CN106349455B - 一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法 - Google Patents

一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法 Download PDF

Info

Publication number
CN106349455B
CN106349455B CN201610776701.3A CN201610776701A CN106349455B CN 106349455 B CN106349455 B CN 106349455B CN 201610776701 A CN201610776701 A CN 201610776701A CN 106349455 B CN106349455 B CN 106349455B
Authority
CN
China
Prior art keywords
temperature
parts
polyurethane foam
component
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610776701.3A
Other languages
English (en)
Other versions
CN106349455A (zh
Inventor
石敏先
沈益锋
黄志雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610776701.3A priority Critical patent/CN106349455B/zh
Publication of CN106349455A publication Critical patent/CN106349455A/zh
Application granted granted Critical
Publication of CN106349455B publication Critical patent/CN106349455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法,所述复合材料由A、B两组分组成,按重量份计,A组分含有聚醚多元醇100份,发泡剂33~40份,稳定剂3~5份,催化剂0.8~1.2份,阻燃剂20~40份;B组分含有多异氰酸酯100~117份,复合无机组分180~230份,该复合无机组分由硅酸盐矿物料、低熔点助熔剂、高温致孔剂和高温膨胀剂组成。所述复合材料的制备步骤包括A、B组分的制备,A、B组分混合,所得混合物注入模具中发泡成型,从模腔中取出泡沫,并在室温下放置3.5‑4.5小时。本发明具有耐高温、防火的优异性能,可用于保温、隔热、防火等领域。

Description

一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法
技术领域
本发明涉及聚合物基泡沫复合材料技术领域,具体涉及一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法,可应用于保温、隔热、防火等领域。
背景技术
聚氨酯硬泡是硬泡聚醚多元醇(聚氨酯硬泡组合聚醚又称白料)与聚合MDI(又称黑料)为主要原料,在发泡剂、催化剂、稳定剂等多种助剂的作用下,发泡反应而制得的高分子聚合物。
聚氨酯硬泡复合材料作为一种高性能的保温隔热材料,具有多孔性、相对密度小、比强度高、保温隔热性能好、防水性能强等特点,并具有施工方便、抗老化等特征,已形成了成熟的施工技术。主要应用于家用保温(冰箱、冰柜、太阳能热水器)、冷库及冷链物流(冷藏集装箱、冷藏火车、冷藏汽车等)、建筑保温材料(屋顶喷涂硬泡、外墙绝热保温板材等),以及管道保温材料、工业储罐绝热、高密度仿木结构材料等。
聚氨酯泡沫塑料由于含可燃的碳氢链段、密度小、比表面积大,极限氧指数(LOI)只有18%左右,极易燃烧,且燃烧时释放大量的浓烟,因此近年来关于阻燃聚氨酯(PU)泡沫的研究受到极大的关注。
国内外研究者为增加有机泡沫保温材料的阻燃性,一般通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄;也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。参考文献1(许冬梅.可膨胀石墨填充硬质聚氨酯泡沫塑料的阻燃抑烟研究[D].北京理工大学,2014)公开了一种技术方案,其通过在硬质聚氨酯泡沫(RPUF)中添加可膨胀石墨(EG)和聚磷酸铵(APP)的复合阻燃剂,研究了EG、APP、RPUF之间的相互作用,结果发现RPUF/EG/APP的极限氧指数可达36%,并具有一定的抑烟效果。通过在聚氨酯泡沫添加短切玻璃纤维和聚倍半参考文献2(胡先海,罗俊杰,付昌春,郭红宝,王书升,罗军.一种耐热阻燃聚氨酯泡沫.中国,201510646750.0[P].2015-12-23)公开了一种技术方案,其硅氧烷POSS阻燃剂,结果发现热变形温度最高可达145℃,氧指数可达35%,大大提高了聚氨酯泡沫的耐热性和阻燃性能。参考文献3(姜长乐,高振华,赵君.阻燃耐热型玻化微珠/聚氨酯硬泡复合保温材料的制备和性能研究[J].新型建筑材料,2013,40(10):48-51)公开了一种技术方案,其通过在硬质聚氨酯泡沫添加玻化微珠和适量阻燃剂,使得复合材料的阻燃性能和压缩强度能显著提高,极限氧指数可达30%以上,并且材料热解的外延起始温度升高至263℃。近年来,无机填料对聚氨酯泡沫的阻燃越来越引起人们的重视,但是聚合物的陶瓷化研究也为聚氨酯泡沫的阻燃与耐火提供了新的思路。可陶瓷化聚合物基复合材料由聚合物基体及高温可陶瓷化的无机组分组成,可陶瓷化聚合物基复合材料在常温下具有与普通聚合物基复合材料类似的性能,而在高温下发生裂解、熔融、高温相变等过程转化为陶瓷保护层,具有一定的强度且能承受一定的冲击力,在阻燃、防火、热防护领域很受关注。参考文献4(L.G.Hanu,G.P.Simon,J.Mansouri,R.P.Burford,Y.B.Cheng.Development of polymer–ceramic composites for improved fireresistance.Journal of Material Processing Technology,2004,153–154:401–407)公开了一种技术方案,其在硅树脂中加入云母等陶瓷填料制备了高温可陶瓷化的复合材料,在1100℃左右的热空气中复合材料裂解过程发生共熔反应形成莫来石陶瓷相结构,从而提高高温残留量和高温残留物强度,开创了可陶瓷化聚合物基复合材料研究和应用的先河。
从上述文献报道分析,聚氨酯泡沫复合材料具有良好的隔热性能,并能够在120℃以下使用,但在更高的温度下,氧化、裂解、失重、结构与性能破坏等问题严重。
本发明提供的耐高温可瓷化聚氨酯泡沫复合材料,其在常温下能保持良好的弹性和力学性能,当处于高温环境时,这种复合材料能够耐受750℃以上的高温,并能转变为具有自支撑性的陶瓷体,从而阻止火焰向材料内部蔓延,达到防火目的。而不像普通防火材料燃烧过后变成松散的灰烬,基本没有强度。
发明内容
本发明所要解决的技术问题是:提供一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法,以提高聚氨酯泡沫复合材料的耐热及防火性能。
本发明解决其技术问题采用以下的技术方案:
本发明提供的耐高温可陶瓷化聚氨酯泡沫复合材料,其由A、B两组分组成,按重量份计,A组分含有聚醚多元醇100份,发泡剂33~40份,稳定剂3~5份,催化剂0.8~1.2份,阻燃剂20~40份;B组分含有多异氰酸酯100~117份,复合无机组分180~230份,该复合无机组分由硅酸盐矿物料、低熔点助熔剂、高温致孔剂和高温膨胀剂组成。
所述的复合无机组分中的各组分的含量(重量份)为:硅酸盐矿物料100~120份,低熔点助熔剂65~85份,高温致孔剂10~15份,高温膨胀剂5~10份;低熔点助熔剂是氧化硼、玻璃粉、长石粉、石灰石中的一种或多种混合物,高温致孔剂是氢氧化铝、石灰石、白云石中的一种或多种,高温膨胀剂是无机硅酸盐的蛭石粉、珍珠岩粉的一种或两种。
所述的聚醚多元醇是主链含有醚键(—R—O—R—),端基或侧基含有大于2个羟基(—OH)的低聚物,其羟值含量为400~500mgKOH/g、水分含量≤0.2%。
所述的多异氰酸酯,为二苯基甲烷二异氰酸酯(粗MDI)、甲苯二异氰酸酯(TDI)中的一种,或两种任意比例的混合物。
所述的发泡剂为物理发泡剂,其是氢氟烃HCFC-141b、HCFC-142b、HCFC-123中的一种或多种。
所述的稳定剂为硅油类的二甲基硅油、苯甲基硅油、聚二甲基硅油中的一种或多种。
所述的催化剂为胺类催化剂与有机锡类催化剂的混合物,且胺类催化剂:有机锡类催化剂的质量比为1:0.1,其中胺类催化剂为三乙醇胺、N-N-二甲基环己胺中的一种或两种,有机锡类催化剂为二月桂酸二丁基锡、辛酸亚锡中的一种或两种。
所述的阻燃剂,是一种由质量比为2:1:1的可膨胀石墨、磷酸盐和硼酸锌组成的组合物,其颗粒粒径均为1~20μm;磷酸盐为磷酸铵、聚磷酸铵、磷酸锌中的一种或多种。
所述的硅酸盐矿物料是长石粉、云母粉、滑石粉、高岭土、硅灰石粉中的一种或多种任意比例的混合物,粒径大小为5~30μm。
本发明提供的上述的耐高温可陶瓷化聚氨酯泡沫复合材料,其制备方法包括以下步骤:
(1)按配比称取聚醚多元醇、发泡剂、稳定剂、催化剂和阻燃剂,将其搅拌均匀,得到组分A;
(2)按配比称取多异氰酸酯和复合无机组分,将其混合均匀,得到组分B;
(3)将A组分和B组分快速混合至发白,1min内倒入到预先准备的模温在35℃~45℃的模具模腔中,进行发泡成型,保持0.5h后待其自然冷却至室温;
(4)打开模具,将泡沫从模腔中取出,并在室温下放置3.5-4.5小时,即得到耐高温可陶瓷化聚氨酯泡沫复合材料。
本发明提供的耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法,由于加入了高温可陶瓷化的复合无机组分,所制备的泡沫材料密度比现有聚氨酯泡沫的密度大,但与现有聚氨酯泡沫复合材料相比具有以下主要的优点:
(1)由于复合无机组分的不可燃性,复合无机组分与阻燃剂的共同作用进一步提高了聚氨酯泡沫材料在低温条件下的阻燃性能,使其极限氧指数在30%以上。氧指数测试结果见表1。
表1 氧指数测试结果
试样 1 2 3 4 5 6
氧指数(%) 30 30 31 31 30 31
(2)在高温条件下聚氨酯泡沫材料中的复合无机组分能够转变为陶瓷相多孔材料,耐热性能提高,使得复合材料能够耐受750℃以上的高温。
(3)高温膨胀剂和高温致孔剂能有效减缓聚氨酯泡沫材料在高温条件下的体积收缩率。
(4)在高温条件下聚氨酯泡沫材料中的复合无机组分形成的陶瓷相多孔材料覆盖在聚氨酯泡沫表面,阻止内部泡沫进一步燃烧,且离火3s内可自熄,无熔滴物掉落,实现防火的目的。
(5)在高温条件下聚氨酯泡沫材料中的复合无机组分形成的陶瓷相多孔材料仍具有一定的力学强度,并能基本维持其初始形状。
具体实施方式
本发明提供的耐高温可陶瓷化聚氨酯泡沫复合材料,是由A组分和B组分组成,所述组分按重量计,A组分含有聚醚多元醇100份,发泡剂33~40份,稳定剂2~4份,催化剂0.8~1.2份,阻燃剂20~40份;B组分含有多异氰酸酯100~117份,复合无机组分(180~230份,其中含有硅酸盐矿物料100~120份,低熔点助熔剂65~85份,高温致孔剂10~15份,高温膨胀剂5~10份)。
本发明提供的耐高温可陶瓷化聚氨酯泡沫复合材料的制备方法,其选择聚醚多元醇,多异氰酸酯作为聚氨酯泡沫发泡原料,有机锡类催化剂促进凝胶反应,胺类催化剂促进发泡反应,硅油作为稳定剂,一定量的阻燃剂和复合无机填料为阻燃及高温陶瓷化组分,具体是:(1)在烧杯中加入聚醚多元醇、稳定剂、发泡剂、催化剂和阻燃剂,搅拌均匀,得到组分A。(2)在多异氰酸酯中加入复合无机组分,混合均匀,得到组分B。(3)将组分A和组分B快速混合至发白,1min内倒入到预先准备的模温在35℃~45℃的模具模腔中,进行发泡成型,保持0.5h后待其自然冷却至室温。(4)打开模具,将泡沫从模腔中取出,并在室温下放置4小时,即可得到耐高温可陶瓷化聚氨酯泡沫。
下面结合实施例对本发明作进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
耐高温可陶瓷化聚氨酯泡沫复合材料的制备配方:
A组分:聚醚4110 35g,HCFC-141b 11.6g,二甲基硅油1g,三乙醇胺0.28g,二月桂酸二丁基锡0.04g,可膨胀石墨3.5g,聚磷酸铵1.75g,硼酸锌1.75g。A组分中的可膨胀石墨、聚磷酸铵和硼酸锌为聚氨酯泡沫材料在低温条件下的阻燃剂。
B组分:粗MDI 35g,长石粉24g,高岭土4.8g,滑石粉6.4g,玻璃粉23g,氢氧化铝3.5g,蛭石粉1.75g。B组分中的长石粉、高岭土、滑石粉为聚氨酯泡沫材料在高温条件下的成瓷原料,玻璃粉为低熔点助剂,氢氧化铝为高温致孔剂,蛭石为高温膨胀剂。
所制得的产品极限氧指数在30%以上,且在空气中燃烧絮状污染物产生较少,在马弗炉中经过800℃高温,聚氨酯泡沫材料形成陶瓷连续相材料仍具有一定的力学强度,有一定收缩但基本能维持初始形状。
实施例2
耐高温可陶瓷化聚氨酯泡沫复合材料的制备配方:
A组分:聚醚4110 35g,HCFC-142b 14g,二甲基硅油1.05g,三乙醇胺0.42g,二月桂酸二丁基锡0.04g,可膨胀石墨7g,聚磷酸铵3.5g,硼酸锌3.5g。A组分中的可膨胀石墨、聚磷酸铵和硼酸锌为聚氨酯泡沫材料在低温条件下的阻燃剂。
B组分:粗MDI37.98g,长石粉28.7g,高岭土5.7g,滑石粉7.6g,玻璃粉29.75g,氢氧化铝5.25g,蛭石粉3.5g。B组分中的长石粉、高岭土、滑石粉为聚氨酯泡沫材料在高温条件下的成瓷原料,玻璃粉为低熔点助剂,氢氧化铝为高温致孔剂,蛭石为高温膨胀剂。
所制得的产品极限氧指数在30%以上,且在空气中燃烧絮状污染物产生较少,在马弗炉中经过800℃高温,聚氨酯泡沫材料形成陶瓷连续相材料仍具有一定的力学强度,有一定收缩但基本能维持初始形状。
实施例3
耐高温可陶瓷化聚氨酯泡沫复合材料的制备配方:
A组分:聚醚4110 35g,HCFC-123 12.8g,二甲基硅油1.02g,N-N-二甲基环己胺0.35g,二月桂酸二丁基锡0.04g,可膨胀石墨5.25g,聚磷酸铵2.63g,硼酸锌2.63g。A组分中的可膨胀石墨、聚磷酸铵和硼酸锌为聚氨酯泡沫材料在低温条件下的阻燃剂。
B组分:粗MDI 46.8g,长石粉26.35g,高岭土5.25g,滑石粉7g,玻璃粉26.4g,氢氧化铝4.4g,蛭石粉2.6g。B组分中的长石粉、高岭土、滑石粉为聚氨酯泡沫材料在高温条件下的成瓷原料,玻璃粉为低熔点助剂,氢氧化铝为高温致孔剂,蛭石为高温膨胀剂。
所制得的产品极限氧指数在30%以上,且在空气中燃烧絮状污染物产生较少,在马弗炉中经过800℃高温,聚氨酯泡沫材料形成陶瓷连续相材料仍具有一定的力学强度,有一定收缩但基本能维持初始形状。
实施例4
耐高温可陶瓷化聚氨酯泡沫复合材料的制备配方:
A组分:聚醚4110 40g,HCFC-123 15.2g,二甲基硅油0.8g,N-N-二甲基环己胺0.4g,二月桂酸二丁基锡0.04g,可膨胀石墨4g,聚磷酸铵2g,硼酸锌2g。A组分中的可膨胀石墨、聚磷酸铵和硼酸锌为聚氨酯泡沫材料在低温条件下的阻燃剂。
B组分:粗MDI 46.8g,长石粉30g,云母14g,玻璃粉26g,氢氧化铝5g,蛭石粉3g。B组分中的长石粉、高岭土、滑石粉为聚氨酯泡沫材料在高温条件下的成瓷原料,玻璃粉为低熔点助剂,氢氧化铝为高温致孔剂,蛭石为高温膨胀剂。
所制得的产品极限氧指数在30%以上,且在空气中燃烧絮状污染物产生较少,在马弗炉中经过800℃高温,聚氨酯泡沫材料形成陶瓷连续相材料仍具有一定的力学强度,有一定收缩但基本能维持初始形状。

