CN106373884B - 复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法 - Google Patents
复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法 Download PDFInfo
- Publication number
- CN106373884B CN106373884B CN201610807890.6A CN201610807890A CN106373884B CN 106373884 B CN106373884 B CN 106373884B CN 201610807890 A CN201610807890 A CN 201610807890A CN 106373884 B CN106373884 B CN 106373884B
- Authority
- CN
- China
- Prior art keywords
- layer
- gate
- dielectric layer
- etching
- sin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- 239000010410 layer Substances 0.000 claims abstract description 306
- 230000008569 process Effects 0.000 claims abstract description 117
- 229910052751 metal Inorganic materials 0.000 claims abstract description 68
- 239000002184 metal Substances 0.000 claims abstract description 68
- 238000005530 etching Methods 0.000 claims abstract description 67
- 238000002161 passivation Methods 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 238000001259 photo etching Methods 0.000 claims abstract description 38
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 37
- 230000003647 oxidation Effects 0.000 claims abstract description 33
- 229910017109 AlON Inorganic materials 0.000 claims abstract description 26
- 239000011241 protective layer Substances 0.000 claims abstract description 24
- 230000001590 oxidative effect Effects 0.000 claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 42
- 238000009616 inductively coupled plasma Methods 0.000 claims description 41
- 238000002955 isolation Methods 0.000 claims description 28
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 21
- 238000005566 electron beam evaporation Methods 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000000231 atomic layer deposition Methods 0.000 claims description 15
- 229910002704 AlGaN Inorganic materials 0.000 claims description 14
- 230000004888 barrier function Effects 0.000 claims description 14
- 239000012495 reaction gas Substances 0.000 claims description 13
- 238000011065 in-situ storage Methods 0.000 claims description 6
- 238000005468 ion implantation Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 3
- 239000005416 organic matter Substances 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 44
- 239000000243 solution Substances 0.000 description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- 238000000137 annealing Methods 0.000 description 20
- 229910021642 ultra pure water Inorganic materials 0.000 description 16
- 239000012498 ultrapure water Substances 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 15
- 239000003292 glue Substances 0.000 description 14
- 238000005406 washing Methods 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 150000004767 nitrides Chemical class 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 10
- 238000004528 spin coating Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 8
- 238000004506 ultrasonic cleaning Methods 0.000 description 8
- 238000004026 adhesive bonding Methods 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000000861 blow drying Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 229910052593 corundum Inorganic materials 0.000 description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 description 7
- 238000001035 drying Methods 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000012713 reactive precursor Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004151 rapid thermal annealing Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001883 metal evaporation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02178—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/518—Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法,主要解决现有同类器件可靠性低的问题。其制作过程为:在外延基片上制作源、漏电极和有源区电隔离,并生长SiN钝化层;在SiN钝化层上光刻并刻蚀栅槽区域;在栅槽和SiN钝化层上生长AlN介质层,并利用热氧化或等离子辅助氧化工艺将AlN介质层氧化为AlON复合栅介质层;在栅介质层上制作栅电极;在栅电极和栅电极区域外的栅介质层上生长SiN保护层;在SiN保护层上光刻并刻蚀金属互联开孔区;在互联开孔区和未开孔刻蚀的SiN保护层上制作金属互联层,完成器件制作。本发明改善了器件的界面特性,提高了其可靠性,可用作高效微波功率器件。
Description
技术领域
本发明属于半导体器件技术领域,具体地说是一种高电子迁移率晶体管的制作方法,可用于制作高频大功率模块。
背景技术
氮化物半导体材料GaN、AlN、InN及其合金是继第一代元素半导体材料Si、Ge和第二代化合物半导体材料GaAs、InP等之后的第三代宽禁带半导体材料,其具有直接带隙、禁带宽度宽且连续可调制范围大、击穿场强高、饱和电子漂移速度快、热导率高、抗辐照性能好等优点。随着科技和社会发展水平提高,第一、二代半导体材料无法满足更高频率、更高功率电子器件的需求,基于氮化物半导体材料的电子器件则可满足这一要求,大大提高了器件性能。GaN基高电子迁移率晶体管HEMT的结构能够最大限度发挥氮化物材料的优势,其与Si基横向扩散金属-氧化物-半导体场效应晶体管和GaAs基高电子迁移率晶体管相比,具有异质结沟道二维电子气密度高、饱和电流和输出功率大、开关速度快、击穿电压高等优点,并能在高压、高温、辐照等恶劣环境中工作,在有源相控阵雷达、电子战系统、下一代移动通信、智能电网、4C产业等军民两用领域具有非常广阔的应用前景。
根据栅极接触结构的不同,可以将GaN基HEMT器件分为两类:一类是传统的GaN基HEMT器件,采用肖特基栅接触;另一类是GaN基绝缘栅HEMT器件,其在传统的HEMT器件结构基础上,栅电极和氮化物半导体材料之间加入了一层绝缘材料。
传统的肖特基栅HEMT器件,由于采用肖特基栅接触,其电子势垒高度仅为1eV左右,导致器件栅极泄漏电流严重。在反向栅偏置时,由于栅极电子容易以陷阱辅助发射或隧穿的方式穿越肖特基势垒进入异质结沟道,从而形成关态栅漏电和漏极泄漏电流,影响器件关断特性和击穿电压,并造成额外的关态功耗,影响器件工作效率;在正向栅偏置时,由于沟道热电子发射进入栅极,导致栅极在1V偏置附近即发生正向导通,栅极耗散功率增大制约了器件功率输出能力。
GaN基绝缘栅HEMT器件,由于采用绝缘栅结构可以大幅提高栅极与沟道之间的电子势垒高度,有效改善器件关态漏电和击穿特性,可以在更高电压下工作,提高其微波功率输出能力和工作效率;由于微波功率增益和功率附加效率随着绝缘栅器件正向栅开启电压的升高而显著提高,因此,GaN基绝缘栅HEMT器件在高效微波功率器件应用中非常具有竞争力。
栅介质工艺是GaN基绝缘栅HEMT器件研制的关键技术,即栅介质层材料选取及其生长工艺是影响器件性能的重要因素。在半导体器件研究中,选择栅介质层材料及其生长技术需要遵循以下原则:介质材料缺陷少且均匀性好,材料临界击穿场强高,栅介质与半导体层之间带阶大,界面接触质量高且化学和热稳定性良好,导热性能好,介电常数高等。GaN基绝缘栅HEMT器件因其在高效微波功率器件和高速、高压开关应用中的独特优势,无论是在国内还是国际上都引起了越来越多的关注,其栅介质层技术也成为氮化物半导体领域的国际研究热点。
2000年,M.A.Khan等人在SiC衬底上制作了AlGaN/GaN绝缘栅HEMT器件,其栅长为2μm,栅宽为100μm。该绝缘栅HEMT器件采用SiO2作为栅介质层材料,该SiO2栅介质层材料是利用等离子增强化学气相沉积PECVD工艺生长的,其厚度实测值为7nm,接近10nm的设计值。与肖特基栅HEMT器件相比,该绝缘栅HEMT器件将栅极泄漏电流降低了6个数量级,并将栅极正向最高偏置电压从2V提高到了9V,且大幅提高了器件饱和输出电流。但是,与肖特基栅HEMT相比,该绝缘栅HEMT器件虽说增大了栅到沟道之间的距离,但却降低了器件的栅控能力,其跨导峰值从145mS/mm减小到110mS/mm,其阈值电压向负电压方向漂移了近5V。参见文献M.Asif Khan,X.Hu,A.Tarakji,G.Simin,J.Yang,R.Gaska,and M.S.Shur,AlGaN/GaNmetal–oxide–semiconductor heterostructure field-effect transistors on SiCsubstrates,Appl.Phys.Lett.vol.77,no.9,pp.1339-1341,Aug.2000.
2005年,P.D.Ye等人采用Al2O3作为栅介质层材料制作了AlGaN/GaN绝缘栅HEMT器件。与SiO2介质材料相比,由于Al2O3材料具有更高的介电常数,故可以改善绝缘栅HEMT器件的栅控能力和微波功率增益。该Al2O3栅介质层材料是利用原子层沉积ALD工艺生长的,与溅射、热氧化等工艺相比,ALD工艺具有在原子尺度精确控制膜厚、薄膜质量和均匀性好、针孔缺陷密度低、与衬底材料界面平整度和粘附性好、台阶覆盖性好等优点,已经成为最常用的栅介质材料生长工艺。参见文献P.D.Ye,B.Yang,K.K.Ng,J.Bude,G.D.Wilk,S.Halder andJ.C.M.Hwang,GaN metal-oxide-semiconductor high-electron-mobility-transistorwith atomic layer deposited Al2O3as gate dielectric,Appl.Phys.Lett.vol.86,no.6,p.063501,Jan.2005.
Y.Z.Yue等人制作了超薄栅介质层AlGaN/GaN绝缘栅HEMT器件,该器件采用HfO2/Al2O3堆叠介质作为栅介质层材料。高k材料HfO2可以大幅提高绝缘栅HEMT器件的栅控能力,而Al2O3界面插入层改善了栅介质层与氮化物半导体之间的界面特性。参见文献Y.Z.Yue,Y.Hao,J.C.Zhang,J.Y.Ni,W.Mao,Q.Feng,and L.J.Liu,AlGaN/GaN MOS-HEMT WithHfO2Dielectric and Al2O3Interfacial Passivation Layer Grown by Atomic LayerDeposition,IEEE Electron Device Lett.,vol.29,no.8,pp.838–840,Aug.2008.
近年来,科研人员又相继研究了TiO2、Ta2O5、ZrO2、LaLuO3等高k介质材料的生长工艺,及其在GaN基绝缘栅HEMT器件中的应用,获得了低关态漏电、高击穿电压的器件性能。然而,氮化物材料表面非常容易被氧化,在纤锌矿氮化物晶格中形成不稳定的氧替位氮缺陷。绝缘栅HEMT器件制作和栅氧介质沉积过程中,低质量界面氧化层的建立使栅介质层和氮化物势垒层之间存在高密度界面电荷,界面态的充/放电效应会导致严重的阈值电压不稳定等可靠性问题,界面电荷的能带调制和远程电离杂质散射作用会引起阈值电压负漂、沟道载流子迁移率和跨导降低等器件性能退化问题。所以,GaN基绝缘栅HEMT器件界面电荷已经成为制约其可靠性提高和产业化应用的重要因素,近年来氮化物绝缘栅HEMT器件的界面改善工艺和新型栅介质层技术成为本领域的国际研究热点。
发明内容
本发明的目的在于克服现有绝缘栅器件的不足,提供一种复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法,以减少栅介质层与氮化物势垒层之间的界面电荷,改善绝缘栅HEMT器件的界面特性和可靠性,提高器件工作稳定性和使用寿命。
为实现上述目的,本发明制作复合栅介质GaN基绝缘栅高电子迁移率晶体管的方法,有如下两种技术方案:
技术方案一:
一种复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法,包括如下步骤:
(1)在自下而上的依次包括衬底、AlN成核层、GaN缓冲层、AlN插入层、AlGaN势垒层和GaN帽层外延基片的GaN缓冲层上制作源电极和漏电极;
(2)在GaN帽层上光刻有源区的电隔离区域,利用感应耦合等离子刻蚀ICP工艺或离子注入工艺制作器件有源区的电隔离;
(3)在源电极、漏电极和有源区的GaN帽层上,利用等离子增强化学气相沉积PECVD工艺生长SiN钝化层;
(4)在SiN钝化层上光刻栅槽区域,并利用ICP工艺对该栅槽区域内的SiN钝化层进行刻蚀,刻蚀深度至GaN帽层;
(5)在栅槽区域的GaN帽层和栅槽区域以外的SiN钝化层上,利用等离子增强原子层沉积PEALD工艺生长厚度为5nm~10nm的AlN介质层;
(6)在AlN介质层上,利用热氧化工艺将AlN介质层氧化为AlON复合栅介质层,其氧化的工艺条件如下:
氧化反应气体为O2,
衬底温度为600℃,
氧化时间为1h;
(7)在AlON复合栅介质层上光刻栅电极区域,并利用电子束蒸发工艺制作栅电极;
(8)在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长SiN保护层;
(9)在SiN保护层上光刻金属互联开孔区,并利用ICP工艺依次刻蚀掉互联开孔区的SiN保护层、栅介质层、SiN钝化层;
(10)在金属互联开孔区和未开孔刻蚀的SiN保护层上光刻金属互联区域,并利用电子束蒸发工艺制作金属互联,用于引出源电极和漏电极,完成器件制作。
技术方案二:
一种复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法,包括如下步骤:
1)在自下而上的依次包括衬底、AlN成核层、GaN缓冲层、AlN插入层、AlGaN势垒层和GaN帽层外延基片的GaN缓冲层上制作源电极和漏电极;
2)在GaN帽层上光刻有源区的电隔离区域,利用感应耦合等离子刻蚀ICP工艺或离子注入工艺制作器件有源区的电隔离;
3)在源电极、漏电极和有源区的GaN帽层上,利用等离子增强化学气相沉积PECVD工艺生长SiN钝化层;
4)在SiN钝化层上光刻栅槽区域,并利用ICP工艺对该栅槽区域内的SiN钝化层进行刻蚀,刻蚀深度至GaN帽层;
5)在栅槽区域的GaN帽层和栅槽区域以外的SiN钝化层上,利用等离子增强原子层沉积PEALD工艺生长厚度为5nm~10nm的AlN介质层;
6)在AlN介质层上,利用等离子体辅助氧化工艺将AlN介质层氧化为AlON复合栅介质层,其氧化的工艺条件如下:
氧化反应气体为O2或O3或N2O,
射频源功率为300W,
衬底温度为300℃~400℃,
氧化时间为20min~30min;
7)在AlON复合栅介质层上光刻栅电极区域,并利用电子束蒸发工艺制作栅电极;
8)在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长SiN保护层;
9)在SiN保护层上光刻金属互联开孔区,并利用ICP工艺依次刻蚀掉互联开孔区的SiN保护层、栅介质层、SiN钝化层;
10)在金属互联开孔区和未开孔刻蚀的SiN保护层上光刻金属互联区域,并利用电子束蒸发工艺制作金属互联,用于引出源电极和漏电极,完成器件制作。
本发明与现有技术相比具有如下优点:
1.本发明由于利用等离子增强原子层沉积PEALD工艺生长AlN介质层,提高了氮前驱体源的活性,降低了AlN介质生长的工艺温度,提高了AlN介质生长工艺的兼容性。
2.本发明由于利用热氧化或等离子体辅助氧化工艺将AlN介质层氧化为AlON复合栅介质层,可以减少栅介质层与GaN帽层之间的界面电荷,改善绝缘栅器件的界面特性和可靠性。
附图说明
图1是现有复合栅介质GaN基绝缘栅高电子迁移率晶体管横截面示意图;
图2是本发明制作复合栅介质GaN基绝缘栅高电子迁移率晶体管的工艺流程框图。
具体实施方式
参照图1,现有复合栅介质GaN基绝缘栅高电子迁移率晶体管,自下而上依次包括厚度为400μm~500μm的衬底、厚度为180nm的AlN成核层、厚度为1.3μm~2μm的GaN缓冲层、厚度为1nm的AlN插入层、厚度为22nm~27nm的AlGaN势垒层、厚度为2nm的GaN帽层、厚度为60nm的SiN钝化层、栅介质层和厚度为200nm的SiN保护层,GaN缓冲层的两端设有源电极和漏电极,栅介质层的中间设有栅电极,源电极和漏电极上设有金属互联层,其中衬底采用绝缘的蓝宝石或Si或SiC衬底,AlGaN势垒层的铝组分为22%~30%,栅介质层采用厚度为5nm~10nm的AlON复合介质层,可以改善栅介质层与GaN帽层之间的界面质量。
本发明制作复合栅介质GaN基绝缘栅高电子迁移率晶体管的初始材料是购买的外延基片,该外延基片由下向上依次包括衬底、AlN成核层、GaN缓冲层、AlN插入层、AlGaN势垒层和GaN帽层。
参照图2,本发明制作复合栅介质GaN基绝缘栅高电子迁移率晶体管的工艺,按照不同的衬底材料、不同的有源区电隔离工艺、不同的栅介质层厚度和不同的栅介质层氧化工艺,给出如下三种实施例:
实施例一,在蓝宝石衬底上利用热氧化工艺制作AlON复合栅介质层厚度为10nm的GaN基绝缘栅高电子迁移率晶体管。
步骤1,在外延基片的GaN缓冲层上制作源电极和漏电极。
1a)在GaN帽层上光刻源电极区域和漏电极区域:
首先,将外延基片放在200℃的热板上烘烤5min;
然后,在GaN帽层上进行剥离胶的涂胶和甩胶,其甩胶厚度为0.35μm,并将样品放在200℃的热板上烘烤5min;
接着,在剥离胶上进行光刻胶的涂胶和甩胶,其甩胶厚度为0.77μm,并将样品放在90℃的热板上烘烤1min;
之后,将完成涂胶和甩胶的样品放入光刻机中对源电极区域和漏电极区域内的光刻胶进行曝光;
最后,将完成曝光的样品放入显影液中移除源电极区域和漏电极区域内的光刻胶和剥离胶,并对其进行超纯水冲洗和氮气吹干;
1b)在源电极区域和漏电极区域内的GaN帽层上以及源电极区域和漏电极区域外的光刻胶上蒸发源电极和漏电极:
首先,将有源电极和漏电极光刻图形的样品放入等离子去胶机中进行底膜处理,其处理的时间为5min;
然后,将样品放入电子束蒸发台中,待电子束蒸发台的反应腔室真空度达到2×10-6Torr之后在源电极10区域和漏电极区域内的GaN帽层上以及源电极区域和漏电极区域外的光刻胶上蒸发欧姆金属,该欧姆金属是由下向上依次由Ti、Al、Ni和Au四层金属组成的金属堆栈结构;
接着,对完成欧姆金属蒸发的样品进行剥离,以移除源电极区域和漏电极区域外的欧姆金属、光刻胶和剥离胶;
最后,用超纯水冲洗样品并用氮气吹干;
1c)将完成欧姆金属蒸发和剥离的样品放入快速热退火炉中进行退火处理,以使源电极和漏电极区域内GaN帽层上的欧姆金属下沉至GaN缓冲层,从而形成欧姆金属与异质结沟道之间的欧姆接触,其退火的工艺条件为:退火气氛为N2,退火温度为830℃,退火时间为30s。
步骤2,在GaN帽层上光刻有源区的电隔离区域,利用ICP工艺制作器件有源区的电隔离。
2a)在GaN帽层上光刻电隔离区域:
首先,将样品放在200℃的热板上烘烤5min;
然后,进行光刻胶的涂胶和甩胶,其甩胶转速为3500转/mim,并将样品放在90℃的热板上烘烤1min;
接着,将样品放入光刻机中对电隔离区域内的光刻胶进行曝光;
最后,将完成曝光后的样品放入显影液中以移除电隔离区域内的光刻胶,并对其进行超纯水冲洗和氮气吹干;
2b)在GaN帽层上刻蚀电隔离区域:
首先,利用ICP工艺依次刻蚀电隔离区域的GaN帽层、AlGaN势垒层、AlN插入层和GaN外延层,以实现有源区的台面隔离,其总的刻蚀深度为100nm;
然后,将样品依次放入丙酮溶液、剥离液、丙酮溶液和乙醇溶液中进行清洗,以移除电隔离区域外的光刻胶;
最后,用超纯水冲洗样品并用氮气吹干。
步骤3,在源电极、漏电极和有源区的GaN帽层上,利用PECVD工艺生长SiN钝化层。
3a)对完成有源区电隔离的样品进行表面清洗:
首先,将样品放入丙酮溶液中超声清洗3mim,其超声强度为3.0;
然后,将样品放入温度为60℃的剥离液中水浴加热5min;
接着,将样品依次放入丙酮溶液和乙醇溶液中超声清洗3min,其超声强度为3.0;
最后,用超纯水冲洗样品并用氮气吹干;
3b)在源电极、漏电极和有源区的GaN帽层上,利用PECVD工艺生长厚度为60nm的SiN钝化层,其生长的工艺条件为:采用NH3和SiH4作为反应气体,衬底温度为250℃,反应腔室压力为600mTorr,RF功率为22W。
步骤4,在SiN钝化层上光刻栅槽区域,并利用ICP工艺对该栅槽区域内的SiN钝化层进行刻蚀。
4a)在SiN钝化层上光刻栅槽区域:
首先,将样品放在200℃的热板上烘烤5min;
然后,进行光刻胶的涂胶和甩胶,其甩胶转速为3500转/mim,并将样品放在90℃的热板上烘烤1min;
接着,将样品放入光刻机中对栅槽区域内的光刻胶进行曝光;
最后,将完成曝光后的样品放入显影液中以移除栅槽区域内的光刻胶,并对其进行超纯水冲洗和氮气吹干;
4b)利用ICP刻蚀工艺移除栅槽区域内的SiN钝化层,其刻蚀的条件为:反应气体为CF4和O2,反应腔室压力为10mTorr,上电极和下电极的射频功率分别为100W和10W,刻蚀的深度为60nm至GaN帽层。
步骤5,在栅槽区域内的GaN帽层和栅槽区域外的SiN钝化层上,利用PEALD工艺生长AlN介质层。
5a)对完成栅槽刻蚀的样品进行表面清洗:
首先,将样品放入丙酮溶液中超声清洗3mim,其超声强度为3.0;
然后,将样品放入温度为60℃的剥离液中水浴加热5min;
接着,将样品依次放入丙酮溶液和乙醇溶液中超声清洗3min,其超声强度为3.0;
最后,用超纯水冲洗样品并用氮气吹干;
5b)将完成表面清洗的样品放入等离子增强原子层沉积PEALD设备中,对栅槽区域的GaN帽层和栅槽区域外的SiN钝化层表面进行原位预处理,其处理的工艺条件为:反应气体为NH3和N2混合气体,衬底温度为300℃,射频功率设置为200W,处理时间为5min;
5c)在栅槽区域内的GaN帽层和栅槽区域外的SiN钝化层上,利用等离子增强原子层沉积PEALD工艺生长厚度为10nm的AlN介质层,其生长的工艺条件为:采用NH3和TMA作为反应前驱体源,衬底温度为300℃,射频功率设置为50W,反应腔室压力为0.3Torr。
步骤6,在AlN介质层上利用热氧化工艺制备AlON复合栅介质层。
6a)对完成AlN介质层生长的样品进行表面清洗:
首先,将样品放入丙酮溶液中超声清洗3mim,其超声强度为3.0;
然后,将样品放入乙醇溶液中超声清洗3min,其超声强度为3.0;
最后,用超纯水冲洗样品并用氮气吹干;
6b)将完成表面清洗的样品放入热氧化炉中,将AlN介质层氧化为AlON复合栅介质层,其热氧化的工艺条件为:氧化气体为O2,反应腔室温度为600℃,氧化时间为1h。
步骤7,在栅介质层上光刻栅电极区域,并利用电子束蒸发工艺制作栅电极。
7a)在栅介质层上光刻栅电极区域:
首先,将完成栅介质层生长的样品放在200℃的热板上烘烤5min;
然后,在栅介质层上进行剥离胶的涂胶和甩胶,其甩胶厚度为0.35μm,并将样品放在200℃的热板上烘烤5min;
接着,在剥离胶上进行光刻胶的涂胶和甩胶,其甩胶厚度为0.77μm,并将样品放在90℃的热板上烘烤1min;
之后,将完成涂胶和甩胶的样品放入光刻机中对栅电极区域内的光刻胶进行曝光;
最后,将完成曝光的样品放入显影液中移除栅电极区域内的光刻胶和剥离胶,并对其进行超纯水冲洗和氮气吹干;
7b)在栅电极区域内的栅介质层和栅电极区域外的光刻胶上蒸发栅电极:
首先,将有栅电极光刻图形的样品放入等离子去胶机中进行底膜处理,其处理的时间为5min;
然后,将样品放入电子束蒸发台中,待电子束蒸发台的反应腔室真空度达到2×10-6Torr之后在栅电极区域内的栅介质层和栅电极区域外的光刻胶上蒸发栅金属,该栅金属是由下向上依次由Ni、Au和Ni三层金属组成的金属堆栈结构;
接着,对完成栅金属蒸发的样品进行剥离,以移除栅电极区域外的栅金属、光刻胶和剥离胶;
最后,用超纯水冲洗样品并用氮气吹干。
步骤8,在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长SiN保护层。
8a)对完成栅电极制作的样品进行表面清洗:
首先,将样品放入丙酮溶液中超声清洗3mim,其超声强度为3.0;
然后,将样品放入温度为60℃的剥离液中水浴加热5min;
接着,将样品依次放入丙酮溶液和乙醇溶液中超声清洗3min,其超声强度为3.0;
最后,用超纯水冲洗样品并用氮气吹干;
8b)在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长厚度为200nm的SiN保护层,其生长的工艺条件为:采用NH3和SiH4作为反应气体,衬底温度为250℃,反应腔室压力为600mTorr,射频功率为22W。
步骤9,在SiN保护层上光刻金属互联层开孔区,并利用ICP工艺依次刻蚀掉互联开孔区的SiN保护层、栅介质层、SiN钝化层。
9a)在SiN保护层上光刻金属互联层开孔区:
首先,将样品放在200℃的热板上烘烤5min;
然后,进行光刻胶的涂胶和甩胶,其甩胶转速为3500转/mim,并将样品放在90℃的热板上烘烤1min;
接着,将样品放入光刻机中对金属互联层开孔区域内的光刻胶进行曝光;
最后,将完成曝光后的样品放入显影液中以移除互联开孔区域内的光刻胶,并对其进行超纯水冲洗和氮气吹干;
9b)利用ICP刻蚀工艺在反应气体为CF4和O2,反应腔室压力为10mTorr,上电极和下电极的射频功率分别为100W和10W的条件下,先移除互联开孔区域内的200nm厚的SiN保护层,再刻蚀掉10nm厚的AlON复合栅介质层,最后刻蚀掉60nm厚的SiN钝化层。
步骤10,在金属互联层开孔区的源电极和漏电极以及未开孔刻蚀的SiN保护层上光刻金属互联层区域,并利用电子束蒸发工艺制作金属互联层,用于引出源电极和漏电极,完成器件制作。
10a)在金属互联层开孔区的源电极和漏电极以及未开孔刻蚀的SiN保护层上光刻金属互联层区域:
首先,将完成金属互联层开孔刻蚀的样品放在200℃的热板上烘烤5min;
然后,在金属互联层开孔区的源电极和漏电极以及未开孔刻蚀的SiN保护层上进行剥离胶的涂胶和甩胶,其甩胶厚度为0.35μm,并将样品放在200℃的热板上烘烤5min;
接着,在剥离胶上进行光刻胶的涂胶和甩胶,其甩胶厚度为0.77μm,并将样品放在90℃的热板上烘烤1min;
之后,将完成涂胶和甩胶的样品放入光刻机中对金属互连区域内的光刻胶进行曝光;
最后,将完成曝光的样品放入显影液中移除金属互联层区域内的光刻胶和剥离胶,并对其进行超纯水冲洗和氮气吹干;
10b)在金属互连区域内的电极和SiN保护层以及金属互连区域外的光刻胶上蒸发金属互连:
首先,将有金属互连光刻图形的样品放入等离子去胶机中进行底膜处理,其处理的时间为5min;
然后,将样品放入电子束蒸发台中,待电子束蒸发台的反应腔室真空度达到2×10-6Torr之后在互连金属区域内的电极和SiN保护层以及金属互连区域外的光刻胶上蒸发互联金属,该互联金属是由下向上依次由Ti和Au两层金属组成的金属堆栈结构;
接着,对完成互联金属蒸发的样品进行剥离,以移除金属互联层区域外的互联金属、光刻胶和剥离胶;
最后,用超纯水冲洗样品并用氮气吹干。
实施例二,在SiC衬底上利用等离子体辅助氧化工艺制作AlON复合栅介质层厚度为5nm的GaN基绝缘栅高电子迁移率晶体管。
步骤一,在外延基片的GaN缓冲层上制作源电极和漏电极。
1.1)在GaN帽层上光刻源电极区域和漏电极区域:
本步骤的具体实现与实施例一中的步骤1a)相同;
1.2)在源电极区域和漏电极区域内的GaN帽层上以及源电极区域和漏电极区域外的光刻胶上蒸发源电极和漏电极:
本步骤的具体实现与实施例一中的步骤1b)相同;
1.3)将完成欧姆金属蒸发和剥离的样品放入快速热退火炉中进行退火处理,以使源电极和漏电极区域内GaN帽层上的欧姆金属下沉至GaN缓冲层,从而形成欧姆金属与异质结沟道之间的欧姆接触,其退火的工艺条件为:退火气氛为N2,退火温度为850℃,退火时间为30s。
步骤二,在GaN帽层上光刻有源区的电隔离区域,利用离子注入工艺制作器件有源区的电隔离。
2.1)在GaN帽层上光刻电隔离区域:首先将样品放在200℃的热板上烘烤5min,然后进行光刻胶的涂胶和甩胶,其甩胶厚度为2μm,并将样品放在90℃的热板上烘烤1min,接着将样品放入光刻机中对电隔离区域内的光刻胶进行曝光,最后将完成曝光后的样品放入显影液中以移除电隔离区域内的光刻胶,并对其进行超纯水冲洗和氮气吹干;
2.2)在GaN帽层上制作有源区的电隔离:利用离子注入工艺依次将N离子注入到电隔离区域的GaN帽层、AlGaN势垒层、AlN插入层和GaN外延层,以实现有源区的电隔离,其注入的深度为100nm,然后将样品依次放入丙酮溶液、剥离液、丙酮溶液和乙醇溶液中进行清洗,以移除电隔离区域外的光刻胶,最后用超纯水冲洗样品并用氮气吹干。
步骤三,在源电极、漏电极和有源区的GaN帽层上,利用PECVD工艺生长SiN钝化层。
本步骤的具体实现与实施例一中的步骤3相同。
步骤四,在SiN钝化层上光刻栅槽区域,并利用ICP工艺刻蚀掉该栅槽区域内的SiN钝化层。
本步骤的具体实现与实施例一中的步骤4相同。
步骤五,在栅槽区域的GaN帽层和栅槽区域外的SiN钝化层上,利用PEALD工艺生长AlN介质层。
5.1)对完成栅槽刻蚀的样品进行表面清洗:
本步骤的具体实现与实施例一中的步骤5a)相同;
5.2)将完成表面清洗的样品放入等离子增强原子层沉积PEALD设备中进行原位表面预处理:
本步骤的具体实现与实施例一中的步骤5b)相同;
5.3)在栅槽区域内的GaN帽层和栅槽区域外的SiN钝化层上,利用等离子增强原子层沉积PEALD工艺生长厚度为5nm的AlN介质层,其生长的工艺条件为:采用N2和H2混合气体作为氮的反应前驱体源,采用TMA作为铝的反应前驱体源,衬底温度为300℃,射频功率设置为50W,反应腔室压力为0.3Torr。
步骤六,在AlN介质层上利用等离子体辅助氧化工艺制备AlON复合栅介质层。
6.1)在完成AlN介质层生长后,利用PEALD设备对AlN介质层进行原位等离子体辅助氧化处理,将AlN介质层氧化为AlON复合栅介质层,其等离子体辅助氧化的工艺条件为:反应气体为N2O,衬底温度为300℃,射频源功率为300W,氧化时间为20min;
6.2)将完成AlON复合栅介质层制备的样品放入快速热退火炉中进行退火处理,以改善复合栅介质层质量和器件界面特性,其退火的工艺条件为:退火气氛为N2,退火温度为500℃,退火时间为5min。
步骤七,在栅介质层上光刻栅电极区域,并利用电子束蒸发工艺制作栅电极。
本步骤的具体实现与实施例一中的步骤7相同。
步骤八,在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长SiN保护层。
本步骤的具体实现与实施例一中的步骤8相同。
步骤九,在SiN保护层上光刻金属互联层开孔区,并利用ICP工艺依次刻蚀掉互联开孔区的SiN保护层、栅介质层、SiN钝化层。
9.1)在SiN保护层上光刻金属互联层开孔区:
本步骤的具体实现与实施例一中的步骤8a)相同;
9.2)利用ICP刻蚀工艺在反应气体为CF4和O2,反应腔室压力为10mTorr,上电极和下电极的射频功率分别为100W和10W的条件下,先移除互联开孔区域内的200nm厚的SiN保护层,再刻蚀掉5nm厚的AlON复合栅介质层,最后刻蚀掉60nm厚的SiN钝化层。
步骤十,在金属互联层开孔区的源电极和漏电以及未开孔刻蚀的SiN保护层上光刻金属互联层区域,并利用电子束蒸发工艺制作金属互联层,用于引出源电极和漏电极。
本步骤的具体实现与实施例一中的步骤10相同。
实施例三,在Si衬底上利用等离子体辅助氧化工艺制作AlON复合栅介质层厚度为8nm的GaN基绝缘栅高电子迁移率晶体管。
步骤A,在外延基片的GaN缓冲层上制作源电极和漏电极。
本步骤的具体实现与实施例一中的步骤1相同。
步骤B,在GaN帽层上光刻有源区的电隔离区域,利用离子注入工艺制作器件有源区的电隔离。
本步骤的具体实现与实施例二中的步骤二相同。
步骤C,在源电极、漏电极和有源区的GaN帽层上,利用PECVD工艺生长SiN钝化层。
本步骤的具体实现与实施例一中的步骤3相同。
步骤D,在SiN钝化层上光刻栅槽区域,并利用ICP工艺刻蚀掉该栅槽区域内的SiN钝化层。
本步骤的具体实现与实施例一中的步骤4相同。
步骤E,在栅槽区域的GaN帽层和栅槽区域外的SiN钝化层上,利用PEALD工艺生长AlN介质层。
E1)对完成栅槽刻蚀的样品进行表面清洗:
本步骤的具体实现与实施例一中的步骤5a)相同;
E2)将完成表面清洗的样品放入等离子增强原子层沉积PEALD设备中进行原位表面预处理:
本步骤的具体实现与实施例一中的步骤5b)相同;
E3)在栅槽区域内的GaN帽层和栅槽区域外的SiN钝化层上,利用等离子增强原子层沉积PEALD工艺生长厚度为8nm的AlN介质层,其生长的工艺条件为:采用N2和H2混合气体作为氮的反应前驱体源,采用TMA作为铝的反应前驱体源,衬底温度为300℃,射频功率设置为50W,反应腔室压力为0.3Torr。
步骤F,在AlN介质层上利用等离子体辅助氧化工艺制备AlON复合栅介质层。
F1)在完成AlN介质层生长后,利用PEALD设备对AlN介质层进行原位等离子体辅助氧化处理,将AlN介质层氧化为AlON复合栅介质层,其等离子体辅助氧化的工艺条件为:反应气体为O3,衬底温度为400℃,射频源功率为300W,氧化时间为30min;
F2)将完成AlON复合栅介质层制备的样品放入快速热退火炉中进行退火处理,以改善复合栅介质层质量和器件界面特性,其退火的工艺条件为:退火气氛为N2,退火温度为500℃,退火时间为5min。
步骤G,在栅介质层上光刻栅电极区域,并利用电子束蒸发工艺制作栅电极。
本步骤的具体实现与实施例一中的步骤7相同。
步骤H,在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长SiN保护层。
本步骤的具体实现与实施例一中的步骤8相同。
步骤I,在SiN保护层上光刻金属互联层开孔区,并利用ICP工艺依次刻蚀掉互联开孔区的SiN保护层、栅介质层、SiN钝化层。
I1)在SiN保护层上光刻金属互联层开孔区:
本步骤的具体实现与实施例一中的步骤9a)相同;
I2)利用ICP刻蚀工艺在反应气体为CF4和O2,反应腔室压力为10mTorr,上电极和下电极的射频功率分别为100W和10W的条件下,先移除互联开孔区域内的200nm厚的SiN保护层,再刻蚀掉8nm厚的AlON复合栅介质层,最后刻蚀掉60nm厚的SiN钝化层。
步骤J,在金属互联层开孔区的源电极和漏电极以及未开孔刻蚀的SiN保护层上光刻金属互联层区域,并利用电子束蒸发工艺制作金属互联层,用于引出源电极和漏电极。
本步骤的具体实现与实施例一中的步骤10相同。
以上描述仅是本发明的三个具体实例,并不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。
Claims (3)
1.一种复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法,包括如下步骤:
1)在自下而上的依次包括衬底、AlN成核层、GaN缓冲层、AlN插入层、AlGaN势垒层和GaN帽层外延基片的GaN缓冲层上制作源电极和漏电极;
2)在GaN帽层上光刻有源区的电隔离区域,利用感应耦合等离子刻蚀ICP工艺或离子注入工艺制作器件有源区的电隔离;
3)在源电极、漏电极和有源区的GaN帽层上,利用等离子增强化学气相沉积PECVD工艺生长SiN钝化层;
4)在SiN钝化层上光刻栅槽区域,并利用ICP工艺对该栅槽区域内的SiN钝化层进行刻蚀,刻蚀深度至GaN帽层;
5)在栅槽区域的GaN帽层和栅槽区域以外的SiN钝化层上,利用等离子增强原子层沉积PEALD工艺生长厚度为5nm~10nm的AlN介质层;
6)在AlN介质层上,利用热氧化工艺将AlN介质层氧化为厚度为5nm~10nm的AlON复合栅介质层,其氧化的工艺条件如下:
氧化反应气体为O2,栅介质层采用厚度为5nm~10nm的AlON复合介质层
衬底温度为600℃,
氧化时间为1h;
7)在AlON复合栅介质层上光刻栅电极区域,并利用电子束蒸发工艺制作栅电极;
8)在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长SiN保护层;
9)在SiN保护层上光刻金属互联开孔区,并利用ICP工艺依次刻蚀掉互联开孔区的SiN保护层、栅介质层、SiN钝化层;
10)在金属互联开孔区和未开孔刻蚀的SiN保护层上光刻金属互联区域,并利用电子束蒸发工艺制作金属互联,用于引出源电极和漏电极,完成器件制作。
2.根据权利要求1所述的方法,其中步骤5)中利用PEALD工艺生长AlN介质层的工艺条件如下:
反应前驱体氮源为N2和H2混合气体或NH3,
反应前驱体金属有机物源为TMA,
衬底温度为300℃,
射频源功率为50W,
反应腔室压力为0.3Torr。
3.一种复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法,包括如下步骤:
1)在自下而上的依次包括衬底、AlN成核层、GaN缓冲层、AlN插入层、AlGaN势垒层和GaN帽层外延基片的GaN缓冲层上制作源电极和漏电极;
2)在GaN帽层上光刻有源区的电隔离区域,利用感应耦合等离子刻蚀ICP工艺或离子注入工艺制作器件有源区的电隔离;
3)在源电极、漏电极和有源区的GaN帽层上,利用等离子增强化学气相沉积PECVD工艺生长SiN钝化层;
4)在SiN钝化层上光刻栅槽区域,并利用ICP工艺对该栅槽区域内的SiN钝化层进行刻蚀,刻蚀深度至GaN帽层;
5)在栅槽区域的GaN帽层和栅槽区域以外的SiN钝化层上,利用等离子增强原子层沉积PEALD工艺生长厚度为5nm~10nm的AlN介质层;
6)在AlN介质层上,利用PEALD工艺对AlN介质层进行原位等离子体辅助氧化处理将AlN介质层氧化为AlON复合栅介质层,其氧化的工艺条件如下:
氧化反应气体为O2或O3或N2O,
射频源功率为300W,
衬底温度为300℃~400℃,
氧化时间为20min~30min;
7)在AlON复合栅介质层上光刻栅电极区域,并利用电子束蒸发工艺制作栅电极;
8)在栅电极上和栅电极区域以外的SiN钝化层上,利用PECVD工艺生长SiN保护层;
9)在SiN保护层上光刻金属互联开孔区,并利用ICP工艺依次刻蚀掉互联开孔区的SiN保护层、栅介质层、SiN钝化层;
10)在金属互联开孔区和未开孔刻蚀的SiN保护层上光刻金属互联区域,并利用电子束蒸发工艺制作金属互联,用于引出源电极和漏电极,完成器件制作。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610807890.6A CN106373884B (zh) | 2016-09-08 | 2016-09-08 | 复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610807890.6A CN106373884B (zh) | 2016-09-08 | 2016-09-08 | 复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106373884A CN106373884A (zh) | 2017-02-01 |
CN106373884B true CN106373884B (zh) | 2019-12-24 |
Family
ID=57898823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610807890.6A Active CN106373884B (zh) | 2016-09-08 | 2016-09-08 | 复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106373884B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106876351B (zh) * | 2017-03-01 | 2019-04-23 | 西安电子科技大学 | 一种射频功率半导体器件的金属互联结构及制作方法 |
CN107302022A (zh) * | 2017-07-07 | 2017-10-27 | 西安电子科技大学 | 低损伤表面处理高效率器件及其制作方法 |
CN107316901A (zh) * | 2017-07-10 | 2017-11-03 | 西安电子科技大学 | 基于掺杂HfO2铁电栅介质的AlGaN/GaN增强型HEMT器件及制作方法 |
CN107910265A (zh) * | 2017-11-17 | 2018-04-13 | 清华大学 | 制备半导体结构的方法、半导体结构及场效应晶体管 |
CN108022833A (zh) * | 2017-11-17 | 2018-05-11 | 清华大学 | 制备半导体结构的方法、半导体结构及场效应晶体管 |
CN108598000B (zh) * | 2018-05-08 | 2020-12-15 | 西安电子科技大学 | GaN基增强型MISHEMT器件的制作方法及器件 |
CN110190116B (zh) * | 2019-04-30 | 2021-12-31 | 大连理工大学 | 一种高阈值电压常关型高电子迁移率晶体管及其制备方法 |
CN113035943A (zh) * | 2019-12-25 | 2021-06-25 | 华润微电子(重庆)有限公司 | 具有场板结构的hemt器件及其制备方法 |
WO2022068256A1 (zh) * | 2020-09-30 | 2022-04-07 | 苏州能讯高能半导体有限公司 | 半导体器件的外延结构及其制备方法 |
CN112382659A (zh) * | 2020-11-12 | 2021-02-19 | 中国科学院半导体研究所 | 一种元胞内带绝缘结构的功率半导体器件及制备方法 |
CN112614881B (zh) * | 2020-12-15 | 2023-04-07 | 成都挚信电子技术有限责任公司 | 一种新型高速高隔离度pHEMT微波开关芯片 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101465372A (zh) * | 2009-01-08 | 2009-06-24 | 西安电子科技大学 | AlN/GaN增强型金属-绝缘体-半导体场效应晶体管及其制作方法 |
CN103137476A (zh) * | 2011-12-01 | 2013-06-05 | 电力集成公司 | 具有钝化以及栅极电介质多层结构的GaN高压HFET |
CN105336789A (zh) * | 2015-10-29 | 2016-02-17 | 中山大学 | 一种高质量MIS结构的GaN基场效应晶体管及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8268707B2 (en) * | 2009-06-22 | 2012-09-18 | Raytheon Company | Gallium nitride for liquid crystal electrodes |
CN102709321A (zh) * | 2012-04-20 | 2012-10-03 | 程凯 | 增强型开关器件及其制造方法 |
-
2016
- 2016-09-08 CN CN201610807890.6A patent/CN106373884B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101465372A (zh) * | 2009-01-08 | 2009-06-24 | 西安电子科技大学 | AlN/GaN增强型金属-绝缘体-半导体场效应晶体管及其制作方法 |
CN103137476A (zh) * | 2011-12-01 | 2013-06-05 | 电力集成公司 | 具有钝化以及栅极电介质多层结构的GaN高压HFET |
CN105336789A (zh) * | 2015-10-29 | 2016-02-17 | 中山大学 | 一种高质量MIS结构的GaN基场效应晶体管及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Comparative study on interface and bulk charges in AlGaN/GaN metal-insulator-semiconductor heterostructures with Al2O3/AlN laminated dielectrics;Jie-Jie Zhu,etal;《Japanese Journal of Applied Physics》;20151130;正文第1页右栏第2段及图1 * |
Also Published As
Publication number | Publication date |
---|---|
CN106373884A (zh) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106373884B (zh) | 复合栅介质GaN基绝缘栅高电子迁移率晶体管的制作方法 | |
WO2020221222A1 (zh) | 一种高阈值电压常关型高电子迁移率晶体管及其制备方法 | |
JP7178121B2 (ja) | 半導体デバイスの製造方法、及びその使用 | |
CN106229345A (zh) | 叠层栅介质GaN基绝缘栅高电子迁移率晶体管及制作方法 | |
CN101252088B (zh) | 一种增强型A1GaN/GaN HEMT器件的实现方法 | |
CN107369704B (zh) | 含有铁电栅介质的叠层栅增强型GaN高电子迁移率晶体管及制备方法 | |
CN105931999B (zh) | 薄势垒增强型AlGaN/GaN高电子迁移率晶体管及其制作方法 | |
CN104393039B (zh) | InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法 | |
CN100433365C (zh) | 铝镓氮化物/氮化镓高电子迁移率晶体管及制造方法 | |
CN111430456A (zh) | 基于跨导补偿法的类Fin侧墙调制的HEMT器件及其制备方法 | |
CN110459595B (zh) | 一种增强型AlN/AlGaN/GaN HEMT器件及其制备方法 | |
CN102629624A (zh) | 基于GaN的MIS栅增强型HEMT器件及制作方法 | |
CN102637726A (zh) | MS栅GaN基增强型高电子迁移率晶体管及制作方法 | |
CN110581068A (zh) | 一种使用栅介质去实现低导通电阻的增强型氮化镓晶体管的方法 | |
CN110120425A (zh) | 垂直型的高压mosfet器件及制作方法 | |
CN101414628B (zh) | 凹槽г栅高电子迁移率晶体管及其制作方法 | |
CN108598000B (zh) | GaN基增强型MISHEMT器件的制作方法及器件 | |
CN101414634B (zh) | 凹槽绝缘栅型复合源场板的异质结场效应晶体管 | |
CN115274851A (zh) | 基于P-GaN帽层和Fin结构的增强型射频器件及其制备方法 | |
CN114361034A (zh) | 一种低压高效率氮化镓功率器件及其制作方法 | |
CN110707158B (zh) | 阳极边缘浮空的GaN微波二极管及制备方法 | |
CN101419982B (zh) | 槽栅型源场板高电子迁移率器件及其制作方法 | |
CN111739801A (zh) | 一种SOI基p-GaN增强型GaN功率开关器件的制备方法 | |
CN106449737A (zh) | 低接触电阻型GaN基器件及其制作方法 | |
CN110676172A (zh) | 一种实现低导通电阻的增强型氮化镓晶体管的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |