CN106334544B - 一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用 - Google Patents

一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用 Download PDF

Info

Publication number
CN106334544B
CN106334544B CN201610835398.XA CN201610835398A CN106334544B CN 106334544 B CN106334544 B CN 106334544B CN 201610835398 A CN201610835398 A CN 201610835398A CN 106334544 B CN106334544 B CN 106334544B
Authority
CN
China
Prior art keywords
ids
silica gel
metal
imac
separation medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610835398.XA
Other languages
English (en)
Other versions
CN106334544A (zh
Inventor
李蓉
陈斌
张宁
李晨
马晓迅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest University
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN201610835398.XA priority Critical patent/CN106334544B/zh
Publication of CN106334544A publication Critical patent/CN106334544A/zh
Application granted granted Critical
Publication of CN106334544B publication Critical patent/CN106334544B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/40Chemically modified polycondensates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/52Sorbents specially adapted for preparative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本发明公开了一种以亚氨基二琥珀酸(IDS)为配体的分离介质及其制备方法和应用。本发明以IDS为配体,通过间隔臂将其键合到色谱填料上,制备出一种具有离子交换色谱和高强度金属螯合色谱特性的双重分离功能的新型色谱介质。未固定金属离子时,其离子交换特性可与传统的IDA介质媲美;固定金属离子时,其金属螯合特性远优于商用的IDA柱,堪比EDTA柱,克服了目前常用的以IDA为配体的金属螯合固定相填料的不足。同时为后期IMAC柱上金属离子流失问题的解决奠定了良好的基础。本发明对拓展IMAC柱的应用范围、开发应用前景,提高IMAC填料的市场效益均有着重要的价值。

Description

一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和 应用
技术领域
本发明属于色谱分离技术领域,具体涉及一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用。
背景技术
从1975年提出金属螯合亲和色谱(MCAC)的概念以来,以氨羧络合剂为配体的离子交换剂在色谱分离纯化领域中得到了广泛的应用。对于这一类配体,不固定金属离子的裸柱可作为阳离子交换剂分离一些带正电荷的组份,并且与一般羧酸型阳离子交换剂相比,可使色谱工作的pH范围从4.0降低到2.0-3.0。另一方面,利用氨羧基中N、O原子的配位作用,可除去溶剂中的金属,该类离子交换剂已广泛地应用于食品、石油化工、纺织工业、造纸和重金属萃取等多个领域。此外,固定了金属离子的氨羧络合剂可作为金属螯合柱分离对金属离子有亲和性的组份。所以,这些螯合吸附剂既可以应用于混合样品的离子交换色谱,金属离子的去除,又可用于样品的金属螯合色谱。
目前商用的金属螯合柱固定相填料主要以亚氨基二乙酸(IDA)为配体,已经成为生物分子识别与检测、分离与纯化的重要工具。然而这一配体存在的致命缺陷是由于IDA对金属离子有限的亲和力,使得IDA对金属离子的吸附容量和强度有限;另一方面,在IMAC体系中,固定在IDA上的金属离子在操作条件下容易泄漏,尤其在竞争洗脱的条件下。其结果造成柱寿命短、重现性差、产品和检测室易被污染,甚至无法进行测量,使IMAC技术的应用受到一定的限制。
因此,开发一种高强度的新型配体尤为重要。亚氨基二琥珀酸(IDS)是一种新型的绿色螯合剂,具有很强的螯合金属离子的能力,其对金属离子的螯合强度可与EDTA媲美,并且可降解性良好。该螯合剂已广泛地用于食品、石油化工、纺织工业、造纸和重金属萃取等多个领域。目前,尚未有将IDS应用于色谱分离介质领域的报道。
发明内容
本发明的目的在于提供一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用。
本发明是通过以下技术方案来实现:
一种以亚氨基二琥珀酸为配体的分离介质,该分离介质的结构通式如下:
其中,为软基质或硬基质,R为间隔臂。
所述硬基质为硅胶。硅胶为球形多孔硅胶,孔径范围为粒径为1μm~100μm。
所述软基质为琼脂糖、聚苯乙烯、脲醛或聚丙烯纤维。
所述间隔臂为γ-缩水甘油氧丙基三甲氧基硅烷、环氧氯丙烷、甲基丙烯酸缩水甘油酯或苯乙烯氯甲基。
该分离介质具有离子交换色谱和金属螯合色谱分离的双重功能。
本发明还公开了上述以亚氨基二琥珀酸为配体的分离介质在生物大分子分离及重金属离子螯合中的应用。
一种以亚氨基二琥珀酸为配体的分离介质的制备方法,首先在酸性条件下,将硅胶与间隔臂γ-缩水甘油氧丙基三甲氧基硅烷反应生成环氧硅胶,然后在碱性条件下与亚氨基二琥珀酸反应,制得以亚氨基二琥珀酸为配体的硅胶基质分离介质。
以亚氨基二琥珀酸为配体的分离介质的制备方法,包括以下步骤:
1)按照1g:(5~8)mL的用量比,将硅胶加入1.0mol/L的HCl中,超声波振荡均匀,过滤水洗至中性;
2)按照1g:(8~15)mL的用量比,将步骤1)制得到的湿硅胶加入1.0mol/L的HNO3中,加热回流处理1h,冷却后,抽滤水洗至中性,干燥;
3)按照1g:(15~25)mL的用量比,将步骤2)制得的干燥硅胶加入0.1mol/L的NaAc-HAc缓冲溶液中,超声波振荡均匀,然后滴入γ-缩水甘油氧丙基三甲氧基硅烷,于80~95℃下搅拌反应2h,冷却后过滤并水洗至中性,制得环氧硅胶;
4)按(4~5)g:(25~40)mL的用量比,将亚氨基二琥珀酸加入1mol/L的NaCO3中,调节反应体系pH值至10~11,然后按照亚氨基二琥珀酸:环氧硅胶=2~2.5:1的质量比,向反应体系中加入步骤3)制得的环氧硅胶,在60~65℃下,搅拌反应12h,过滤后洗至中性,制得以亚氨基二琥珀酸为配体的硅胶基质分离介质。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开的以IDS为配体的分离介质,以IDS为配体,通过间隔臂将其键合到色谱填料上,制备出一种具有离子交换色谱和高强度金属螯合色谱特性的双重分离功能的新型色谱介质。其优势主要体现在:
(1)表面键合IDS的分离介质具有离子交换色谱和金属螯合色谱分离的双重功能;
(2)该介质可用于组份的离子交换与金属离子的分离,同时还可用于其他样品的金属螯合色谱;
(3)硬基质的IDS分离介质可用于制备离子交换和IMAC的分析柱,可用于微量样品的分析检测;软基质的IDS分离介质可用于制备离子交换和IMAC的制备柱,可用于高容量组份的分离与制备。
(4)IDS对金属离子的强螯合特性,一方面有利于提高在使用过程中IDS对亲和样品的分离和吸附能力;另一方面可显著提高IMAC柱的稳定性,可有效改善IMAC柱在使用过程中金属离子的流失问题。
本发明公开的IDS为配体的分离介质的制备方法,首先在酸性条件下,将硅胶与间隔臂γ-缩水甘油氧丙基三甲氧基硅烷反应生成环氧硅胶,然后在碱性条件下与IDS反应,制得以IDS为配体的硅胶基质分离介质。该方法操作简单,重复性好,绿色环保,成功制备出具有离子交换色谱和高强度金属螯合色谱特性的双重分离功能的新型色谱介质,对拓展IMAC柱的应用范围、开发该技术的应用前景,提高IMAC填料的市场效益均有着重要的价值。
附图说明
图1为原料硅胶与合成填料IDS-硅胶的IR图;其中,(a)为原料硅胶,(b)为合成填料IDS-硅胶;
图2为蛋白质组份在IDS-硅胶柱上的色谱图;图中,1.BSA;2.RNase;3.Lys;
图3为蛋白质组份在IDS-Cu(II)-Silica柱上的吸附与洗脱;(a)为吸附状态,(b)为洗脱状态。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明公开的以IDS为功能基的分离介质,具有如下结构通式:
代表硅胶硬基质和琼脂糖、聚苯乙烯、脲醛或聚丙烯纤维等软基质。
R代表间隔臂,如:γ-缩水甘油氧丙基三甲氧基硅烷,环氧氯丙烷,甲基丙烯酸缩水甘油酯或苯乙烯氯甲基。
硅胶硬基质颗粒是球形多孔硅胶,孔径范围为粒径为1μm~100μm。
本发明的分离介质可在硅胶、琼脂糖或聚苯乙烯、脲醛或纤维等硬软基质表面修饰得到,具体方法如下:
1、以IDS为配体的硅胶硬基质分离介质的制备
Silica=硅胶;γ-GLDP=γ-缩水甘油氧丙基三甲氧基硅烷;Silica-GLDP=环氧硅胶;IDS=亚氨基二琥珀酸;
硅胶首先在酸性条件下与间隔臂γ-GLDP反应生成Silica-GLDP,然后再在碱性条件下与IDS反应即得IDS-硅胶硬基质分离介质。反应方程式如下:
2、以IDS为配体的琼脂糖凝胶软基质分离介质的制备
琼脂糖凝胶首先在NaOH和NaBH4的作用下与环氧氯丙烷反应,合成表面键合环氧基的琼脂糖凝胶,然后IDS在碱性条件下与该琼脂糖表面键合即得IDS-琼脂糖凝胶分离介质。反应方程式如下:
3、以IDS为配体的交联聚苯乙烯软基质分离介质的制备
CuBr=溴化亚铜;Bpy=联二吡啶;r.t.=室温.
在溴化亚铜和联二吡啶催化作用下,GMA在聚氯甲基苯乙烯微球表面接枝聚合得到GMA-CMCPS树脂。碱性条件下,IDS与该树脂键合得到IDS-交联聚苯乙烯分离介质。反应方程式如下:
4、以IDS为配体的脲醛-二氧化锆复合微球软基质分离介质的制备
Diox=1,4二氧六环;r.t=室温;IDS=亚氨基二琥珀酸.
在1,4二氧六环和NaOH的催化作用下,环氧氯丙烷在脲醛-二氧化锆复合微球表面接枝得到环氧活化后的复合微球。碱性条件下,IDS与该复合微球反应得到IDS-脲醛-二氧化锆复合微球分离介质。反应方程式如下:
实施例1
本实施例所用的主要原料:大孔硅胶(7μm,孔径30nm),γ-缩水甘油氧丙基三甲氧基硅烷,FeCl3,CuSO4,NiCl2,ZnSO4,CoCl2和Ca(NO3)2为市售商品。
以IDS为配体的硅胶硬基质分离介质的制备:
将10g硅胶放入盛有50mL 1.0mol/L HCl烧杯中,超声波振荡2-3min。过滤用水洗至中性即无法检验出氯离子为止,将湿硅胶放入盛有100mL 1.0mol/L HNO3烧杯中加热回流1h。将溶液冷却,用4号砂芯玻璃干锅抽滤并用水洗至中性,90-100℃干燥4h后待用。
称取经酸处理的干燥硅胶2g置于烧瓶内,加入40mL 0.1mol/L NaAc-HAc缓冲溶液(pH 4.0),超声2min,逐滴加入2mLγ-GLDP,于90℃搅拌下继续反应2h,冷却后过滤并用水洗至中性后干燥保存。
取30mL 1mol/L NaCO3,加入4.6g IDS,溶解后调节pH至10.0-11.0,往其中加入2g环氧硅胶。在60-65℃下不断搅拌反应12h,过滤后依次用水,10%HAc和水洗至中性。即可得到IDS-硅胶。
实施例2
采用实施例1制备的分离介质,分别对硅胶和IDS-硅胶介质采用KBr压片法制样,进行红外(IR)表征。
硅胶的红外数据,FT-IR(ν/cm-1):3421(vs,vO-H),3149(s,vH2O)。IDS-硅胶的红外数据,FT-IR(ν/cm-1):3469(s,νO-H),2931,2869(s,C-H),1992,1876,1728cm-1(C=O的伸缩振动),1631cm-1(m,dH-C-H),1574(s,νC=O),1472cm-1(s,vc-c),1409cm-1(vs,νC=O),1257cm-1(s,vC-N),1191(s,C-O-C),1075(vs,νSi-O),817(s,δSi-C)。
参见图1,由红外数据可知在硅胶和IDS-硅胶红外数据中,分别在3421cm-1和3469cm-1处均出现有硅羟基伸缩振动吸收峰。此外IDS-硅胶红外数据还显示:在OH-伸缩振动吸收峰,是一个特征峰。2931cm-1和2869cm-1处分别出现CH2的对称伸缩振动和不对称伸缩振动吸收峰。1992,1876cm-1处的两个峰是两个羰基的同相位伸缩振动峰,1728cm-1是羰基的反相位伸缩振动峰。1631cm-1是亚甲基的剪式振动峰。羧酸盐以离子形式存在时有对称和不对称伸缩振动两种,1409cm-1处的峰是羧基的对称伸缩振动峰,1574cm-1左右的强峰应该是羧基的不对称伸缩振动峰。1472cm-1是CH3不对称伸缩振动。1257cm-1左右的几个小峰是C—N键的伸缩振动峰。1191cm-1是醚键伸缩振动峰,1075cm-1是Si-O键的伸缩振动峰,817cm-1是Si-C键的吸收峰。上述结果表明,IDS有效地键合到了硅胶表面。
实施例3
采用实施例1制备的分离介质,对牛血清蛋白(BSA)、核糖核酸酶(RNase)、和溶菌酶(Lys)混合物进行离子交换色谱分离。
色谱柱:50×4.6mm不锈钢柱;固定相:IDS-硅胶;流动相:A(平衡液),20mmol/L PB(pH 6.0),流动相B(洗脱液):A+0.5mol/L NaCl(pH 6.0);流动相流速:1.0mL/min;线性梯度20min,100%A-100%B,100%B延长10min.标准蛋白:1.BSA;2.RNase;3.Lys。
几种酸碱性蛋白在IDS-硅胶柱上得到了有效的分离。并且出峰顺序按照等电点递增的顺序依次流出:即BSA(pI=4.9)不保留先流出,RNase(pI=7.8)和Lys(pI=11.0-11.4)依次流出。参见图2,结果表明,所获得的IDS-硅胶介质具有典型的阳离子交换特性。
实施例4
采用实施例1制备的分离介质,按照动态法分别用FeCl3,CuSO4,NiCl2,ZnSO4,CoCl2和Ca(NO3)2溶液在IDS-硅胶介质上固定金属离子。按照上述方法制备出6种金属螯合分离柱:IDS-Fe(III)-Silica柱,IDS-Cu(II)-Silica柱,IDS-Ni(II)-Silica柱,IDS-Zn(II)-Silica柱,IDS-Co(II)-Silica柱,IDS-Ca(II)-Silica柱。
将装填好的IDS-硅胶柱(4.6×50mmi.d.)连接于色谱系统。用水冲洗后,以0.5mL/min流速用泵分别注入0.05mol/L FeCl3,CuSO4,NiCl2,ZnSO4,CoCl2和Ca(NO3)2的NaAc-HAc缓冲溶液(pH=4.0),直至饱和。然后静置25min,依次用H2O和0.02mol/L磷酸盐缓冲液充分洗去未结合的金属离子(用Na2S检验),再用H2O冲洗即可。
实施例5
采用实施例4中的IDS-Cu(II)-Silica柱,对牛血清蛋白(BSA)、核糖核酸酶(RNase)、和溶菌酶(Lys)混合物进行IMAC的吸附与洗脱实验。
吸附条件:
色谱柱:50×4.6mm不锈钢柱;固定相:IDS-Cu(II)-Silica柱;流动相:A(平衡液):20mmol/L PB(pH 6.0);流动相B(洗脱液):A+0.5mol/L NaCl(pH 6.0);流动相流速:1.0mL/min;线性梯度20min,100%A-100%B,100%B延长10min.标准蛋白:1.BSA;2.RNase;3.Lys。
洗脱条件:
色谱柱:50×4.6mm不锈钢柱;固定相:IDS-Cu(II)-Silica柱;流动相:A(平衡液):20mmol/L PB(pH 6.0);流动相B(洗脱液):A+0.5mol/L NaCl+20mmol/L Imid(pH 6.0);流动相流速:1.0mL/min;线性梯度20min,100%A-100%B,100%B延长10min.标准蛋白:1.BSA;2.RNase;3.Lys。
参见图3,在未加竞争洗脱剂咪唑(Imid)的情况下,无论是酸性还是碱性蛋白质均吸附在IDS-Cu(II)-Silica柱上,色谱图上未见相关蛋白流出曲线(图3(a));当加入竞争洗脱剂Imid后蛋白质依次被部分洗脱下来(图3(b))。上述结果表明IDS是一个强配位的基质,能与金属Cu离子形成强配位的IMAC柱,只有当强配位竞争剂存在的情况下才能将吸附在该柱上的蛋白质置换下来。
实施例6
采用实施例4中制备的不同金属离子IMAC柱,利用感应耦合等离子体(ICP)法测定IDS-Silica对不同金属离子的键合量。
将不同金属离子的IMAC柱(4.6×50mmi.d.)连接于色谱系统。以0.5mL/min流速分别用0.05mol/L的EDTA洗脱收集,定容至50mL容量瓶中。用ICP测得金属离子的浓度C,根据下式求得每克IDS-硅胶上不同金属离子的键合量(参见表1)。
式中,C-络合剂上键和的金属离子的浓度(ICP测得),μg/mL
V-定容体积,50mL
M-金属元素摩尔质量,g/mol
m-IDS-Silica的质量,g。
表1 IDS-Silica填料上不同金属的键合量(×10-3mmol/gIDS-Silica)
由表1可知,IDS-Silica与六种金属离子发生了不同程度的键合,这一结果再次证明了IDS与金属离子的配位吸附;此外,IDS与不同金属离子的键合量基本符合了IDS与这些金属离子的键合强度规律(Co2+除外)及:Fe3+>Cu2+>Ni2+>Zn2+>Ca2+。由此可见,IDS-Silica有着与IDS自身相同的金属螯合属性,因而可作为一种新型的螯合剂广泛地应用于食品、石油化工、纺织工业、造纸和重金属萃取等多个领域。
综上所述,本发明以IDS为配体,通过间隔臂将其键合到色谱填料上,制备出一种具有离子交换色谱和高强度金属螯合色谱特性的双重分离功能的新型色谱介质。未固定金属离子时,其离子交换特性可与传统的IDA介质媲美;固定金属离子时,其金属螯合特性远优于商用的IDA柱,堪比EDTA柱,克服了目前常用的以IDA为配体的金属螯合固定相填料的不足。同时为后期IMAC柱上金属离子流失问题的解决奠定了良好的基础。本发明对拓展IMAC柱的应用范围、开发应用前景,提高IMAC填料的市场效益均有着重要的价值。

Claims (2)

1.一种以亚氨基二琥珀酸为配体的分离介质,其特征在于,该分离介质的结构通式如下:
其中,为软基质或硬基质,R为间隔臂;
所述硬基质为硅胶,硅胶为球形多孔硅胶,孔径范围为粒径为1μm~100μm;软基质为琼脂糖、聚苯乙烯、脲醛或聚丙烯纤维;间隔臂为γ-缩水甘油氧丙基三甲氧基硅烷、环氧氯丙烷、甲基丙烯酸缩水甘油酯或苯乙烯氯甲基;
该分离介质具有离子交换色谱和金属螯合色谱分离的双重功能。
2.权利要求1所述的以亚氨基二琥珀酸为配体的分离介质在生物大分子分离及重金属离子螯合中的应用。
CN201610835398.XA 2016-09-20 2016-09-20 一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用 Expired - Fee Related CN106334544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610835398.XA CN106334544B (zh) 2016-09-20 2016-09-20 一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610835398.XA CN106334544B (zh) 2016-09-20 2016-09-20 一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106334544A CN106334544A (zh) 2017-01-18
CN106334544B true CN106334544B (zh) 2018-03-23

Family

ID=57840163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610835398.XA Expired - Fee Related CN106334544B (zh) 2016-09-20 2016-09-20 一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106334544B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993415A (zh) * 2018-08-02 2018-12-14 西北大学 一种ids螯合型吸附剂及其金属螯合型吸附剂的除磷应用
CN108996597B (zh) * 2018-08-02 2021-06-01 西北大学 一种ids金属螯合型吸附剂的废水除氟应用
CN109280204A (zh) * 2018-08-22 2019-01-29 泉州三欣新材料科技有限公司 一种琼脂糖水凝胶微球及其制备方法和应用
CN111393546B (zh) * 2020-03-31 2021-08-03 浙江康特生物科技有限公司 一种螯合树脂的制备及去除试剂盒纯化水中钴离子的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121119A (zh) * 2007-07-06 2008-02-13 浙江大学 一种化学键合手性固定相及其制备方法
CN102089249A (zh) * 2008-06-12 2011-06-08 托莱多大学 防生物结垢材料和制备该材料的方法
CN103364356A (zh) * 2013-07-24 2013-10-23 西北大学 一种测定固定金属亲和柱上金属离子吸附稳定参数的方法
CN105618013A (zh) * 2014-11-24 2016-06-01 中国科学院大连化学物理研究所 一种以硅胶为基质的凝集素高效亲和色谱材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121119A (zh) * 2007-07-06 2008-02-13 浙江大学 一种化学键合手性固定相及其制备方法
CN102089249A (zh) * 2008-06-12 2011-06-08 托莱多大学 防生物结垢材料和制备该材料的方法
CN103364356A (zh) * 2013-07-24 2013-10-23 西北大学 一种测定固定金属亲和柱上金属离子吸附稳定参数的方法
CN105618013A (zh) * 2014-11-24 2016-06-01 中国科学院大连化学物理研究所 一种以硅胶为基质的凝集素高效亲和色谱材料的制备方法

Also Published As

Publication number Publication date
CN106334544A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN106334544B (zh) 一种以亚氨基二琥珀酸为配体的分离介质及其制备方法和应用
Li et al. Affinity monolith chromatography: A review of general principles and applications
Gama et al. Monoliths: Synthetic routes, functionalization and innovative analytical applications
EP3187260A1 (en) Chromatography medium
CN109293938A (zh) 制备金属骨架化合物结合分子印迹聚合物的复合材料
US8574437B2 (en) Method for production of chromatography media
Martínez-Pérez-Cejuela et al. A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis
Arrua et al. Macroporous monolithic supports for affinity chromatography
CN110618224B (zh) 一种[H2Nmim][NTf2]@UiO-66-Br纳米复合材料及其应用
Kip et al. Recent trends in sorbents for bioaffinity chromatography
Trang et al. Grafting polymerization of glycidyl methacrylate onto capillary-channeled polymer (C-CP) fibers as a ligand binding platform: applications in immobilized metal-ion affinity chromatography (IMAC) protein separations
Zhao et al. Synthesis of micron-sized magnetic agarose beads chelated with nickel ions towards the affinity-based separation of histidine-tagged/rich proteins
WO2007139470A1 (en) A method of preparing an immobilised metal ion chromatography adsorbent and methods of purifying proteins, peptides or polynucleotides.
Hashemi et al. Equilibrium and kinetic properties of a fast iminodiacetate based chelating ion exchanger and its incorporation in a FIA-ICP-AES system
US20220258130A1 (en) Chromatography Media
JP5409213B2 (ja) 陽イオンの分析法
JPH0337976B2 (zh)
CN113351191B (zh) 多齿配体的新型imac色谱介质及其制备方法
CN108191956B (zh) 组合型配基、组合型仿生层析介质及其制备方法和应用
CN112292203A (zh) 色谱珠、其生产及用途
CN103285814A (zh) 一种基于强螯合配体的固定金属亲和色谱固定相及其制备方法
Acikara et al. Affinity chromatography and importance in drug discovery
Piletska et al. Extraction of salbutamol using co-sintered molecularly imprinted polymers as a new format of solid-phase extraction
Kubáň et al. Determination of trace concentrations of copper by FIA-FAAS after preconcentration on chelating sorbents
CN107899552B (zh) 一种以磁性聚合物微球为基质的金属螯合亲和层析介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180323