CN106340591B - 粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法 - Google Patents

粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法 Download PDF

Info

Publication number
CN106340591B
CN106340591B CN201610834340.3A CN201610834340A CN106340591B CN 106340591 B CN106340591 B CN 106340591B CN 201610834340 A CN201610834340 A CN 201610834340A CN 106340591 B CN106340591 B CN 106340591B
Authority
CN
China
Prior art keywords
pbi
film
thin film
powder
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610834340.3A
Other languages
English (en)
Other versions
CN106340591A (zh
Inventor
王晓春
丁相宇
张希艳
柏朝晖
卢利平
米晓云
孙海鹰
刘全生
王能利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201610834340.3A priority Critical patent/CN106340591B/zh
Publication of CN106340591A publication Critical patent/CN106340591A/zh
Application granted granted Critical
Publication of CN106340591B publication Critical patent/CN106340591B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法属于钙钛矿太阳能电池薄膜技术领域。现有技术工艺步骤复杂,对工艺条件要求高。本发明之粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法先在衬底上制备PbI2薄膜,CH3NH3I在PbI2薄膜内与PbI2发生固相反应生成CH3NH3PbI3钙钛矿薄膜,其特征在于,将粒径为10~50μm的CH3NH3I晶体粉末均匀平铺在所述PbI2薄膜的表面,自衬底处加热为CH3NH3I和PbI2提供80~100℃的固相反应温度,经过8~10min完成所述固相反应。该制备方法简单,工艺条件宽松;产物薄膜呈多晶态,结构致密、结晶度高、晶粒尺寸达到微米级,在可见光波段具有良好的吸收,能够用作光伏领域中的吸光材料。

Description

粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法
技术领域
本发明涉及一种粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法,通过CH3NH3I(甲基碘化胺)与PbI2之间的低温固相反应,制备CH3NH3PbI3(甲基碘化铅胺)钙钛矿薄膜,所制备的薄膜呈多晶态,结构致密、结晶度高、晶粒尺寸达到微米级;该制备方法简单,工艺条件宽松。本发明属于钙钛矿太阳能电池薄膜技术领域。
背景技术
CH3NH3PbI3钙钛矿薄膜作为一种太阳能电池薄膜材料,凭借钙钛矿半导体自身具有的高光吸收系数、适合的带隙宽度、高载流子迁移率以及双载流子传输特性,使其成为一种优良的光电材料,在太阳电池中可同时作为吸光层和传输层,有望成为光伏领域第三代吸光材料。
2014年《美国化学协会杂志》136卷第2期刊登的一篇题为“采用蒸汽辅助溶解方法制备的平面异质结钙钛矿型太阳能电池”文章公开了一种CH3NH3PbI3钙钛矿薄膜的制备方法。该方法先在衬底上制备PbI2薄膜,然后在150℃温度下将CH3NH3I加热汽化,CH3NH3I气体沉积在PbI2薄膜上发生固相反应生成CH3NH3PbI3钙钛矿薄膜。在CH3NH3I气体沉积在PbI2薄膜上的过程中,填补了PbI2薄膜上的孔洞,二者经过4小时反应生成致密的CH3NH3PbI3钙钛矿薄膜,晶粒尺寸被控制在微米量级,晶粒形貌有利于均匀、致密薄膜的形成。用作太阳电池中的吸光层和传输层,具有高迁移率、低串联电阻、多填充因子、强光电流等特点。
但是,所述现有技术工艺步骤复杂,对工艺条件要求高。如将CH3NH3I在较高温度下加热气化,为防止CH3NH3I氧化,还需要建立密闭反应空间,并提供保护气氛,反应时间过长。
发明内容
为了简化CH3NH3PbI3钙钛矿薄膜的成膜工艺,并获得高质量CH3NH3PbI3钙钛矿薄膜,我们发明了一种粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法。
本发明之粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法先在衬底上制备PbI2薄膜, CH3NH3I在PbI2薄膜内与PbI2发生固相反应生成CH3NH3PbI3钙钛矿薄膜,其特征在于,将粒径为10~50μm的CH3NH3I晶体粉末均匀平铺在所述PbI2薄膜的表面,自衬底处加热为CH3NH3I和PbI2提供80~100℃的固相反应温度,经过8~10min完成所述固相反应。
本发明其技术效果在于,相比于现有技术,本发明只需将CH3NH3I晶体粉末均匀平铺在 PbI2薄膜的表面,在80~100℃的低温下,在8~10min的时间内迅速完成固相反应。在反应过程中CH3NH3I粉末同样填补了PbI2薄膜上的孔洞,向PbI2薄膜内扩散,在PbI2薄膜内与PbI2发生反应,生成CH3NH3PbI3,如图1所示。由于是自衬底处加热,同时温度较低、时间非常短,CH3NH3I又是在PbI2薄膜内与PbI2反应,因此,氧化仅仅发生在PbI2薄膜上多余的CH3NH3I上,所以该反应无需保护气氛,这使得CH3NH3PbI3钙钛矿薄膜的成膜工艺十分简单。本发明所确定的反应温度、时间以及反应方式,决定了所获得的CH3NH3PbI3钙钛矿薄膜的质量不低于现有技术,例如,晶粒可达微米级,如图2、图4所示;随着PbI2薄膜内 CH3NH3PbI3晶粒的长大,PbI2薄膜内的孔洞得到填充,使得产物薄膜变得十分致密,如图3 所示。并且,产物薄膜在可见光波段具有良好的吸收,如图5所示,完全能够用作光伏领域中的吸光材料。
附图说明
图1为采用本发明之方法在80℃、90℃、100℃三个温度下制备的CH3NH3PbI3钙钛矿薄膜的XRD图,该图说明产物薄膜的物相是CH3NH3PbI3钙钛矿,该图同时作为摘要附图。图 2~图4为采用本发明之方法制备的CH3NH3PbI3钙钛矿薄膜的SEM图,其中图2说明产物薄膜的晶粒尺寸可达到微米级,图3说明产物薄膜的表面形貌均匀致密,从图4产物薄膜的断面SEM图可知该薄膜的厚度为300nm,同时也说明产物薄膜的晶粒尺寸达到微米级。图5 为采用本发明之方法分别在80℃、90℃、100℃三个温度下制备的CH3NH3PbI3钙钛矿薄膜的吸收光谱,该图说明产物薄膜在可见光波段具有良好的吸收。
具体实施方式
本发明之粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法其具体实施方式如下所述。
按300mg:1mL比例将PbI2固体粉末溶解在DMF溶剂(N,N-二甲基甲酰胺)中,在60℃温度下搅拌4~6h,得到澄黄色透明PbI2溶液。将所述PbI2溶液滴加到清洗干净的FTO玻璃上,并在真空旋涂机中在FTO玻璃上热旋涂形成均匀的PbI2薄膜,然后将所述PbI2薄膜放置在烘干箱中在70~100℃温度下烘干20~60min。
将HI(氢碘酸)与CH3NH2溶液(甲胺)按1:1摩尔比加入圆底烧瓶里,冰浴搅拌2h,在50℃温度下旋蒸1h,得到CH3NH3I(甲基碘化胺)初产物。将所述初产物先后用乙醇、乙醚清洗,在60℃温度下真空干燥24h,得到CH3NH3I白色晶体。将所述白色晶体在加热条件下溶于乙醇,完全溶解后将溶液温度降至0℃以下,重结晶后再次真空干燥,用玛瑙研钵充分研磨得到粒径为10~50μm的CH3NH3I晶体粉末。
将CH3NH3I晶体粉末均匀平铺在所述PbI2薄膜的表面,将承载PbI2薄膜和CH3NH3I晶体粉末的FTO玻璃放在热台上加热,CH3NH3I和PbI2在80~100℃温度下固相反应8~10min,得到CH3NH3PbI3钙钛矿薄膜。去除CH3NH3PbI3钙钛矿薄膜上面多余的CH3NH3I晶体粉末,用异丙醇清洗并烘干CH3NH3PbI3钙钛矿薄膜。
下面举例说明本发明之方法。
按300mg99.99%的PbI2固体粉末溶解在1mL分析纯DMF溶剂中,在60℃温度下搅拌6h,得到澄黄色透明PbI2溶液。将所述PbI2溶液在70℃温度下保温30min后滴加到清洗干净的FTO玻璃上,并在真空旋涂机中以3000rpm的转速在FTO玻璃上热旋涂30sec形成均匀的PbI2薄膜,然后将所述PbI2薄膜放置在烘干箱中在70℃温度下烘干30min。
将20mL47%的HI与14mL40%的CH3NH2溶液加入到250mL的圆底烧瓶里,冰浴搅拌2h,在50℃温度下旋蒸1h,得到CH3NH3I初产物。将所述初产物先后用乙醇、乙醚清洗,反复清洗三次,在60℃温度下真空干燥24h,得到CH3NH3I白色晶体。将所述白色晶体在加热条件下溶于乙醇,完全溶解后将溶液温度降至0℃以下,重结晶后再次真空干燥,用玛瑙研钵充分研磨15min得到粒径为10~50μm的CH3NH3I晶体粉末。
将CH3NH3I晶体粉末均匀平铺在所述PbI2薄膜的表面,将承载PbI2薄膜和CH3NH3I晶体粉末的FTO玻璃放在热台上加热,升温速率6℃/min,这一升温速率有利于在热力学作用下加剧CH3NH3I分子无规则运动,为构建CH3NH3PbI3钙钛矿薄膜提供充足反应时间, CH3NH3I和PbI2在80℃温度下固相反应10min,保持周围气氛干燥,相对湿度<50%,得到CH3NH3PbI3钙钛矿薄膜。去除CH3NH3PbI3钙钛矿薄膜上面多余的CH3NH3I晶体粉末,用异丙醇清洗CH3NH3PbI3钙钛矿薄膜,并在70℃温度下烘干。
在所述例子中,反应温度和反应时间或者为90℃和9min、100℃和8min。

Claims (1)

1.一种粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法,先在衬底上制备PbI2薄膜,CH3NH3I在PbI2薄膜内与PbI2发生固相反应生成CH3NH3PbI3钙钛矿薄膜,其特征在于,将粒径为10~50μm的CH3NH3I晶体粉末均匀平铺在所述PbI2薄膜的表面,自衬底处加热为CH3NH3I和PbI2提供80~100℃的固相反应温度,经过8~10min完成所述固相反应。
CN201610834340.3A 2016-09-20 2016-09-20 粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法 Active CN106340591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610834340.3A CN106340591B (zh) 2016-09-20 2016-09-20 粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610834340.3A CN106340591B (zh) 2016-09-20 2016-09-20 粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法

Publications (2)

Publication Number Publication Date
CN106340591A CN106340591A (zh) 2017-01-18
CN106340591B true CN106340591B (zh) 2019-01-01

Family

ID=57838968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610834340.3A Active CN106340591B (zh) 2016-09-20 2016-09-20 粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法

Country Status (1)

Country Link
CN (1) CN106340591B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107141221A (zh) * 2017-05-11 2017-09-08 北京大学深圳研究生院 一种钙钛矿结构材料及其制备方法、应用
CN107325004A (zh) * 2017-08-01 2017-11-07 苏州协鑫纳米科技有限公司 钙钛矿晶体及其制备方法
CN109449295B (zh) * 2018-10-30 2023-09-22 麦耀华 一种基于两步法印刷制备钙钛矿薄膜的方法
CN110272620A (zh) * 2019-07-08 2019-09-24 武汉理工大学 一种柔性压电薄膜复合材料及其制备方法
CN110305019B (zh) * 2019-08-15 2022-09-30 暨南大学 一种二维层状钙钛矿晶体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116297A3 (en) * 2013-11-12 2015-09-17 The Regents Of The University Of California Sequential processing with vapor treatment of thin films of organic-inorganic perovskite materials
CN104993054A (zh) * 2015-05-14 2015-10-21 大连理工大学 一种新型叠合式钙钛矿太阳能电池的制备方法
CN105870333A (zh) * 2016-05-21 2016-08-17 大连理工大学 一种基于氧化钨的柔性钙钛矿太阳能电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116297A3 (en) * 2013-11-12 2015-09-17 The Regents Of The University Of California Sequential processing with vapor treatment of thin films of organic-inorganic perovskite materials
CN104993054A (zh) * 2015-05-14 2015-10-21 大连理工大学 一种新型叠合式钙钛矿太阳能电池的制备方法
CN105870333A (zh) * 2016-05-21 2016-08-17 大连理工大学 一种基于氧化钨的柔性钙钛矿太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells;Zhou Yang等;《Nano Energy》;20150529;第15卷;第671页右栏-第672页右栏,图1
An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells;Zhou Yang等;《Nano Energy》;20150529;第15卷;第671页右栏-第672页右栏,图1

Also Published As

Publication number Publication date
CN106340591A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN106340591B (zh) 粉末覆盖衬底加热CH3NH3PbI3钙钛矿薄膜制备方法
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN101805136B (zh) 在ito导电玻璃上原位制备纳米网状硫铟锌三元化合物光电薄膜的化学方法
CN105932114A (zh) 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
CN104393103B (zh) 一种Cu2ZnSnS4半导体薄膜的制备方法及其应用
Li et al. Solution-processed Cu 2 SnS 3 thin film solar cells
CN107093641A (zh) 一种基于无机平板异质结的薄膜太阳电池及其制备方法
US20230070055A1 (en) Precursor solution for copper-zinc-tin-sulfur thin film solar cell, preparation method therefor, and use thereof
CN103872186B (zh) FeS2薄膜的制备方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN103824902B (zh) 一种FeS2薄膜及其制备方法
Zhao et al. Sequential multi-drop coating method for large crystallized α-(NH2) 2CHPbI3 and mixed-organic-cation perovskite films for highly efficient mesoscopic perovskite solar cells
CN105016313B (zh) 一种葫芦串结构硫化镉‑碲异质结光催化复合材料及制备方法与用途
Shi et al. Enhanced interface properties of solution-processed antimony sulfide planar solar cells with n-type indium sulfide buffer layer
CN102709351A (zh) 一种择优取向生长的硫化二铜薄膜
Park et al. Synthesis and characterization of polycrystalline CuInS2 thin films for solar cell devices at low temperature processing conditions
CN102503161A (zh) 一种SnS纳米晶薄膜的制备方法
CN102153288A (zh) 一种择尤取向硫化二铜薄膜的制备方法
CN107331774B (zh) 一种新型钙钛矿太阳能电池结构和制备方法
CN109817735B (zh) 溶液法制备高效铜铟硒和铜铟镓硒薄膜太阳能电池
CN103400894B (zh) 一种制备硫化锌光电薄膜的方法
Muniandy et al. An investigation on NiO for hole transport material in perovskite solar cells
Xia et al. Synthesis and properties of SnS thin films by chemical bath deposition
CN109023483A (zh) 一种硒化锡薄膜及其制备方法
CN103390692A (zh) 一种制备铜铟碲薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant