WO2019114202A1 - 一种烧结法制备富铁铅渣微晶玻璃的方法 - Google Patents

一种烧结法制备富铁铅渣微晶玻璃的方法 Download PDF

Info

Publication number
WO2019114202A1
WO2019114202A1 PCT/CN2018/088821 CN2018088821W WO2019114202A1 WO 2019114202 A1 WO2019114202 A1 WO 2019114202A1 CN 2018088821 W CN2018088821 W CN 2018088821W WO 2019114202 A1 WO2019114202 A1 WO 2019114202A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
lead
lead slag
sintering
powder
Prior art date
Application number
PCT/CN2018/088821
Other languages
English (en)
French (fr)
Inventor
吴玉锋
潘德安
李莉莉
左铁镛
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2019114202A1 publication Critical patent/WO2019114202A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0063Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent

Definitions

  • the invention discloses a method for preparing iron-rich lead-slag glass ceramics by sintering method, belonging to the field of resource recycling and glass-ceramic materials.
  • the low-melting glass powder obtained by quenching and tempering and adding a flux is mixed and sintered with the sodium feldspar powder to realize the preparation of the iron-rich lead slag glass-ceramic by the sintering method.
  • lead slag mainly has the following utilization methods:
  • Lead slag contains a large amount of iron, a small amount of copper, and a trace amount of rare metal indium, gallium, etc.
  • the recovery of these metals mainly uses magnetic separation, roasting, acid leaching, etc.
  • the metal content is low, and the recycling process is complicated, and it is easy to cause secondary pollution.
  • Lead slag contains various components required for cement clinker, which can be used as a batch to produce cement. However, due to its poor hydration activity, the addition amount is usually only 3% to 5%. Low, unable to handle large amounts of lead slag. In addition, the cement solidified heavy metal enters the hydrated product structure through physical inclusion, substitution or absorption mechanism, and is easily leached out over time in an acidic environment, and its safety performance is poor, which easily causes secondary pollution.
  • the above-mentioned method for using lead slag has problems such as low utilization rate, high cost, and easy secondary pollution. Therefore, it is urgent to find a way to achieve the harmless disposal of lead slag and achieve high value-added resource utilization.
  • the Chinese invention patent (CN104773958A) discloses a method for preparing calcined pyroxene glass ceramics by using lead slag as a main raw material, using waste glass and fly ash as a component regulator, and preparing the crystallized glass.
  • Industrial glass-ceramic standard discloses a method for preparing microcrystalline glass by using a molten solid waste such as lead smelting slag as a raw material, and the amount of lead smelting slag can be up to 60.0 wt.%, and the heavy metal of the glass ceramic is tested. The leaching concentration is much smaller than the specified value, and the heavy metal element is effectively cured.
  • the use of lead slag to produce glass-ceramics can not only process a large amount of waste residue, but also achieve effective solidification of heavy metals in lead-smelting slag, realize the harmless disposal of lead slag and high value-added resource utilization, and lead slag.
  • the disposal provided a new idea.
  • the glass-ceramic obtained by the melt calendering method is mainly used for industrial glass-ceramics, but its application on architectural glass-ceramics is limited, and sintered glass-ceramics have a wide range of applications in construction, but since lead slag contains a large amount of iron,
  • the water quenched glass has a high flattening temperature, and it is difficult to directly use the sintering method to prepare a high quality microcrystalline glass.
  • the invention adopts a method of melting and quenching and tempering, reduces the temperature of the water quenched glass, and subsequently adds a low melting point non-metallic ore to achieve the purpose of direct sinter
  • the technical problem to be solved by the present invention is to provide a method for preparing iron-rich lead-slag glass ceramics by sintering method, which is controlled by a ratio of raw materials, added with a flux, and after being melted and tempered, water is quenched into glass particles having a low melting point, further
  • the sintering temperature is optimized to achieve the purpose of preparing microcrystalline glass with excellent performance by sintering.
  • the method for preparing iron-rich lead slag glass ceramics by a sintering method according to the present invention is carried out as follows:
  • quenching and tempering melting quenching and tempering in the quenching furnace, rising to 1400 ⁇ 1500 ° C at a heating rate of 5 ⁇ 20 ° C / min, holding 2 ⁇ 3h;
  • Dry powder granulation dry powder granulation of glass powder and sodium feldspar powder according to mass ratio of 7:3 to 9:1;
  • Forming the product obtained by granulating the dry powder is put into a mold and pressed and molded, and the pressure is maintained at a pressure of 20 to 30 MPa for 10 to 20 s;
  • the obtained iron-rich lead slag glass-ceramic has a flexural strength of 35.20 to 53.47 MPa, an acid resistance (1.0% sulfuric acid) of 0.041 to 0.122%, and an alkali resistance (1.0% sodium hydroxide) of 0.002 to 0.016%, satisfying JC/T872- 2000 Standard requirements for glass-ceramics for architectural decoration.
  • the invention adopts the sintering method to prepare the iron-rich lead-slag glass ceramics, complements the raw materials of the lead slag and the tailings, and adds a flux to obtain the glass particles with low melting point, and then the glass powder and the albite powder are mixed and sintered to obtain micro. Crystal glass, the method has the characteristics of simple preparation process and high utilization rate of lead slag.
  • Figure 1 is a flow chart showing the process of preparing iron-rich glass ceramics by sintering
  • the chemical composition is by weight: SiO 2 : 30%, CaO: 7%, Fe 2 O 3 : 15%, Al 2 O 3 : 5%, RO: 43%, and the sum of all components is 100%, RO represents Cr 2 O 3 , NiO, MnO, Na 2 O, K 2 O, TiO 2 , B 2 O 3 and BaO;
  • quenching and tempering melting quenching and tempering in the quenching furnace, rising to 1400 ° C at a heating rate of 5 ° C / min, holding for 3 h;
  • Dry powder granulation dry powder granulation of glass powder and sodium feldspar powder at a mass ratio of 7:3;
  • Molding the product obtained by granulating the dry powder is put into a mold and pressed and molded, and kept under pressure of 20 MPa for 10 s;
  • Cooling crystallization down to 850 °C at a cooling rate of 5 °C / min, and after cooling for 0.5 h, the furnace was cooled to room temperature to obtain iron-rich lead slag glass-ceramic.
  • the obtained iron-rich lead slag glass-ceramic has a flexural strength of 35.20 MPa, acid resistance (1% sulfuric acid) of 0.041%, and alkali resistance (1% sodium hydroxide) of 0.016%, satisfying JC/T872-2000 architectural decorative microcrystals. Standard requirements for glass.
  • the mass percentage of the tempering agent is the percentage of the total mass of the tempering agent and the lead slag and the lead-zinc tailings; after each ball and tempering agent is ball-milled through the 80 mesh sieve, the ingredients are weighed to ensure the entire system.
  • the chemical composition is by weight: SiO 2 : 30%, CaO: 12%, Fe 2 O 3 : 30%, Al 2 O 3 : 10%, RO: 18%, and the sum of all components is 100%, RO represents Cr 2 O 3 , NiO, MnO, Na 2 O, K 2 O, TiO 2 , B 2 O 3 and BaO;
  • quenching and tempering melting quenching and tempering in a quenching furnace, rising to 1500 ° C at a heating rate of 20 ° C / min, holding 2 h;
  • Dry powder granulation the glass powder and the sodium feldspar powder are subjected to dry powder granulation according to a mass ratio of 9:1;
  • Molding the product obtained by granulating the dry powder is put into a mold and pressed and molded, and kept under pressure of 30 MPa for 20 s;
  • the obtained iron-rich lead slag glass-ceramic has a flexural strength of 53.47 MPa, acid resistance (1% sulfuric acid) 0.122%, and alkali resistance (1% sodium hydroxide) of 0.002%, satisfying JC/T872-2000 architectural decorative microcrystals. Standard requirements for glass.
  • the mass percentage of the tempering agent is the percentage of the total mass of the tempering agent and the lead slag and the lead-zinc tailings; after each ball and tempering agent is ball-milled through the 80 mesh sieve, the ingredients are weighed to ensure the entire system.
  • the chemical composition is by weight: SiO 2 : 35%, CaO: 10%, Fe 2 O 3 : 20%, Al 2 O 3 : 8%, RO: 27%, and the sum of all components is 100%, RO represents Cr 2 O 3 , NiO, MnO, Na 2 O, K 2 O, TiO 2 , B 2 O 3 and BaO;
  • quenching and tempering melting quenching and tempering in the quenching furnace, rising to 1450 ° C at a heating rate of 10 ° C / min, holding for 2.5 h;
  • Dry powder granulation glass powder and sodium feldspar powder are dry granulated at a mass ratio of 8:2;
  • Forming the product obtained by granulating the dry powder is put into a mold and pressed and molded, and kept under pressure of 25 MPa for 15 s;
  • the obtained iron-rich lead slag glass-ceramic has a flexural strength of 38.92 MPa, acid resistance (1% sulfuric acid) 0.086%, and alkali resistance (1% sodium hydroxide) 0.013%, satisfying JC/T872-2000 architectural decorative microcrystals. Standard requirements for glass.
  • the mass percentage of the tempering agent is the percentage of the total mass of the tempering agent and the lead slag and the lead-zinc tailings; after each ball and tempering agent is ball-milled through the 80 mesh sieve, the ingredients are weighed to ensure the entire system.
  • the chemical composition is by weight: SiO 2 : 40%, CaO: 8%, Fe 2 O 3 : 25%, Al 2 O 3 : 8%, RO: 21%, and the sum of all components is 100%, RO represents Cr 2 O 3 , NiO, MnO, Na 2 O, K 2 O, TiO 2 , B 2 O 3 and BaO;
  • tempering and melting tempering and melting in the quenching furnace, rising to 1480 ° C at a heating rate of 12 ° C / min, holding for 3 h;
  • Dry powder granulation dry powder granulation of glass powder and sodium feldspar powder at a mass ratio of 8.5:1.5;
  • Molding the product obtained by granulating the dry powder is put into a mold and pressed and molded, and kept under pressure of 20 MPa for 20 s;
  • Cooling crystallization reduced to 860 ° C at a cooling rate of 6 ° C / min, and after cooling for 1.5 h, the furnace was cooled to room temperature to obtain iron-rich lead slag glass-ceramic.
  • the obtained iron-rich lead slag glass-ceramic has a flexural strength of 42.12 MPa, acid resistance (1% sulfuric acid) of 0.094%, and alkali resistance (1% sodium hydroxide) of 0.011%, satisfying JC/T872-2000 architectural decorative microcrystals. Standard requirements for glass.
  • the chemical composition is by weight: SiO 2 : 45%, CaO: 10%, Fe 2 O 3 : 25%, Al 2 O 3 : 9%, RO: 11%, and the sum of all components is 100%, RO represents Cr 2 O 3 , NiO, MnO, Na 2 O, K 2 O, TiO 2 , B 2 O 3 and BaO;
  • tempering and melting tempering and melting in the quenching furnace, rising to 1490 ° C at a heating rate of 6 ° C / min, holding for 2.5 h;
  • Dry powder granulation glass powder and sodium feldspar powder are dry granulated at a mass ratio of 8:2;
  • Molding the product obtained by granulating the dry powder is put into a mold for compression molding, and is kept under pressure of 25 MPa for 18 s;
  • the obtained iron-rich lead slag glass-ceramic has a flexural strength of 51.23 MPa, acid resistance (1% sulfuric acid) of 0.104%, and alkali resistance (1% sodium hydroxide) of 0.008%, satisfying JC/T872-2000 architectural decorative microcrystals. Standard requirements for glass.
  • the mass percentage of the tempering agent is the percentage of the total mass of the tempering agent and the lead slag and the lead-zinc tailings; after each ball and tempering agent is ball-milled through the 80 mesh sieve, the ingredients are weighed to ensure the entire system.
  • the chemical composition is by weight: SiO 2 : 48%, CaO: 12%, Fe 2 O 3 : 28%, Al 2 O 3 : 7%, RO: 5%, and the sum of all components is 100%, RO represents Cr 2 O 3 , NiO, MnO, Na 2 O, K 2 O, TiO 2 , B 2 O 3 and BaO;
  • quenching and tempering melting quenching and tempering in the quenching furnace, rising to 1500 ° C at a heating rate of 18 ° C / min, holding 2 h;
  • Dry powder granulation dry powder granulation of glass powder and sodium feldspar powder according to mass ratio of 8.8:1.2;
  • Molding the product obtained by granulating the dry powder is put into a mold and pressed and molded, and kept under pressure of 22 MPa for 12 s;
  • Cooling crystallization down to 870 °C at a cooling rate of 8 °C / min, and after cooling for 2 h, the furnace was cooled to room temperature to obtain iron-rich lead slag glass-ceramic.
  • the obtained iron-rich lead slag glass-ceramic has a flexural strength of 52.15 MPa, acid resistance (1% sulfuric acid) 0.109%, and alkali resistance (1% sodium hydroxide) 0.004%, which satisfies JC/T872-2000 architectural decorative microcrystals. Standard requirements for glass.

Abstract

一种烧结法制备富铁铅渣微晶玻璃的方法,属于资源再利用领域。该方法以铅渣与铅锌尾矿为主要原料,通过加入硼砂、萤石碳酸钡助熔剂,获得低熔点玻璃粉,再与钠长石粉混合烧结制备得到富铁铅渣微晶玻璃。其工艺步骤包括配料、混料、调质熔融、水淬、球磨、干粉造粒、成型、烧结与降温晶化。该微晶玻璃的抗弯强度35.20~53.47MPa,耐酸度(1%硫酸)0.041~0.122%,耐碱度(1%氢氧化钠)0.002~0.016%,满足JC/T872‑2000建筑装饰用微晶玻璃的标准要求。

Description

一种烧结法制备富铁铅渣微晶玻璃的方法 技术领域
本发明公开了一种烧结法制备富铁铅渣微晶玻璃的方法,属于资源再利用和微晶玻璃材料领域。本发明通过调质、添加助熔剂获得的低熔点玻璃粉,与钠长石粉混合烧结,实现利用烧结法制备富铁铅渣微晶玻璃。
背景技术
近年来,我国铅产量已连续多年位居世界第一,是名副其实的铅生产大国。在铅冶炼的过程中的同时也会产生大量的铅渣,据统计,铅冶炼系统每生产1万吨铅排放7100吨铅渣,仅2016年铅冶炼企业产生铅渣超过300万吨,历史堆存量过亿吨。目前,铅渣的利用率很低,大部分采用填埋、堆存的粗放处置方式,其占用了大量的土地,同时废渣中含有铅、锌、铜、镉等有毒重金属,对周边环境的土壤、水体、大气等造成一定的污染。目前铅渣主要有以下几种利用方式:
(1)固化处理:为了很好地实现铅渣中重金属的固化,通常需要加入固化剂,增加了处理成本,限制了该方法的大规模应用。
(2)作为胶结充填体:铅渣替代水泥作为胶结充填体不仅节约了水泥的用量,降低充填成本,同时铅烟化渣也得到了大量的利用,减少了废渣的堆存,但是存在的不足就是没有充分利用铅烟化渣中的有价成分,造成了一定的资源浪费。
(3)回收有价金属:铅渣中含有大量的铁,少量的铜,以及微量的稀散金属铟、镓等,对这些金属的回收主要采用磁选、焙烧、酸浸等方法,然而有价金属的含量较低,且回收工艺较为复杂,同时易造成二次污染。
(4)生产水泥熟料:铅渣含有水泥熟料所需多种组分,可作为配料生产水泥,但由于其水化活性较差,加入量通常仅为3%~5%,利用率较低,无法处理大量的铅渣。此外水泥固化重金属是通过物理包容、替代或吸收机制 等形式进入水化产物结构中,在酸性环境下随着时间的推移容易渗滤出来,其安全性能较差,容易造成二次污染。
(5)生产砖瓦:以铅渣作骨料生产砖瓦具有制备简单,成本较低,废渣消耗量大等优点,但是由于砖瓦的结构较为疏松,在酸性或碱性条件下,重金属离子易浸出,对环境造成威胁。
上述铅渣的利用方法存在利用率低、成本高、易造成二次污染等问题,因此急需寻找一种途径既能实现铅渣的无害化处置,又能达到高附加值资源化利用。
中国发明专利(CN104773958A)公开了一种利用铅渣为主要原料,以废玻璃、粉煤灰为成分调节剂,采用熔融法制备钙铁辉石微晶玻璃的方法,制备得到的微晶玻璃满足工业微晶玻璃标准。中国发明专利(CN104445944A)公开了一种以铅冶炼渣等危险固体废弃物为原料采用熔融法制备微晶玻璃,铅冶炼渣的添加量能达到60.0wt.%,同时测试了微晶玻璃的重金属浸出浓度远小于规定值,重金属元素得到了有效的固化。
利用铅渣生产微晶玻璃,不仅能处理大量的废渣,也实现了铅烟化渣中重金属的有效固化,实现了铅渣的无害化处置和高附加值资源化利用,为铅烟化渣的处置提供了一条新思路。熔融压延方法得到的微晶玻璃主要用于工业微晶玻璃,但在建筑微晶玻璃上应用受到限制,而烧结微晶玻璃在建筑方面具有广泛的用途,但由于铅渣中含有大量的铁,水淬玻璃存在摊平温度高,难以直接利用烧结方法制备得到高质量微晶玻璃的难点。本发明将采用熔融调质的方法,降低水淬玻璃摊平温度,并且后续加入低熔点非金属矿以达到直接烧结的目的。
发明内容
本发明要解决的技术问题是提供一种烧结法制备富铁铅渣微晶玻璃的方法,其通过控制原料比例,添加助熔剂,经过熔融调质后,水淬成低熔点的玻璃颗粒,进一步优化烧结温度,实现采用烧结法制备出性能优异的微晶玻璃的目的。
本发明所述的一种烧结法制备富铁铅渣微晶玻璃的方法如下步骤进行:
(1)配料:根据铅渣、铅锌尾矿化学组成分析以及对产品的要求,按质量比配料,分别加入铅渣、铅锌尾矿原料及1~8%硼砂、1~5%萤石和1~5%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比;每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:30~50%、CaO:7~12%、Fe 2O 3:15~30%、Al 2O 3:5~10%、RO:5-43%,所有组分之和为100%,RO包括Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
(2)混料:球磨混合,混料时间为30~60min;
(3)调质熔融:在调质炉中进行调质熔融,以5~20℃/min的升温速率升至1400~1500℃,保温2~3h;
(4)水淬:将玻璃液水淬成玻璃颗粒,烘干待用;
(5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
(6)干粉造粒:玻璃粉与钠长石粉按质量比7:3~9:1进行干粉造粒;
(7)成型:将干粉造粒得到的产品装入模具中压制成型,在20~30MPa的压力下保压10~20s;
(8)烧结:将压制成型的胚体在高温烧结炉中以10~20℃/min的升温速率升温至700℃后以3~8℃/min的升温速率升温至1050~1150℃,保温1~2h进行烧结;
(9)降温晶化:以5~10℃/min的降温速率降至850~950℃,保温0.5~2h,然后随炉冷却至室温,得到富铁铅渣微晶玻璃。
得到的富铁铅渣微晶玻璃的抗弯强度35.20~53.47MPa,耐酸性(1.0%硫酸)0.041~0.122%,耐碱性(1.0%氢氧化钠)0.002~0.016%,满足JC/T872-2000建筑装饰用微晶玻璃的标准要求。
本发明采用烧结法制备富铁铅渣微晶玻璃,利用铅渣与尾矿的原料互补, 并添加助熔剂获得低熔点的玻璃颗粒,后续采用玻璃粉与钠长石粉混合后烧结即可获得微晶玻璃,该方法具有制备工艺简单、铅渣利用率高等特点。
附图说明
图1表示烧结法制备富铁微晶玻璃的工艺流程图
具体实施方式
实施例1
(1)配料:根据铅渣、铅锌尾矿化学组成分析以及对产品的要求,按质量比配料,分别加入铅渣、铅锌尾矿原料及8%硼砂、5%萤石和5%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比;每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:30%、CaO:7%、Fe 2O 3:15%、Al 2O 3:5%、RO:43%,所有组分之和为100%,RO表示Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
(2)混料:球磨混合,混料时间为30min;
(3)调质熔融:在调质炉中进行调质熔融,以5℃/min的升温速率升至1400℃,保温3h;
(4)水淬:将玻璃液水淬成玻璃颗粒,烘干待用;
(5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
(6)干粉造粒:玻璃粉与钠长石粉按质量比7:3进行干粉造粒;
(7)成型:将干粉造粒得到的产品装入模具中压制成型,在20MPa的压力下保压10s;
(8)烧结:将压制成型的胚体在高温烧结炉中以10℃/min的升温速率升温至700℃后以3℃/min的升温速率升温至1050℃,保温1h进行烧结;
(9)降温晶化:以5℃/min的降温速率降至850℃,保温0.5h后随炉冷却至室温,得到富铁铅渣微晶玻璃。
得到的富铁铅渣微晶玻璃的抗弯强度35.20MPa,耐酸性(1%硫酸)0.041%,耐碱性(1%氢氧化钠)0.016%,满足JC/T872-2000建筑装饰用微晶玻璃的标准要求。
实施例2
按照如下步骤进行制备:
(1)配料:根据铅渣、铅锌尾矿化学组成分析以及对产品的要求,按质量比配料,分别加入铅渣、铅锌尾矿原料及1%硼砂、1%萤石和1%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比;每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:30%、CaO:12%、Fe 2O 3:30%、Al 2O 3:10%、RO:18%,所有组分之和为100%,RO表示Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
(2)混料:球磨混合,混料时间为60min;
(3)调质熔融:在调质炉中进行调质熔融,以20℃/min的升温速率升至1500℃,保温2h;
(4)水淬:将玻璃液水淬成玻璃颗粒,烘干待用;
(5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
(6)干粉造粒:玻璃粉与钠长石粉按质量比9:1进行干粉造粒;
(7)成型:将干粉造粒得到的产品装入模具中压制成型,在30MPa的压力下保压20s;
(8)烧结:将压制成型的胚体在高温烧结炉中以20℃/min的升温速率升温至700℃后以8℃/min的升温速率升温至1150℃,保温2h进行烧结;
(9)降温晶化:以10℃/min的降温速率降至950℃,保温2h后随炉冷却至室温,得到富铁铅渣微晶玻璃。
得到的富铁铅渣微晶玻璃的抗弯强度53.47MPa,耐酸性(1%硫酸) 0.122%,耐碱性(1%氢氧化钠)0.002%,满足JC/T872-2000建筑装饰用微晶玻璃的标准要求。
实施例3
按照如下步骤进行制备:
(1)配料:根据铅渣、铅锌尾矿化学组成分析以及对产品的要求,按质量比配料,分别加入铅渣、铅锌尾矿原料及5%硼砂、5%萤石和5%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比;每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:35%、CaO:10%、Fe 2O 3:20%、Al 2O 3:8%、RO:27%,所有组分之和为100%,RO表示Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
(2)混料:球磨混合,混料时间为40min;
(3)调质熔融:在调质炉中进行调质熔融,以10℃/min的升温速率升至1450℃,保温2.5h;
(4)水淬:将玻璃液水淬成玻璃颗粒,烘干待用;
(5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
(6)干粉造粒:玻璃粉与钠长石粉按质量比8:2进行干粉造粒;
(7)成型:将干粉造粒得到的产品装入模具中压制成型,在25MPa的压力下保压15s;
(8)烧结:将压制成型的胚体在高温烧结炉中以15℃/min的升温速率升温至700℃后以5℃/min的升温速率升温至1100℃,保温1.5h进行烧结;
(9)降温晶化:以8℃/min的降温速率降至900℃,保温1h后随炉冷却至室温,得到富铁铅渣微晶玻璃。
得到的富铁铅渣微晶玻璃的抗弯强度38.92MPa,耐酸性(1%硫酸)0.086%,耐碱性(1%氢氧化钠)0.013%,满足JC/T872-2000建筑装饰用微晶 玻璃的标准要求。
实施例4
按照如下步骤进行制备:
(1)配料:根据铅渣、铅锌尾矿化学组成分析以及对产品的要求,按质量比配料,分别加入铅渣、铅锌尾矿原料及2%硼砂、4%萤石和2%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比;每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:40%、CaO:8%、Fe 2O 3:25%、Al 2O 3:8%、RO:21%,所有组分之和为100%,RO表示Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
(2)混料:球磨混合,混料时间为50min;
(3)调质熔融:在调质炉中进行调质熔融,以12℃/min的升温速率升至1480℃,保温3h;
(4)水淬:将玻璃液水淬成玻璃颗粒,烘干待用;
(5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
(6)干粉造粒:玻璃粉与钠长石粉按质量比8.5:1.5进行干粉造粒;
(7)成型:将干粉造粒得到的产品装入模具中压制成型,在20MPa的压力下保压20s;
(8)烧结:将压制成型的胚体在高温烧结炉中以18℃/min的升温速率升温至700℃后以6℃/min的升温速率升温至1080℃,保温1h进行烧结;
(9)降温晶化:以6℃/min的降温速率降至860℃,保温1.5h后随炉冷却至室温,得到富铁铅渣微晶玻璃。
得到的富铁铅渣微晶玻璃的抗弯强度42.12MPa,耐酸性(1%硫酸)0.094%,耐碱性(1%氢氧化钠)0.011%,满足JC/T872-2000建筑装饰用微晶玻璃的标准要求。
实施例5
按照如下步骤进行制备:
(1)配料:根据铅渣、铅锌尾矿化学组成分析以及对产品的要求,按质量比配料,分别加入铅渣、铅锌尾矿原料及6%硼砂、3%萤石和4%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比;每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:45%、CaO:10%、Fe 2O 3:25%、Al 2O 3:9%、RO:11%,所有组分之和为100%,RO表示Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
(2)混料:球磨混合,混料时间为45min;
(3)调质熔融:在调质炉中进行调质熔融,以6℃/min的升温速率升至1490℃,保温2.5h;
(4)水淬:将玻璃液水淬成玻璃颗粒,烘干待用;
(5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
(6)干粉造粒:玻璃粉与钠长石粉按质量比8:2进行干粉造粒;
(7)成型:将干粉造粒得到的产品装入模具中压制成型,在25MPa的压力下保压18s;
(8)烧结:将压制成型的胚体在高温烧结炉中以12℃/min的升温速率升温至700℃后以7℃/min的升温速率升温至1130℃,保温1h进行烧结;
(9)降温晶化:以7℃/min的降温速率降至920℃,保温1.5h后随炉冷却至室温,得到富铁铅渣微晶玻璃。
得到的富铁铅渣微晶玻璃的抗弯强度51.23MPa,耐酸性(1%硫酸)0.104%,耐碱性(1%氢氧化钠)0.008%,满足JC/T872-2000建筑装饰用微晶玻璃的标准要求。
实施例6
按照如下步骤进行制备:
(1)配料:根据铅渣、铅锌尾矿化学组成分析以及对产品的要求,按质量比配料,分别加入铅渣、铅锌尾矿原料及1%硼砂、5%萤石和3%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比;每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:48%、CaO:12%、Fe 2O 3:28%、Al 2O 3:7%、RO:5%,所有组分之和为100%,RO表示Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
(2)混料:球磨混合,混料时间为35min;
(3)调质熔融:在调质炉中进行调质熔融,以18℃/min的升温速率升至1500℃,保温2h;
(4)水淬:将玻璃液水淬成玻璃颗粒,烘干待用;
(5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
(6)干粉造粒:玻璃粉与钠长石粉按质量比8.8:1.2进行干粉造粒;
(7)成型:将干粉造粒得到的产品装入模具中压制成型,在22MPa的压力下保压12s;
(8)烧结:将压制成型的胚体在高温烧结炉中以16℃/min的升温速率升温至700℃后以4℃/min的升温速率升温至1145℃,保温2h进行烧结;
(9)降温晶化:以8℃/min的降温速率降至870℃,保温2h后随炉冷却至室温,得到富铁铅渣微晶玻璃。
得到的富铁铅渣微晶玻璃的抗弯强度52.15MPa,耐酸性(1%硫酸)0.109%,耐碱性(1%氢氧化钠)0.004%,满足JC/T872-2000建筑装饰用微晶玻璃的标准要求。

Claims (2)

  1. 一种烧结法制备富铁铅渣微晶玻璃的方法,其特征在于,具体步骤如下:
    (1)配料:分别加入铅渣、铅锌尾矿原料及硼砂、萤石和碳酸钡调质剂,每种原料及调质剂经球磨过80目筛后,称量配料,保证整个体系化学组成按重量百分比为:SiO 2:30%、CaO:7%、Fe 2O 3:15%、Al 2O 3:5%、RO:43%,所有组分之和为100%,RO表示Cr 2O 3、NiO、MnO、Na 2O、K 2O、TiO 2、B 2O 3和BaO;
    (2)混料:将步骤(1)得到的配料进行球磨混合;
    (3)调质熔融:将步骤(2)得到的混料在调质炉中进行调质熔融,以5~20℃/min的升温速率升至1400~1500℃,保温2~3h;
    (4)水淬:将步骤(3)得到的玻璃液水淬成玻璃颗粒,烘干待用;
    (5)球磨:水淬后的玻璃料和钠长石分别在球磨机中进行细磨,得到小于200玻璃粉和钠长石粉;
    (6)干粉造粒:玻璃粉与钠长石粉按质量比为7:3~9:1进行干粉造粒;
    (7)成型:将干粉造粒得到的产品装入模具中压制成型,在20~30MPa的压力下保压10~20s;
    (8)烧结:将步骤(7)压制成型的胚体在高温烧结炉中以10~20℃/min的升温速率升温至700℃后以3~8℃/min的升温速率升温至1050~1150℃,保温1~2h进行烧结;
    (9)降温晶化:以5~10℃/min的降温速率降至850~950℃,保温0.5~2h后随炉冷却至室温,得到富铁铅渣微晶玻璃。
  2. 如权利要求1所述的一种烧结法制备富铁铅渣微晶玻璃的方法,其特征在于步骤(1)中,分别加入1~8%硼砂、1~5%萤石和1~5%碳酸钡作为调质剂,调质剂的质量百分比是调质剂与铅渣与铅锌尾矿总质量的百分比。
PCT/CN2018/088821 2017-12-14 2018-05-29 一种烧结法制备富铁铅渣微晶玻璃的方法 WO2019114202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711338095.8 2017-12-14
CN201711338095.8A CN108059351A (zh) 2017-12-14 2017-12-14 一种烧结法制备富铁铅渣微晶玻璃的方法

Publications (1)

Publication Number Publication Date
WO2019114202A1 true WO2019114202A1 (zh) 2019-06-20

Family

ID=62138836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088821 WO2019114202A1 (zh) 2017-12-14 2018-05-29 一种烧结法制备富铁铅渣微晶玻璃的方法

Country Status (2)

Country Link
CN (1) CN108059351A (zh)
WO (1) WO2019114202A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059351A (zh) * 2017-12-14 2018-05-22 北京工业大学 一种烧结法制备富铁铅渣微晶玻璃的方法
CN109133649B (zh) * 2018-09-18 2022-03-01 西南科技大学 一种利用含氯提钛渣制备微晶玻璃的系统
CN109279782B (zh) * 2018-11-07 2022-03-01 西南科技大学 一种利用含氯提钛热渣制备微晶玻璃的系统
CN110550866B (zh) * 2019-09-18 2022-05-20 南昌航空大学 由花岗岩废料制备高强度釉面微晶玻璃的方法
CN111320388A (zh) * 2020-04-14 2020-06-23 北京工业大学 一种烟化炉渣协同烧结制备选铁尾渣微晶玻璃的方法
CN112010563A (zh) * 2020-09-17 2020-12-01 昆明理工大学 一种利用铅渣和赤泥制备微晶玻璃的方法
CN112374750A (zh) * 2020-11-25 2021-02-19 江西璞晶新材料股份有限公司 一种利用陶瓷色料制备红色微晶玻璃的方法
CN112851121B (zh) * 2021-01-18 2022-12-23 山东龙宇玻璃有限公司 一种硅渣促进高铁尾渣资源化利用的方法
CN112499962B (zh) * 2021-02-04 2021-04-30 矿冶科技集团有限公司 用于制备微晶玻璃的调整剂和微晶玻璃的制备方法
CN113200682A (zh) * 2021-04-12 2021-08-03 内蒙古科技大学 一种采用铬铁合金渣制备微晶玻璃的方法
CN113502425B (zh) * 2021-06-29 2022-06-24 北京工业大学 一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法
CN113415997B (zh) * 2021-06-29 2022-10-28 北京工业大学 一种用富硅硅渣氧化调质制备铅渣微晶玻璃的方法
CN113998895B (zh) * 2021-12-13 2023-03-10 西安邮电大学 一种二硅酸锂微晶玻璃的可控析晶方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891389A (zh) * 2010-07-22 2010-11-24 西南科技大学 一种温石棉尾矿微晶玻璃及其制备方法
CN103319090A (zh) * 2013-06-04 2013-09-25 广西华锡集团股份有限公司 一种铅锌尾矿制备深色微晶玻璃的工艺方法
CN106630644A (zh) * 2016-09-19 2017-05-10 内蒙古科韵环保材料股份公司 一种稀土矿渣微晶玻璃及其制备方法
CN107010840A (zh) * 2017-03-03 2017-08-04 山东福隆玻璃科技有限公司 一种赤泥协同钙铁硅渣制备烧结黑色微晶玻璃的方法
CN108059351A (zh) * 2017-12-14 2018-05-22 北京工业大学 一种烧结法制备富铁铅渣微晶玻璃的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857367A (zh) * 2010-06-23 2010-10-13 浮山县晋盛新型建筑材料有限责任公司 一种黑色微晶玻璃及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891389A (zh) * 2010-07-22 2010-11-24 西南科技大学 一种温石棉尾矿微晶玻璃及其制备方法
CN103319090A (zh) * 2013-06-04 2013-09-25 广西华锡集团股份有限公司 一种铅锌尾矿制备深色微晶玻璃的工艺方法
CN106630644A (zh) * 2016-09-19 2017-05-10 内蒙古科韵环保材料股份公司 一种稀土矿渣微晶玻璃及其制备方法
CN107010840A (zh) * 2017-03-03 2017-08-04 山东福隆玻璃科技有限公司 一种赤泥协同钙铁硅渣制备烧结黑色微晶玻璃的方法
CN108059351A (zh) * 2017-12-14 2018-05-22 北京工业大学 一种烧结法制备富铁铅渣微晶玻璃的方法

Also Published As

Publication number Publication date
CN108059351A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2019114202A1 (zh) 一种烧结法制备富铁铅渣微晶玻璃的方法
CN105441683B (zh) 一种混合废渣的综合处理方法
CN108264233B (zh) 电解锰渣综合利用及制备微晶玻璃的方法
CN105884200B (zh) 一种利用工业飞灰与玻璃化熔渣制造微晶玻璃陶瓷复合材料的方法
CN103265169B (zh) 一种高放射性核废料玻璃固化基材的制备方法
CN107417122B (zh) 一种综合利用提钒渣制备微晶玻璃的方法
CN103951193B (zh) 一种镍钼矿选冶尾矿微晶玻璃及其制备方法
CN108503224B (zh) 一种以煤矸石和稻壳灰为主要原料的微晶玻璃及其制备方法
CN106396410A (zh) 微晶玻璃的制备方法
CN108275974B (zh) 透水砖及利用飞灰制备透水砖的方法
CN104193171A (zh) 一种硅锰合金渣微晶玻璃及其制备方法
CN103145338A (zh) 一种含氟、钾、钠、稀土高炉渣微晶玻璃的制备方法
CN106116158A (zh) 一种冶炼矿渣微晶玻璃及其制备方法
CN102491640A (zh) 一种利用冶金渣协同处理市政污泥制备微晶玻璃的方法
CN106116161B (zh) 一种利用黄磷炉渣和铬渣制备微晶玻璃的方法
CN111320388A (zh) 一种烟化炉渣协同烧结制备选铁尾渣微晶玻璃的方法
US11964902B2 (en) Method for preparing lead smelting slag glass-ceramics based on the oxidation of silicon-rich silicon smelting slag and composition adjustment
CN106396411A (zh) 微晶玻璃的制备方法
CN112624645A (zh) 一种钼尾矿陶粒及其制备方法
CN104773958A (zh) 一种铅渣制备钙铁辉石微晶玻璃的方法
CN103214250B (zh) 用后废弃氧化铝砖的再利用方法
CN104071983A (zh) 一种利用萤石尾矿生产微晶玻璃板的烧结工艺方法
CN103253867B (zh) 一种熔融态黄磷炉渣制备微晶玻璃的工艺技术
CN108358455A (zh) 一种利用铅锌尾矿和石英尾砂制备微晶玻璃的方法
CN102372439B (zh) 一种用废旧玻璃生产微晶玻璃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889619

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18889619

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18889619

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 04.08.2020)