Claims (9)

1.一种耐高温可陶瓷化聚氨酯泡沫复合材料,其特征是由A、B两组分组成,按重量份计,A组分含有聚醚多元醇100份,发泡剂33~40份,稳定剂3~5份,催化剂0.8~1.2份,阻燃剂20~40份;B组分含有多异氰酸酯100~117份,复合无机组分180~230份,该复合无机组分由硅酸盐矿物料、低熔点助熔剂、高温致孔剂和高温膨胀剂组成;在高温条件下,该复合无机组分能够转变为陶瓷相多孔材料,耐热性能提高,使得复合材料能够耐受750℃以上的高温;复合无机组分中的各组分的含量为:硅酸盐矿物料100~120份,低熔点助熔剂65~85份,高温致孔剂10~15份,高温膨胀剂5~10份;低熔点助熔剂是氧化硼、玻璃粉、长石粉、石灰石中的一种或多种混合物,高温致孔剂是氢氧化铝、石灰石、白云石中的一种或多种,高温膨胀剂是无机硅酸盐的蛭石粉、珍珠岩粉的一种或两种;所述的催化剂为胺类催化剂与有机锡类催化剂的混合物,且胺类催化剂:有机锡类催化剂的质量比为1:0.1;所述的阻燃剂,是一种由质量比为2:1:1的可膨胀石墨、磷酸盐和硼酸锌组成的组合物,其颗粒粒径均为1~20μm。
2.根据权利要求1所述的耐高温可陶瓷化聚氨酯泡沫复合材料,其特征在于所述的聚醚多元醇是主链含有醚键—R—O—R—,端基或侧基含有大于2个羟基的低聚物,其羟值含量为400~500mgKOH/g、水分含量≤0.2%。
3.根据权利要求1所述的耐高温可陶瓷化聚氨酯泡沫复合材料,其特征在于所述的多异氰酸酯,为二苯基甲烷二异氰酸酯、甲苯二异氰酸酯中的一种,或两种任意比例的混合物。
4.根据权利要求1所述的耐高温可陶瓷化聚氨酯泡沫复合材料,其特征在于所述的发泡剂为物理发泡剂中的氢氟烃HCFC-141b、HCFC-142b、HCFC-123中的一种或多种。
5.根据权利要求1所述的耐高温可陶瓷化聚氨酯泡沫复合材料,其特征在于所述的稳定剂为硅油类的二甲基硅油、苯甲基硅油、聚二甲基硅油中的一种或多种。
6.根据权利要求1所述的耐高温可陶瓷化聚氨酯泡沫复合材料,其特征在于所述的胺类催化剂为三乙醇胺、N-N-二甲基环己胺中的一种或两种,有机锡类催化剂为二月桂酸二丁基锡、辛酸亚锡中的一种或两种。
7.根据权利要求1所述的耐高温可陶瓷化聚氨酯泡沫复合材料,其特征在于所述的磷酸盐为磷酸铵、聚磷酸铵、磷酸锌中的一种或多种。
8.根据权利要求1所述的耐高温可陶瓷化聚氨酯泡沫复合材料,其特征在于所述的硅酸盐矿物料是长石粉、云母粉、滑石粉、高岭土、硅灰石粉中的一种或多种任意比例的混合物,粒径大小为5~30μm。
9.权利要求1至8中任一所述耐高温可陶瓷化聚氨酯泡沫复合材料的制备方法,其特征是包括以下步骤:
(1)按配比称取聚醚多元醇、发泡剂、稳定剂、催化剂和阻燃剂,将其搅拌均匀,得到组分A;
(2)按配比称取多异氰酸酯和复合无机组分,将其混合均匀,得到组分B;
(3)将A组分和B组分快速混合至发白,1min内倒入到预先准备的模温在35℃~45℃的模具模腔中,进行发泡成型,保持0.5h后待其自然冷却至室温;
(4)打开模具,将泡沫从模腔中取出,并在室温下放置3.5-4.5小时,即得到耐高温可陶瓷化聚氨酯泡沫复合材料。
CN201610776701.3A 2016-08-30 2016-08-30 一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法 Active CN106349455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610776701.3A CN106349455B (zh) 2016-08-30 2016-08-30 一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610776701.3A CN106349455B (zh) 2016-08-30 2016-08-30 一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106349455A CN106349455A (zh) 2017-01-25
CN106349455B true CN106349455B (zh) 2020-02-18

Family

ID=57856638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610776701.3A Active CN106349455B (zh) 2016-08-30 2016-08-30 一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106349455B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810120A (zh) * 2017-02-19 2017-06-09 洪其祥 一种速干型轻质混凝土
CN108484856B (zh) * 2018-04-13 2019-04-16 王强 储存罐底修复方法
CN109320943A (zh) * 2018-09-14 2019-02-12 张万里 一种电力设备用耐高温防火材料及其制备方法
CN110803939A (zh) * 2019-11-27 2020-02-18 和县明生环保材料有限责任公司 一种轻质隔音避潮气凝胶保温材料
CN112127780A (zh) * 2020-10-19 2020-12-25 王小兰 应用于防火空间的膨胀密封条及其制备方法
CN113248815B (zh) * 2021-06-05 2022-03-29 台州菲尼科斯电气科技有限公司 一种插头用的阻燃抗老化塑料
CN114395100A (zh) * 2022-01-21 2022-04-26 中国科学技术大学 一种防火阻燃聚氨酯泡沫材料及其制备方法
CN114891352A (zh) * 2022-05-13 2022-08-12 江苏中迪新材料技术有限公司 一种膨胀型可陶瓷化的防火产品及其制备方法
CN114891176B (zh) * 2022-06-07 2023-05-30 重庆理工大学 一种双温域相变聚氨酯硬泡复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809077A (zh) * 2007-05-07 2010-08-18 陶瓷聚合物控股有限公司 用于防火保护的聚合物泡沫材料和泡沫材料制品
CN102898607A (zh) * 2012-09-07 2013-01-30 汤燕 一种改性聚氨酯硬质泡沫材料及其制作方法
CN104650441A (zh) * 2015-03-16 2015-05-27 四川大学 一种可陶瓷化阻燃高分子复合材料及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873300B1 (fr) * 2004-07-22 2007-03-09 Compart Sas Soc Par Actions Si Materiau coupe-feu

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809077A (zh) * 2007-05-07 2010-08-18 陶瓷聚合物控股有限公司 用于防火保护的聚合物泡沫材料和泡沫材料制品
CN102898607A (zh) * 2012-09-07 2013-01-30 汤燕 一种改性聚氨酯硬质泡沫材料及其制作方法
CN104650441A (zh) * 2015-03-16 2015-05-27 四川大学 一种可陶瓷化阻燃高分子复合材料及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"可瓷化聚氨酯泡沫复合材料的制备和阻燃性能";陈斐等;《武汉理工大学学报》;20160430;第38卷(第4期);第1-7页 *
"陶瓷化聚合物研究进展";李函坚等;《特种橡胶制品》;20150814;第36卷(第4期);第67-72页 *

Also Published As

Publication number Publication date
CN106349455A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106349455B (zh) 一种耐高温可陶瓷化聚氨酯泡沫复合材料及其制备方法
CN102585153A (zh) 一种无卤阻燃型硬质聚氨酯泡沫塑料及其制备方法
CN103435970B (zh) 一种用于墙体保温的改性酚醛泡沫及其制备方法
CN103233524B (zh) 一种由有机无机轻集料原材料组成的复合防火保温板及制备工艺
CN104558490B (zh) 植物油基阻燃多元醇及其制备方法和应用
KR101896898B1 (ko) 내화 실리콘 고무 조성물
CN109251721B (zh) 密封胶及其制备方法
CN108102348A (zh) 一种基于可膨胀石墨的含磷阻燃硬质聚氨酯泡沫及其制备方法
CN115538175A (zh) 一种电池用阻燃隔热防火材料
CN109180893B (zh) 煤矿注浆用低热值高强度聚氨酯材料及其制备方法
CN106433014B (zh) 一种原位增容聚合增强型热固性酚醛泡沫保温板及其制备方法
CN112266463B (zh) 一种汽车内饰用阻燃型木质素基聚氨酯硬泡及其制备方法
CN106366665A (zh) 一种耐火聚硅氧烷组合物及其用途
CN108102346A (zh) 一种阻燃硬质聚氨酯泡沫原料组合物
CN107353629A (zh) 一种聚氨酯硬泡外墙阻燃保温隔热材料及其制备方法
CN109054391B (zh) 一种隔音材料及其制备方法
CN110283351A (zh) 一种阻燃硬质聚氨酯泡沫塑料及其制备方法
CN115160638A (zh) 含硼硅复合阻燃抑烟涂层的硬质聚氨酯泡沫及其制备方法
CN110724238B (zh) 一种阻燃硬质聚氨酯泡沫的制备方法
CN113831501A (zh) 一种基于d-木糖基反应型环状磷酸酯的阻燃硬质聚氨酯泡沫塑料及其制备方法
CN103086685A (zh) 膨胀珍珠岩泡沫玻璃保温材料的制备方法
CN110105536A (zh) 一种低烟低毒组合聚醚及其聚氨酯制备方法
CN117430780B (zh) 阻燃硬质聚氨酯泡沫及其制备方法
CN117384353B (zh) 一种保温隔热复合发泡材料及其制备方法
CN110615991A (zh) 一种可瓷化阻燃耐火硅橡胶及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant