CN106391089B - 一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂 - Google Patents

一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂 Download PDF

Info

Publication number
CN106391089B
CN106391089B CN201610953996.7A CN201610953996A CN106391089B CN 106391089 B CN106391089 B CN 106391089B CN 201610953996 A CN201610953996 A CN 201610953996A CN 106391089 B CN106391089 B CN 106391089B
Authority
CN
China
Prior art keywords
catalyst
nitrophenol
preparation
prepared
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610953996.7A
Other languages
English (en)
Other versions
CN106391089A (zh
Inventor
戴洪兴
林虹霞
邓积光
刘雨溪
谢少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610953996.7A priority Critical patent/CN106391089B/zh
Publication of CN106391089A publication Critical patent/CN106391089A/zh
Application granted granted Critical
Publication of CN106391089B publication Critical patent/CN106391089B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂,属于纳米材料制备领域。制备方法为:采用热聚合法制备得到载体g‑C3N4,将所得的样品研磨成粉末备用。采用等体积浸渍法制备Fe2O3/g‑C3N4,称取一定量的硝酸铁,以异丙醇作为溶剂,利用等体积浸渍法将硝酸铁溶液浸渍至载体中,将所得混合物转移管式炉中,以1℃/min的速率从室温升至350℃,保温3h,得到Fe2O3/g‑C3N4。本发明所制备的本发明制备得到的Fe2O3/g‑C3N4催化剂对对硝基苯酚表现出优异的光催化性能。本发明具有原料廉价易得,制备过程简单,产量高,在光催化领域具有良好的应用前景。

Description

一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂
技术领域
本发明涉及一种Fe2O3/g-C3N4:高效降解对硝基苯酚的光催化剂、其制备方法及其对对硝基苯酚的光催化氧化,具体的涉及采用热聚合法以盐酸胍作为前驱体制备二维g-C3N4纳米片,采用等体积浸渍法制备g-C3N4负载Fe2O3的光催化剂,得到对对硝基苯酚具有高光催化氧化活性的复合半导体纳米催化剂,属于纳米材料制备领域。
背景技术
随着工业的迅猛发展,全国各地出现严重的水体污染问题。水体污染治理成为环境治理工作的重中之重。含酚废水由于成分复杂、在环境中停留时间长、高毒性和难降解性,是造成水体污染的主要来源。以对硝基苯酚为例,传统的废水处理方法主要有物理方法、化学方法以及生物降解法。但是,传统处理方法存在成本高、工艺复杂,以及二次污染等问题。光催化是一种新型的废水处理技术,具有处理效率高、反应条件温和、无二次污染等优点。半导体在光催化过程中产生的空穴有很强的氧化性,可以氧化分解绝大部分的有机物,在室温下可实现对有机污染物的深度矿化。因此,利用光催化氧化方法实现废水中对硝基苯酚的高效氧化具有重要的发展前景,而光催化剂的性能是决定能否有效消除对硝基苯酚的关键。
氮化碳作为一种富电子有机半导体,禁带宽度约为2.7eV,由于其独特的电子能带结构和优异的物理化学性质,使得在光催化方面有巨大的应用前景。查阅文献得知,不同半导体之间进行复合可以提高体系的电荷分离效率,扩展光谱响应范围,提高催化剂活性。例如,朱永法等人将C3N4和有机超导体TCNQ进行复合,得到层层结构;TCNQ与C3N4通过π-π作用降低价带位置0.3eV,增强光催化剂的氧化能力;光催化降解苯酚活性提高了6倍;可见光活性拓展至600nm(Y.F.Zhu et al.J.Mater.Chem.A 2014,2(29),11432–11438)。王心晨等人选择半导体MoS2与g-C3N4复合形成超薄异质结,MoS2/g-C3N4体系的光生电荷分离以及传输效率提高;在可见光下光解水产氢、产氧量子效率分别达到2.1%和1.1%(X.C.Wang etal.Angew.Chem.Int.Ed.2013,52(13),3621–3625)。据我们所知,目前没有报道将Fe2O3/g-C3N4复合型催化剂应用于对硝基苯酚的光催化氧化。
发明内容
本发明的目的在于提供一种高效光催化氧化对硝基苯酚的Fe2O3/g-C3N4纳米催化剂及其制备方法,具体涉及采用热聚合法制备载体g-C3N4,采用等体积浸渍法制备Fe2O3/g-C3N4,应用于对硝基苯酚的光催化氧化。
Fe2O3/g-C3N4:高效降解对硝基苯酚的光催化剂,其制备主要包括以下步骤:将一定量的盐酸胍称量至坩埚中,加盖密封,转移至马弗炉内,以2.3℃/min的速率从室温升至550℃,保温4h,自然冷却至室温,研磨成粉末备用;
采用等体积浸渍法制备Fe2O3/g-C3N4纳米催化剂,催化剂具体制备如下:称取一定量的Fe(NO3)3·9H2O,溶解于异丙醇中,搅拌30min得到均匀溶液,取适量上述溶液滴加至g-C3N4中,静置,干燥,将得到的混合物转移至管式炉中,通入N2(优选200mL/min),以1℃/min的速率从室温升至350℃,保温3h,自然冷却至室温得到Fe2O3/g-C3N4催化剂。
上述Fe2O3/g-C3N4催化剂中Fe2O3的负载量为0.1wt%-0.8wt%,优选0.5wt%。
在可见光照射下,将Fe2O3/g-C3N4催化剂加入到初始浓度为0.2mmol/L对硝基苯酚溶液中,加入30wt%的H2O2溶液,加入HCl调节pH至3.5。每0.1g催化剂对应0.6mL H2O2溶液,对应100mL对硝基苯酚溶液;负载0.5wt%Fe2O3/g-C3N4的光催化活性最好,光照射40min后,对硝基苯酚转化率达95%,比g-C3N4纳米片的提高了约6倍。
本发明具有原料廉价易得,制备过程简单,产量较高等特征。本发明制备得到的Fe2O3/g-C3N4催化剂对对硝基苯酚表现出优异的光催化性能。
附图说明
图1为所制得Fe2O3/g-C3N4样品的XRD谱图。其中曲线(a)、(b)、(c)、(d)、(e)、(f)分别为实施例1、实施例2、实施例3、实施例4、实施例5、实施例6催化剂样品的XRD谱图。
图2为所制得Fe2O3/g-C3N4样品的SEM和TEM照片。其中图(a)和(b)分别为g-C3N4的SEM和TEM照片,(c-e)0.5wt%Fe2O3/g-C3N4和(f)0.8wt%Fe2O3/g-C3N4样品的TEM照片。
图3为所制得Fe2O3/g-C3N4样品可见光下对对硝基苯酚的光催化氧化活性。图中曲线分别为实施例1、实施例2、实施例3、实施例4、实施例5、实施例6催化剂可见光照射下在对硝基苯酚初始浓度为0.2mmol/L(0.6mL H2O2)、初始pH为3.5条件下的对硝基苯酚光降解活性曲线。
具体实施方式
为了进一步了解本发明,下面以实施例作详细说明,并给出附图描述本发明得到的对对硝基苯酚具有优异催化活性的Fe2O3/g-C3N4催化剂。
实施例1:称取5g盐酸胍,转移至坩埚中,加盖密封,转移至马弗炉内,以2.3℃/min的速率从室温升至550℃,保温4h,自然冷却至室温,研磨成粉末,得到g-C3N4纳米催化剂。
实施例2:称取5g盐酸胍,转移至坩埚中,加盖密封,转移至马弗炉内,以2.3℃/min的速率从室温升至550℃,保温4h,自然冷却至室温,研磨成粉末,得到g-C3N4纳米催化剂。称取0.097g的Fe(NO3)3·9H2O,溶解于50mL异丙醇中,搅拌30min得到均匀溶液,取1.3mL上述溶液滴加至0.5g g-C3N4中,静置,60℃干燥,将得到的混合物转移至管式炉中,通入N2(200mL/min),以1℃/min的速率从室温升至350℃,保温3h,自然冷却至室温得到0.1wt%Fe2O3/g-C3N4催化剂。
实施例3-6
制备方法同实施例2,不同的是Fe2O3/g-C3N4催化剂的负载量依次为0.3wt%、0.5wt%、0.7wt%、0.8wt%。
本发明制备方法新颖,原料廉价,制备过程简单,且产量较高,所得Fe2O3/g-C3N4纳米材料对对硝基苯酚有良好的光催化氧化性能。
上述实施例所制得Fe2O3/g-C3N4样品的XRD谱图见图1,其中曲线(a)、(b)、(c)、(d)、(e)、(f)分别为g-C3N4,0.1wt%Fe2O3/g-C3N4,0.3wt%Fe2O3/g-C3N4,0.5wt%Fe2O3/g-C3N4,0.7wt%Fe2O3/g-C3N4和0.8wt%Fe2O3/g-C3N4的XRD谱图;所制得的Fe2O3/g-C3N4样品的TEM照片见图2,其中图(a)和(b)分别为g-C3N4的SEM和TEM照片,(c-e)、(f)分别为0.5wt%Fe2O3/g-C3N4和0.8wt%Fe2O3/g-C3N4样品的TEM照片;所制得Fe2O3/g-C3N4样品可见光下对对硝基苯酚的光催化氧化活性见图3。

Claims (5)

1.一种高效降解对硝基苯酚的光催化剂Fe2O3/g-C3N4的制备方法,其特征在于,Fe2O3/g-C3N4催化剂中Fe2O3的负载量为0.1wt%-0.8wt%,包括以下步骤:g-C3N4的制备:将一定量的盐酸胍称量至坩埚中,加盖密封,转移至马弗炉内,以2.3℃/min的速率从室温升至550℃,保温4h,自然冷却至室温,研磨成粉末备用;采用等体积浸渍法制备Fe2O3/g-C3N4纳米催化剂:称取一定量的Fe(NO3)3·9H2O,溶解于异丙醇中,搅拌30min得到均匀溶液,取适量上述溶液滴加至g-C3N4中,静置,干燥,将得到的混合物转移至管式炉中,通入N2,以1℃/min的速率从室温升至350℃,保温3h,自然冷却至室温得到Fe2O3/g-C3N4催化剂。
2.按照权利要求1所述的制备方法,其特征在于,光催化剂Fe2O3/g-C3N4中Fe2O3的负载量为0.5wt%。
3.按照权利要求1或2所述的制备方法制备得到的催化剂Fe2O3/g-C3N4
4.按照权利要求1或2所述的制备方法制备得到的催化剂Fe2O3/g-C3N4的应用,用于降解对硝基苯酚。
5.按照权利要求4的应用,其特征在于,在可见光照射下,将Fe2O3/g-C3N4催化剂加入到初始浓度为0.2mmol/L对硝基苯酚溶液中,加入30wt%的H2O2溶液,加入HCl调节pH至3.5;每0.1g催化剂对应0.6mL H2O2溶液,对应100ml对硝基苯酚溶液;光照射40min。
CN201610953996.7A 2016-11-03 2016-11-03 一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂 Expired - Fee Related CN106391089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610953996.7A CN106391089B (zh) 2016-11-03 2016-11-03 一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610953996.7A CN106391089B (zh) 2016-11-03 2016-11-03 一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂

Publications (2)

Publication Number Publication Date
CN106391089A CN106391089A (zh) 2017-02-15
CN106391089B true CN106391089B (zh) 2019-02-26

Family

ID=58014414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610953996.7A Expired - Fee Related CN106391089B (zh) 2016-11-03 2016-11-03 一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂

Country Status (1)

Country Link
CN (1) CN106391089B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790168B (zh) * 2017-10-31 2020-04-10 北京化工大学 一种具有荧光的加氢催化剂以及荧光饱和橡胶的制备方法
CN108452820B (zh) * 2018-02-09 2021-11-09 武汉大学 一种氮化碳/α型氧化铁催化剂、光电辅助类芬顿体系及其在有机废水处理中的应用
CN110237855A (zh) * 2018-03-08 2019-09-17 武汉理工大学 一种可见光响应氧化铁掺杂氮缺陷氮化碳复合材料的制备方法及应用
CN108554445B (zh) * 2018-03-30 2019-11-22 华中科技大学 一种可见光响应型催化剂g-C3N4/PDI/Fe、其制备和应用
CN109126683B (zh) * 2018-09-11 2021-06-25 哈尔滨工程大学 一种改性c3n4材料的制备方法
JP7283690B2 (ja) * 2019-03-28 2023-05-30 公立大学法人山陽小野田市立山口東京理科大学 光触媒の製造方法
CN110064433A (zh) * 2019-05-08 2019-07-30 上海应用技术大学 一种复合光催化剂及其制备方法
CN110479343A (zh) * 2019-08-16 2019-11-22 北京师范大学 一种Fe2O3/g-C3N4复合光催化材料的一步合成制备方法
CN110548532A (zh) * 2019-09-10 2019-12-10 重庆工商大学 一种可重复利用的高效氮化碳基复合光催化剂的制备方法
CN110694663A (zh) * 2019-10-22 2020-01-17 邢台学院 一种复合光催化剂的制备方法及应用
CN111068737B (zh) * 2020-01-07 2021-06-11 上海交通大学 强化臭氧氧化含油污水催化剂的制备方法及内循环装置
CN111659440A (zh) * 2020-06-11 2020-09-15 江南大学 一种光-芬顿催化剂及其制备方法和在水处理中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247877A (zh) * 2011-05-18 2011-11-23 重庆工商大学 可见光催化剂的制备方法
JP2012200698A (ja) * 2011-03-28 2012-10-22 Daicel Corp 光触媒、及びそれを用いた有機化合物の酸化方法
CN103908977A (zh) * 2013-01-04 2014-07-09 安徽大学 一种基于石墨相氮化碳磁性复合光催化材料的制备方法及应用
CN104888837A (zh) * 2015-06-10 2015-09-09 浙江理工大学 一种具有可见光响应的氮化碳/三氧化二铁纳米复合材料的合成方法及应用
CN105289692A (zh) * 2015-11-19 2016-02-03 南京工程学院 一种g-C3N4/Fe2O3复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200698A (ja) * 2011-03-28 2012-10-22 Daicel Corp 光触媒、及びそれを用いた有機化合物の酸化方法
CN102247877A (zh) * 2011-05-18 2011-11-23 重庆工商大学 可见光催化剂的制备方法
CN103908977A (zh) * 2013-01-04 2014-07-09 安徽大学 一种基于石墨相氮化碳磁性复合光催化材料的制备方法及应用
CN104888837A (zh) * 2015-06-10 2015-09-09 浙江理工大学 一种具有可见光响应的氮化碳/三氧化二铁纳米复合材料的合成方法及应用
CN105289692A (zh) * 2015-11-19 2016-02-03 南京工程学院 一种g-C3N4/Fe2O3复合材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Photocatalytic removal of Pb ions from aqueous solution using Fe2O3 doped in G-C3N4 nanocomposite under visible light";Baeissa ES;《Frontiers in Nanoscience and Nanotechnology》;20160330;第2卷(第2期);第100–106页 *
"Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(Ⅵ)under visible light";Dong Xiao et al;《Applied Surface Science》;20150907;第358卷;第2.1节和图2 *
"光Fenton-光催化复合催化剂的制备及其催化降解有机染料的研究";陈长虹;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20160915(第09期);第19-20页和27-30页 *
Dong Xiao et al."Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(Ⅵ)under visible light".《Applied Surface Science》.2015,第358卷第2.1节和图2. *

Also Published As

Publication number Publication date
CN106391089A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106391089B (zh) 一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂
Wang et al. MOF-derived N-doped ZnO carbon skeleton@ hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: Mechanism, pathways and DFT calculation
Liu et al. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies
Kumar et al. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation
Li et al. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water
Zhang et al. Carbon layer derived carrier transport in Co/g-C3N4 nanosheet junctions for efficient H2O2 production and NO removal
CN109092343B (zh) 一种可见光响应型g-C3N4/BiVO4异质结材料的制备方法及其应用
CN105056985B (zh) g‑C3N4/氧化石墨烯/纳米铁可见光响应催化膜
Xu et al. Montmorillonite-hybridized g-C3N4 composite modified by NiCoP cocatalyst for efficient visible-light-driven photocatalytic hydrogen evolution by dye-sensitization
Wang et al. Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN108479752B (zh) 一种二维碳层负载的BiVO4/TiO2异质可见光催化剂的制备方法
CN106423246A (zh) 一种可见光响应g‑C3N4/Bi2S3异质结材料的制备方法和用途
Paul et al. Mg/Li@ GCN as highly active visible light responding 2D photocatalyst for wastewater remediation application
Zhou et al. Enhanced visible light photocatalytic degradation of rhodamine B by Z-scheme CuWO 4/gC 3 N 4 heterojunction
Mohamed et al. Fabrication of mesoporous PtO–ZnO nanocomposites with promoted photocatalytic performance for degradation of tetracycline
CN112517081B (zh) 金属锡卟啉轴向功能化二氧化钛的复合光催化剂及其制备方法
Dou et al. Ag nanoparticle-decorated 2D/2D S-scheme gC 3 N 4/Bi 2 WO 6 heterostructures for an efficient photocatalytic degradation of tetracycline
Rashid et al. A spiral shape microfluidic photoreactor with MOF (NiFe)-derived NiSe-Fe3O4/C heterostructure for photodegradation of tetracycline: mechanism conception and DFT calculation
Alsaggaf et al. S-scheme CuO/ZnO pn heterojunctions for endorsed photocatalytic reduction of mercuric ions under visible light
CN108579786A (zh) Fe3O4@g-C3N4/RGO复合光催化剂及制备方法
Cai et al. Z‐type heterojunction of graphene quantum dots/g‐C3N4/BiOCl with excellent photocatalytic performance for nitrogen fixation
Li et al. Construction of Z-scheme BiOI/g-C3N4 heterojunction with enhanced photocatalytic activity and stability under visible light
Kuate et al. Construction of 2D/3D black g-C3N4/BiOI S-scheme heterojunction for boosted photothermal-assisted photocatalytic tetracycline degradation in seawater
CN112473712A (zh) 采用不同气氛处理的CeO2/g-C3N4异质结材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190226

Termination date: 20211103