚烧过程中的一种产物,也是危险名录上规定的一种危险废弃物,必须经过无害化才能排放。利用高温烧结方法制备微晶玻璃不仅能够无害化垃圾焚烧飞灰,而且得到的微晶玻璃色泽鲜艳且性能优异,具有很高的商业价值。
然而,目前以垃圾焚烧飞灰制备微晶玻璃的技术多存在能耗较高的缺陷,比如:发明专利CN102531389 A公布了一种垃圾焚烧飞灰电弧炉熔融制备微晶玻璃的方法,该方法对垃圾焚烧飞灰进行了水洗预处理、电弧炉熔融温度高达1500~1700℃,这都会大大增加熔融成本。
发明内容
本发明旨在提供一种微晶玻璃的制备方法,以解决现有技术中以垃圾焚烧飞灰为原料制备微晶玻璃时熔融温度过高的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种微晶玻璃的制备方法,其包括以下步骤:将垃圾焚烧飞灰和成分调节剂混合并进行熔融处理,得到混合熔体;对混合熔体进行浇铸成型,得到成型物;以及将成型物进行晶化处理,得到微晶玻璃;其中,成分调节剂为硅砂、菱镁矿和铝矾土中的一种或多种。
进一步地,将垃圾焚烧飞灰和成分调节剂混合的步骤中,成分调节剂中硅砂占垃圾焚烧飞灰重量的0.1~50%,和/或菱镁矿占垃圾焚烧飞灰重量的0.1~50%,和/或铝矾土占垃圾焚烧飞灰重量的0.1~50%。
进一步地,对混合熔体进行浇铸成型的步骤之前,控制混合熔体的粘度为0.1~10Pa.s。
进一步地,将成型物进行晶化处理的步骤包括:将成型物在600~800℃温度下保温0.5~3h进行核化,得到核化料;将核化料在在800~1000℃温度下保温0.5~3h进行晶化,得到晶化料;将晶化料冷却,得到微晶玻璃。
进一步地,将成型物进行核化的步骤中,升温速率为1~10℃/min。
进一步地,将晶化料进行冷却的步骤后,按降温速率1~10℃/min冷却或随炉冷却。
进一步地,将垃圾焚烧飞灰和成分调节剂混合并进行熔融处理的步骤之后,通过电磁场或物理搅拌,得到混合熔体。
进一步地,按重量百分比计,垃圾焚烧飞灰包括:10~70%CaO,0.1~10%SiO2,0.1~10%Al2O3,0.1~10%MgO,0.1~30%Cl,0.1~20%SO3,0.1~10%K2O,0.1~10%Na2O,0.1~10%Fe2O3,0.1~10%TiO2以及0.1~10%P2O5
进一步地,按重量百分比计,垃圾焚烧飞灰还包括:0~1%ZnO,0~1%PbO,0~1%SrO,0~1%BaO,0~1%Cr2O3,0~1%CuO,0~1%MnO,0~1%NiO以及0~1%Hg。进一步地,按重量百分比计,硅砂中SiO2的含量为90.0~99.9%;菱镁矿中MgO的含量为30.0~47.6%;铝矾土中Al2O3的含量60.0~73.0%。
本发明以垃圾焚烧飞灰为原料制备微晶玻璃,是对垃圾焚烧飞灰的无害化处理和资源有效利用,其能够将呋喃和二噁英类物质尽量消除,将重金属固化在玻璃结构中,得到实用的微晶玻璃产品。同时,本发明在熔融处理的步骤中,向垃圾焚烧飞灰中添加了成分调节剂,这能够降低垃圾焚烧飞灰的熔融温度,从而降低微晶玻璃的生产成本。再者,通过添加成分调节剂,经熔融、直接浇铸成型、晶化得到的微晶玻璃,其耐磨性能、冲击韧性、弯曲模量、耐酸碱腐蚀性等综合性能更佳。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术部分所描述的,目前以垃圾焚烧飞灰为原料制备微晶玻璃时存在熔融温度过高的问题。为了解决这一问题,本发明提供了一种微晶玻璃的制备方法,其包括以下步骤:将垃圾焚烧飞灰和成分调节剂混合并进行熔融处理,得到混合熔体;对混合熔体进行浇铸成型,得到成型物;以及将成型物进行晶化处理,得到微晶玻璃;其中,成分调节剂为硅砂、菱镁矿和铝矾土中的一种或多种。
本发明以垃圾焚烧飞灰为原料制备微晶玻璃,是对垃圾焚烧飞灰的无害化处理和资源有效利用,其能够将呋喃和二噁英类物质尽量消除,将重金属固化在玻璃结构中,得到实用的微晶玻璃产品。同时,本发明在熔融处理的步骤中,向垃圾焚烧飞灰中添加了成分调节剂,因不同组分的低共融点性质,这能够降低垃圾焚烧飞灰的熔融温度,从而降低微晶玻璃的生产成本。再者,通过添加成分调节剂,经熔融、直接浇铸成型、晶化得到的微晶玻璃,其耐磨性能、冲击韧性、弯曲模量、耐酸碱腐蚀性等综合性能更佳。
本发明提供的上述制备方法中,只要想垃圾焚烧飞灰中加入成分调节剂,就能够降低飞灰的熔融温度,降低成本。在一种优选的实施方式中,将垃圾焚烧飞灰和成分调节剂混合的步骤中,成分调节剂中硅砂占垃圾焚烧飞灰重量的0.1~50%,菱镁矿占垃圾焚烧飞灰重量的0.1~20%,铝矾土占垃圾焚烧飞灰重量的0.1~20%。以该添加比例掺入成分调节剂,既能够有效降低熔融温度,还能够进一步改善微晶玻璃的综合性能。
在一种优选的实施方式中,对混合熔体进行浇铸成型的步骤之前,控制混合熔体的粘度为0.1~10Pa.s。将混合熔体的粘度控制在0.1~10Pa.s后再进行急冷水淬,能够进一步提高水淬效果,有利于后期晶化的进行。在实际操作过程中,控制粘度即对混合物料升温以使其高温熔融粘度达到0.1~10Pa.s。
根据本发明上述的教导,本领域技术人员可以调整晶化处理步骤中的具体工艺。在一种优选的实施方式中,上述将成型物进行晶化处理的步骤包括:将成型物在600~800℃温度下保温0.5~3h进行核化,得到核化料;将核化料在在850~1000℃温度下保温0.5~3h进行晶化,得到晶化料;将晶化料冷却,得到微晶玻璃。在该晶化工艺下得到的微晶玻璃,内部晶核尺寸更加均一,晶体结构更加完整,整体具有更加鲜艳的光泽,且综合性能更佳优异。
优选地,将成型物进行核化的步骤中,升温速率为1~10℃/min。在此升温速率下,成型物整体受热更加均匀,晶核的分布更加均匀,有利于后期晶化时晶体的生长,从而提高成品的各方性能。更优选地,将晶化料进行冷却的步骤中,按降温速率1~10℃/min冷却或随炉冷却。这样的冷却方式同样能够使晶粒更加完整均一。
在一种优选的实施方式中,将垃圾焚烧飞灰和成分调节剂混合并进行熔融处理的步骤之后,通过电磁场或物理搅拌,得到混合熔体。通过电磁场或物理搅拌,能够使垃圾焚烧飞灰和成分调节剂混合的更加均一,有利于提高最终微晶玻璃的性能均一性。
本发明提供的上述制备方法中,采用的垃圾焚烧飞灰可以是任意的垃圾焚烧飞灰。在一种优选的实施方式中,按重量百分比计,垃圾焚烧飞灰包括:10~70%CaO,0.1~10%SiO2,0.1~10%Al2O3,0.1~10%MgO,0.1~30%Cl,0.1~20%SO3,0.1~10%K2O,0.1~10%Na2O,0.1~10%Fe2O3,0.1~10%TiO2,0.1~10%P2O5。更优选地,按重量百分比计,垃圾焚烧飞灰还包括:0~1%ZnO,0~1%PbO,0~1%SrO,0~1%BaO,0~1%Cr2O3,0~1%CuO,0~1%MnO,0~1%NiO以及0~1%Hg。此外,还包括其它微量元素0~1%。。上述成分的垃圾焚烧飞灰,高温熔融制备微晶玻璃,能够实现危险废物资源化利用.。
在一种优选的实施方式中,按重量百分比计,硅砂中SiO2的含量为90.0~99.9%;菱镁矿中MgO的含量为30.0~47.6%;铝矾土中Al2O3的含量60.0~73.0%。使用上述成分调节剂,制备得到的微晶玻璃,其综合性能更佳优异。
以下将通过实施例进一步说明本发明的有益效果:
实施例1
(1)垃圾焚烧飞灰的化学成分如下所示:
垃圾焚烧飞灰的化学成分(wt.%)
需说明的是,飞灰中还包括微量杂质,故下方成分含量之和小于100%;下同
CaO Cl SiO2 SO3 MgO Al2O3 Fe2O3 K2O Na2O Hg
57.98 15.87 6.60 5.86 1.37 1.21 2.08 4.34 2.90 0.01
ZnO TiO2 P2O5 PbO CuO NiO Cr2O3 CdO Sb2O3 MnO
0.52 0.38 0.35 0.16 0.05 0.007 0.03 0.01 0.01 0.07
(2)将垃圾焚烧飞灰、菱镁矿和铝矾土按照79:15:6混合,其中,菱镁矿中MgO含量为42.5%,铝矾土中Al2O3含量为67.3%。
(3)将混合物直接排入电热均化池升温至1400℃,高温熔融成均一的熔体,熔体粘度为0.185Pa·s。
(4)将熔体直接进行浇铸成型,得到成型物。将成型物置于晶化炉内进行热处理:核化温度650℃/1h,晶化温度950℃/1h,升温速度为5℃/min,然后随炉冷却。
(5)从晶化炉取出微晶玻璃产品,抛光打磨可得到商业用微晶玻璃。
(6)检测该烧结微晶玻璃性能,其基本性能如表1所示:
表1
性能 指标
磨耗量g/cm2 0.04
冲击韧性kJ/m2 2.54
弯曲强度MPa 96.6
压缩强度MPa 927
硫酸溶液(20%cm/m) 98.5
氢氧化钠溶液(20%cm/m) 99.5
实施例2
(1)垃圾焚烧飞灰的化学成分如下所示:
垃圾焚烧飞灰的化学成分(wt.%)
CaO Cl SiO2 SO3 MgO Al2O3 Fe2O3 K2O Na2O Hg
51.98 15.87 6.60 5.86 1.37 1.21 2.08 4.34 2.90 0.001
ZnO TiO2 P2O5 PbO CuO NiO Cr2O3 SrO BaO MnO
0.52 0.38 6.35 0.16 0.05 0.007 0.03 0.038 0.026 0.07
(2)将垃圾焚烧飞灰、菱镁矿和铝矾土按照77:13:10混合,其中菱镁矿中MgO含量为42.5%,铝矾土中Al2O3含量为67.3%。
(3)将混合物直接排入电热均化池升温至1350℃,高温熔融成均一的熔体,熔体粘度为0.019Pa·s。
(4)将熔体直接进行浇铸成型,得到成型物置于晶化炉内进行热处理:核化温度700℃/1h,晶化温度980℃/1h,升温速度为5℃/min,最终随炉冷却。
(5)从晶化炉取出微晶玻璃产品,抛光打磨可得到商业用微晶玻璃,不做处理可做为铸石使用。
(6)检测该烧结微晶玻璃性能,其基本性能如表2所示:
表2
性能 指标
磨耗量g/cm2 0.037
冲击韧性kJ/m2 2.55
弯曲强度MPa 79
压缩强度MPa 903.5
硫酸溶液(20%cm/m) 98.5
氢氧化钠溶液(20%cm/m) 99.5
实施例3
(1)垃圾焚烧飞灰的化学成分如下所示:
垃圾焚烧飞灰的化学成分(wt.%)
CaO Cl SiO2 SO3 MgO Al2O3 Fe2O3 K2O Na2O Hg
52.98 18.91 5.31 5.86 2.37 1.43 4.08 2.32 2.12 0.001
ZnO TiO2 P2O5 PbO CuO NiO Cr2O3 CdO Sb2O3 MnO
0.58 5.45 0.36 0.17 0.05 0.006 0.04 0.01 0.01 0.08
(2)将垃圾焚烧飞灰、菱镁矿和铝矾土按照85:5:10混合,其中菱镁矿中MgO含量为42.5%,铝矾土中Al2O3含量为67.3%。
(3)将混合物直接排入电热均化池升温至1400℃,高温熔融成均一的熔体,熔体粘度为0.165Pa·s。
(4)将熔体直接浇铸成型并置于晶化炉内进行热处理:核化温度650℃/1h,晶化温度950℃/1h,升温速度为5℃/min,最终随炉冷却。
(5)从晶化炉取出微晶玻璃产品,抛光打磨可得到商业用微晶玻璃,不做处理可做为铸石使用。
(6)检测微晶玻璃性能,其基本性能如表3所示:
表3
实施例4
(1)垃圾焚烧飞灰的化学成分如下所示:
垃圾焚烧飞灰的化学成分(wt.%)
CaO Cl SiO2 SO3 MgO Al2O3 Fe2O3 K2O Na2O Hg
69.90 1.08 0.13 10.14 9.7 0.6 0.2 0.1 0.1 0.9
ZnO TiO2 P2O5 PbO CuO NiO Cr2O3 CdO Sb2O3 MnO
0.001 0.86 0.99 0.001 0.97 0.001 0.001 0.001 0.001 0.99
(2)将垃圾焚烧飞灰、硅砂、菱镁矿和铝矾土按照75:15:5:5混合,其中硅砂中SiO2的含量为99.9%,菱镁矿中MgO含量为47.6%,铝矾土中Al2O3含量为60.0%。
(3)将混合物置于电热均化池升温至1380℃,高温熔融成均一的熔体,熔体粘度为0.100Pa·s。
(4)将熔体进行浇铸成型,得到成型物后置于晶化炉内进行热处理:核化温度800℃/0.5h,晶化温度1000℃/0.5h,升温速度为10℃/min,最终随炉冷却。
(5)从晶化炉取出微晶玻璃产品,抛光打磨可得到商业用微晶玻璃,不做处理可做为铸石使用。
(6)检测该烧结微晶玻璃性能,其基本性能如表4所示:
表4
性能 指标
磨耗量g/cm2 0.038
冲击韧性kJ/m2 2.38
弯曲强度MPa 78
压缩强度MPa 900
硫酸溶液(20%cm/m) 99.0
氢氧化钠溶液(20%cm/m) 99.5
实施例5
(1)垃圾焚烧飞灰的化学成分如下所示:
垃圾焚烧飞灰的化学成分(wt.%)
CaO Cl SiO2 SO3 MgO Al2O3 Fe2O3 K2O Na2O Hg
30.2 28.6 18.7 16.1 0.1 0.11 0.07 0.1 0.1 0.001
ZnO TiO2 P2O5 PbO CuO NiO Cr2O3 CdO Sb2O3 MnO
0.88 0.01 0.02 0.98 0.87 0.001 0.04 0.097 0.94 0.001
(2)将垃圾焚烧飞灰、硅砂、菱镁矿和铝矾土按照75:10:5:10混合,其中硅砂中SiO2的含量为90.0%,菱镁矿中MgO含量为30.0%,铝矾土中Al2O3含量为73.0%。
(3)将混合物置于电热均化池升温至1350℃,高温熔融成均一的熔体,熔体粘度为0.211s。
(4)将熔体进行浇铸成型,得到成型物后置于晶化炉内进行热处理:核化温度600℃/3h,晶化温度850℃/3h,升温速度为1℃/min,最终随炉冷却。
(5)从晶化炉取出微晶玻璃产品,抛光打磨可得到商业用微晶玻璃,不做处理可做为铸石使用。
(6)检测该烧结微晶玻璃性能,其基本性能如表5所示:
表5
性能 指标
磨耗量g/cm2 0.035
冲击韧性kJ/m2 2.81
弯曲强度MPa 80
压缩强度MPa 911
硫酸溶液(20%cm/m) 99.1
氢氧化钠溶液(20%cm/m) 99.4
实施例6
(1)垃圾焚烧飞灰的化学成分如下所示:
垃圾焚烧飞灰的化学成分(wt.%)
(2)将垃圾焚烧飞灰、硅砂和铝矾土按照65:25:10混合,其中硅砂中SiO2的含量为95.0%,铝矾土中Al2O3含量为67.3%。
(3)将混合物置于电热均化池升温至1400℃,高温熔融成均一的熔体,熔体粘度为0.160Pa·s。
(4)将熔体进行浇铸成型,得到成型物后置于晶化炉内进行热处理:核化温度650℃/1h,晶化温度950℃/1h,升温速度为5℃/min,最终随炉冷却。
(5)从晶化炉取出微晶玻璃产品,抛光打磨可得到商业用微晶玻璃,不做处理可做为铸石使用。
(6)检测该烧结微晶玻璃性能,其基本性能如表6所示:
表6
性能 指标
磨耗量g/cm2 0.041
冲击韧性kJ/m2 2.59
弯曲强度MPa 88
压缩强度MPa 930
硫酸溶液(20%cm/m) 99.1
氢氧化钠溶液(20%cm/m) 99.5
对比例1
(1)垃圾焚烧飞灰的化学成分如下所示:
垃圾焚烧飞灰的化学成分(wt.%)
CaO Cl SiO2 SO3 MgO Al2O3 Fe2O3 K2O Na2O Hg
52.98 18.91 5.31 5.86 2.37 1.43 4.08 4.32 2.12 0.02
ZnO TiO2 P2O5 PbO CuO NiO Cr2O3 CdO Sb2O3 MnO
0.58 0.40 0.36 0.17 0.05 0.006 0.04 0.01 0.01 0.08
(2)将垃圾焚烧飞灰置于电热均化池升温至1600℃,高温熔融成的熔体,熔体粘度为0.560Pa·s。
(4)将熔体进行浇铸成型,得到成型物后置于晶化炉内进行热处理:核化温度650℃/1h,晶化温度950℃/1h,升温速度为5℃/min,最终随炉冷却。
(5)从晶化炉取出微晶玻璃产品,抛光打磨可得到微晶玻璃,不做处理可做为铸石使用。
(6)检测该烧结微晶玻璃性能,其基本性能如表7所示:
表7
性能 指标
磨耗量g/cm2 0.1
冲击韧性kJ/m2 1.11
弯曲强度MPa 49
压缩强度MPa 311
硫酸溶液(20%cm/m) 98.1
氢氧化钠溶液(20%cm/m) 98.5
由以上数据可知,利用本发明实施例中的制备方法,在垃圾焚烧飞灰中添加成分调节剂,经熔融、浇铸成型、晶化处理制备微晶玻璃,其熔融温度更低,能够降低生产成本。同时,所制备的微晶玻璃,其冲击韧性、弯曲模量、耐腐蚀性能等综合均更为优异。因此,以本发明提供的制备方法,既能够对垃圾焚烧飞灰进行绿色回收,又能够生产出极具竞争力的微晶玻璃商业产品。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种微晶玻璃的制备方法,其特征在于,包括以下步骤:
将垃圾焚烧飞灰和成分调节剂混合并进行熔融处理,得到混合熔体;
对所述混合熔体进行浇铸成型,得到成型物;以及
将所述成型物进行晶化处理,得到所述微晶玻璃;
其中,所述成分调节剂为硅砂、菱镁矿和铝矾土中的一种或多种。
2.根据权利要求1所述的制备方法,其特征在于,将所述垃圾焚烧飞灰和所述成分调节剂混合的步骤中,所述成分调节剂中所述硅砂占所述垃圾焚烧飞灰重量的0.1~50%,和/或所述菱镁矿占所述垃圾焚烧飞灰重量的0.1~50%,和/或所述铝矾土占所述垃圾焚烧飞灰重量的0.1~50%。
3.根据权利要求1所述的制备方法,其特征在于,对所述混合熔体进行浇铸成型的步骤之前,控制所述混合熔体的粘度为0.1~10Pa.s。
4.根据权利要求1至3中任一项所述的制备方法,其特征在于,将所述成型物进行晶化处理的步骤包括:
将所述成型物在600~800℃温度下保温0.5~3h进行核化,得到核化料;
将所述核化料在在800~1000℃温度下保温0.5~3h进行晶化,得到晶化料;
将所述晶化料冷却,得到所述微晶玻璃。
5.根据权利要求4所述的制备方法,其特征在于,将所述成型物进行核化的步骤中,升温速率为1~10℃/min。
6.根据权利要求4所述的制备方法,其特征在于,将所述晶化料进行冷却的步骤后,按降温速率1~10℃/min冷却或随炉冷却。
7.根据权利要求1至3中任一项所述的制备方法,其特征在于,将所述垃圾焚烧飞灰和所述成分调节剂混合并进行熔融处理的步骤之后,通过电磁场或物理搅拌,得到所述混合熔体。
8.根据权利要求1至3中任一项所述的制备方法,其特征在于,按重量百分比计,所述垃圾焚烧飞灰包括:10~70%CaO,0.1~10%SiO2,0.1~10%Al2O3,0.1~10%MgO,0.1~30%Cl,0.1~20%SO3,0.1~10%K2O,0.1~10%Na2O,0.1~10%Fe2O3,0.1~10%TiO2以及0.1~10%P2O5
9.根据权利要求8所述的制备方法,其特征在于,按重量百分比计,所述垃圾焚烧飞灰还包括:0~1%ZnO,0~1%PbO,0~1%SrO,0~1%BaO,0~1%Cr2O3,0~1%CuO,0~1%MnO,0~1%NiO以及0~1%Hg。
10.根据权利要求1至3中任一项所述的制备方法,其特征在于,按重量百分比计,所述硅砂中SiO2的含量为90.0~99.9%;所述菱镁矿中MgO的含量为30.0~47.6%;所述铝矾土中Al2O3的含量60.0~73.0%。
CN201610756811.3A 2016-08-29 2016-08-29 微晶玻璃的制备方法 Active CN106396410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610756811.3A CN106396410B (zh) 2016-08-29 2016-08-29 微晶玻璃的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610756811.3A CN106396410B (zh) 2016-08-29 2016-08-29 微晶玻璃的制备方法

Publications (2)

Publication Number Publication Date
CN106396410A true CN106396410A (zh) 2017-02-15
CN106396410B CN106396410B (zh) 2018-11-09

Family

ID=58002525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610756811.3A Active CN106396410B (zh) 2016-08-29 2016-08-29 微晶玻璃的制备方法

Country Status (1)

Country Link
CN (1) CN106396410B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862244A (zh) * 2017-03-17 2017-06-20 中国恩菲工程技术有限公司 飞灰的高温熔融无害化方法
CN107191943A (zh) * 2017-04-26 2017-09-22 韶关绿然再生资源发展有限公司 焚烧处置残渣处理方法
CN107265866A (zh) * 2017-05-27 2017-10-20 武汉理工大学 一种以高炉熔渣为主原料的金星微晶玻璃及其制备方法
CN108640523A (zh) * 2018-08-13 2018-10-12 北京科技大学 一种垃圾焚烧灰渣协同酸洗污泥制备微晶玻璃的方法
CN109399938A (zh) * 2018-11-07 2019-03-01 东莞理工学院 一种城市生活垃圾焚烧飞灰微波熔融制备的建筑装饰用微晶玻璃及应用
CN110526298A (zh) * 2019-09-30 2019-12-03 北京无线电测量研究所 一种磁场辅助玻璃晶化法低温制备铁氧体的方法
CN113548800A (zh) * 2020-04-24 2021-10-26 海安南京大学高新技术研究院 以垃圾焚烧飞灰制备微晶玻璃及其规模化生产方法
CN113548801A (zh) * 2020-04-24 2021-10-26 海安南京大学高新技术研究院 一种利用飞灰制备微晶玻璃的方法
CN113548802A (zh) * 2020-04-24 2021-10-26 海安南京大学高新技术研究院 一种利用垃圾飞灰制备泡沫微晶玻璃的方法
CN117510183A (zh) * 2023-11-10 2024-02-06 北京科技大学 一种利用垃圾焚烧飞灰制备得到的混凝土骨料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310834A (ja) * 1995-05-12 1996-11-26 Hikari Giken:Kk 一般廃棄物の焼却灰等を有効に利用した着色結晶化ガラスの 製造方法
CN104445944A (zh) * 2014-12-16 2015-03-25 北京科技大学 一种危险固废制备微晶玻璃的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310834A (ja) * 1995-05-12 1996-11-26 Hikari Giken:Kk 一般廃棄物の焼却灰等を有効に利用した着色結晶化ガラスの 製造方法
CN104445944A (zh) * 2014-12-16 2015-03-25 北京科技大学 一种危险固废制备微晶玻璃的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. ROMERO, R.D.RAWLINGS, J.MA.RINCON: "Development of a New Glass-Ceramic by Means of Controlled Vitrification and Crystallisation of Inorganic Wastes from Ubran Incineration", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
宋玉,钱光人: "利用垃圾焚烧灰渣制备微晶玻璃", 《污染防治技术》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862244A (zh) * 2017-03-17 2017-06-20 中国恩菲工程技术有限公司 飞灰的高温熔融无害化方法
CN107191943A (zh) * 2017-04-26 2017-09-22 韶关绿然再生资源发展有限公司 焚烧处置残渣处理方法
CN107191943B (zh) * 2017-04-26 2019-03-29 韶关东江环保再生资源发展有限公司 焚烧处置残渣处理方法
CN107265866A (zh) * 2017-05-27 2017-10-20 武汉理工大学 一种以高炉熔渣为主原料的金星微晶玻璃及其制备方法
CN107265866B (zh) * 2017-05-27 2019-11-26 武汉理工大学 一种以高炉熔渣为主原料的金星微晶玻璃及其制备方法
CN108640523B (zh) * 2018-08-13 2021-03-19 北京科技大学 一种垃圾焚烧灰渣协同酸洗污泥制备微晶玻璃的方法
CN108640523A (zh) * 2018-08-13 2018-10-12 北京科技大学 一种垃圾焚烧灰渣协同酸洗污泥制备微晶玻璃的方法
CN109399938A (zh) * 2018-11-07 2019-03-01 东莞理工学院 一种城市生活垃圾焚烧飞灰微波熔融制备的建筑装饰用微晶玻璃及应用
CN110526298A (zh) * 2019-09-30 2019-12-03 北京无线电测量研究所 一种磁场辅助玻璃晶化法低温制备铁氧体的方法
CN110526298B (zh) * 2019-09-30 2022-07-15 北京无线电测量研究所 一种磁场辅助玻璃晶化法低温制备铁氧体的方法
CN113548800A (zh) * 2020-04-24 2021-10-26 海安南京大学高新技术研究院 以垃圾焚烧飞灰制备微晶玻璃及其规模化生产方法
CN113548801A (zh) * 2020-04-24 2021-10-26 海安南京大学高新技术研究院 一种利用飞灰制备微晶玻璃的方法
CN113548802A (zh) * 2020-04-24 2021-10-26 海安南京大学高新技术研究院 一种利用垃圾飞灰制备泡沫微晶玻璃的方法
CN113548801B (zh) * 2020-04-24 2023-12-29 海安南京大学高新技术研究院 一种利用飞灰制备微晶玻璃的方法
CN113548802B (zh) * 2020-04-24 2023-12-29 海安南京大学高新技术研究院 一种利用垃圾飞灰制备泡沫微晶玻璃的方法
CN117510183A (zh) * 2023-11-10 2024-02-06 北京科技大学 一种利用垃圾焚烧飞灰制备得到的混凝土骨料及其制备方法

Also Published As

Publication number Publication date
CN106396410B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN106396410B (zh) 微晶玻璃的制备方法
CN106396411B (zh) 微晶玻璃的制备方法
WO2019114202A1 (zh) 一种烧结法制备富铁铅渣微晶玻璃的方法
CN103979795B (zh) 一种利用高炉熔渣生产泡沫微晶玻璃板材的方法及其设备
CN104743884B (zh) 一种微晶玻璃及其浮法生产工艺
CN104926131B (zh) 一种钒钛磁铁矿尾矿微晶玻璃及其制备方法
CN102795772B (zh) 一种利用高岭土型煤矸石或粉煤灰及电石渣制备微晶玻璃的方法
CN107188411B (zh) 一种利用锰合金冶炼高温熔渣制备微晶石的方法
CN109369020A (zh) 一种利用液态锰渣生产微晶玻璃或石板材的压延工艺方法
CN103951193B (zh) 一种镍钼矿选冶尾矿微晶玻璃及其制备方法
CN108503224B (zh) 一种以煤矸石和稻壳灰为主要原料的微晶玻璃及其制备方法
CN102603191A (zh) 一种含钛熔融高炉渣制取微晶玻璃的方法
CN104193171A (zh) 一种硅锰合金渣微晶玻璃及其制备方法
CN106892559A (zh) 一种建筑玻璃的生产工艺
CN106116161A (zh) 一种利用黄磷炉渣和铬渣制备微晶玻璃的方法
WO2023273199A1 (zh) 一种用富硅硅渣氧化调质制备铅渣微晶玻璃的方法
CN105819694B (zh) 微晶玻璃及其制备方法
CN108358455A (zh) 一种利用铅锌尾矿和石英尾砂制备微晶玻璃的方法
CN103253867B (zh) 一种熔融态黄磷炉渣制备微晶玻璃的工艺技术
CN101125735B (zh) 一种热态浇注法制备黄磷矿渣微晶玻璃的方法
CN108395103B (zh) 一种利用白云鄂博尾矿和粉煤灰制备的体析晶α堇青石微晶玻璃及其制备方法
CN110217995A (zh) 熔融高炉渣和粉煤灰协同制备微晶玻璃的方法
CN110066114A (zh) 一种利用硅锰渣制备颜色可调控的透明玻璃陶瓷的方法
CN112441747B (zh) 一种利用铜尾矿制备泡沫微晶保温装饰一体板的方法
CN102086092B (zh) 一种用陶瓷抛光废料制备微晶泡沫玻璃的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant