CN106299363B - 对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用 - Google Patents

对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用 Download PDF

Info

Publication number
CN106299363B
CN106299363B CN201610707690.3A CN201610707690A CN106299363B CN 106299363 B CN106299363 B CN 106299363B CN 201610707690 A CN201610707690 A CN 201610707690A CN 106299363 B CN106299363 B CN 106299363B
Authority
CN
China
Prior art keywords
phenylenediamine
composite material
nanopaticals
covalent bond
nickel ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610707690.3A
Other languages
English (en)
Other versions
CN106299363A (zh
Inventor
付永胜
赵先敏
汪信
朱俊武
王佳瑜
卞凯丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610707690.3A priority Critical patent/CN106299363B/zh
Publication of CN106299363A publication Critical patent/CN106299363A/zh
Application granted granted Critical
Publication of CN106299363B publication Critical patent/CN106299363B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用,所述的复合材料是由铁酸镍纳米粒子负载在对苯二胺共价键功能化石墨烯上得到,其负载量为60‑80%。本发明采用对苯二胺诱导的三维有序石墨烯为基底碳材料,对苯二胺的加入使得还原氧化石墨烯表面润湿性增加,同时对苯二胺与氧化石墨实现共价耦合,从而使得片层之间的稳定性增加,形成三维有序石墨烯的稳定结构,同时,纵向层间导电性增加有利于锂离子的传导扩散;此外,负载理论容量较高的铁酸镍纳米粒子,一方面由于纳米粒子的良好分散改善了复合材料的电化学性能,另一方面纳米粒子与功能化还原氧化石墨烯之间的协同作用,使得复合材料的储锂性能和倍率性能得到提高。

Description

对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材 料的应用
技术领域
本发明涉及一种对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用,属于纳米材料应用领域。
背景技术
随着传统化石燃料的急剧消耗,新型可持续能源的开发和利用成为研究的重点,其中作为能量储存和转换装置的锂离子电池也随之备受关注。传统的锂离子电池负极材料一直是商用石墨,但是随着混合动力汽车,电动汽车等大功率器件应用发展,传统商用石墨已无法满足现今锂离子电极材料的要求。石墨烯凭借其优异的电化学性能受到重视,同时为了进一步提高其在锂离子电池中的应用性,负载尖晶石型氧化物等具有高比容量的纳米粒子制备复合材料都对性能的提高起到了重要作用。Li等人制备利用水热反应制备超轻三维石墨烯材料,Zeng 等人利用油浴法制备合成了尖晶石氧化物/石墨烯纳米复合材料,应用于锂离子电池负极材料,表现出良好的的储锂性能 [Zeng G, Shi N, Hess M, et al.A general method of fabricating flexible spinel-type oxide/reduced grapheneoxide nanocomposite aerogels as advanced anodes for lithium-ion batteries[J].ACS nano, 2015, 9(4): 4227-4235.]。Shanmugharaj 等人利用链状有机胺制备氨基功能化氧化石墨,用于改善氧化石墨的表面润湿性 [Shanmugharaj A M, Yoon J H, Yang WJ, et al. Synthesis, characterization, and surface wettability properties ofamine functionalized graphene oxide films with varying amine chain lengths[J]. Journal of colloid and interface science, 2013, 401: 148-154.]。但是,由于三维结构在一定空间方向上会阻碍锂离子的传导扩散,将尖晶石型铁酸镍纳米粒子负载在对苯二胺共价键功能化石墨烯上,应用于锂离子电池负极材料,由于对苯二胺的共价功能化,结构更为稳定,同时使得石墨烯片层间距增大,纵向层间导电性提高,促进了充放电过程中锂离子的传导扩散,更加有利于其电化学性能的提高,具有较好的应用前景。
发明内容
本发明的目的在于提供一种对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料作为锂离子电池负极材料的应用。
实现本发明目的的解决方案为:一种对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料作为锂离子电池负极材料的应用。
其中,所述的复合材料是由铁酸镍纳米粒子负载在对苯二胺共价键功能化石墨烯上得到,其负载量为60-80%。
上述对苯二胺共价键功能化石墨烯/铁酸镍纳米粒子的复合材料采用以下步骤制得:
第一步,将氧化石墨超声分散在乙醇溶液中;
第二步,逐滴加入对苯二胺的乙醇溶液,其中,氧化石墨与对苯二胺的摩尔比为1:1~1:10,搅拌下在80~100 ℃水浴中回流反应;
第三步,配制金属铁、金属镍的盐溶液,加入第二步的溶液中,搅拌;
第四步,调节 pH值至10±0.2,搅拌;
第五步,将第四步所得溶液置于反应釜中,于180±10 ℃下水热反应20-24 h;
第六步,洗涤,冷冻干燥,制备所述的复合材料。
与现有技术相比,本发明优点在于:(1)利用对苯二胺对氧化石墨烯进行功能化修饰,对苯二胺与氧化石墨烯共价耦合,使得石墨烯片层形成有序层状结构,结构更为稳定,并且层间导电性增加;(2)将铁酸镍纳米粒子负载在功能化石墨烯表面,并将此纳米复合材料用作锂离子电池负极材料。
附图说明
图1是对苯二胺共价键功能化石墨烯/铁酸镍纳米复合材料的透射电镜图(a图为低倍,b图为高分辨图)。
图2是本发明实例4所制备的纳米复合材料的扫面电镜图。
图3是本发明实例1所制备的纳米复合材料的循环性能图。
具体实施方式
本发明制备的功能化石墨烯/铁酸镍纳米复合材料通过以下步骤制备: 第一步,将氧化石墨超声分散在乙醇溶液中;
第二步,逐滴加入对苯二胺的乙醇溶液(氧化石墨与对苯二胺摩尔比比例从1:1~1:10),搅拌条件下水浴回流反应;
第三步,配制硝酸铁、硝酸镍的盐溶液(2:1),加入上述溶液中,搅拌;
第四步,利用碱溶液调节溶液的PH值,搅拌;
第五步,将上述所得溶液置于反应釜中,放于180 ℃烘箱中反应;
第六步,将上述所得反应产物洗涤,冷冻干燥,制备得到功能化石墨烯/铁酸镍纳米复合材料。
将上述所制备的到纳米复合材料的按照8:1:1的比例与乙炔黑以及PVDF(聚偏氟乙烯)混合研磨,再加入适量的NMP(1-甲基-2-吡咯烷酮),所得到的混合浆料搅拌24 h使其混合分散均匀,将得到的浆料均匀涂敷在铜箔上,烘干,以锂片为对电极,制作成锂离子电池。
实施实例1:
第一步,将80 mg 氧化石墨超声1.5 h分散在乙醇溶液中;
第二步,逐滴加入160 mg对苯二胺的乙醇溶液,搅拌条件下在水浴中回流;
第三步,将0.291 g 硝酸铁和0.811 g 硝酸镍溶解在乙醇溶液中,加入到上述溶液中,搅拌;
第四步,利用NaOH调节溶液的PH值为10±0.2,搅拌;
第五步,将上述所得溶液置于反应釜中,放于180 ℃烘箱中反应20 h;
第六步,将上述所得反应产物洗涤,冷冻干燥,制备得到对苯二胺共价键功能化石墨烯/铁酸镍纳米复合材料,其透射电子显微镜如图1所示。
将所制得的复合材料组装成锂离子电池,并对其进行恒流充放电性能测试,其充放电曲线和循环性能图如图2所示。其具有优异的电化学性能,可逆充放电容量为950 mAhg-1,远高于商用的石墨的理论容量(372 mAh g-1)。同时,具有良好的库伦效率,均保持在95% 以上。
实施实例2:
第一步,将60 mg 氧化石墨超声1.5 h分散在乙醇溶液中;
第二步,逐滴加入120 mg对苯二胺的乙醇溶液,搅拌条件下在水浴中回流;
第三步,将0.291 g硝酸铁和0.811 g硝酸镍溶解在乙醇溶液中,加入到上述溶液中,搅拌;
第四步,利用NaOH调节溶液的PH值为10±0.2,搅拌;
第五步,将上述所得溶液置于反应釜中,放于180 ℃烘箱中反应20 h;
第六步,将上述所得反应产物洗涤,冷冻干燥,制备得到对苯二胺共价键功能化石墨烯/铁酸镍纳米复合材料;
将所制得的复合材料组装成锂离子电池,并对其进行恒流充放电性能测试,其充放电曲线和循环性能如图3(a)所示,在充放电50圈后其性能依旧有630mAh g-1,比传统的商用石墨的理论容量(372 mAh g-1)依旧高出许多,但相比较实例一其性能有所下降。
实施实例3:
第一步,将120 mg氧化石墨超声1.5 h分散在乙醇溶液中;
第二步,逐滴加入240 mg对苯二胺的乙醇溶液,搅拌条件下在水浴中回流;
第三步,将0.291 g硝酸铁和0.811 g硝酸镍溶解在乙醇溶液中,加入到上述溶液中,搅拌;
第四步,利用NaOH调节溶液的PH值为10±0.2,搅拌;
第五步,将上述所得溶液置于反应釜中,放于180 ℃烘箱中反应20 h;
第六步,将上述所得反应产物洗涤,冷冻干燥,制备得到对苯二胺共价键功能化石墨烯/铁酸镍纳米复合材料;
将所制得的复合材料组装成锂离子电池,并对其进行恒流充放电性能测试,其充放电曲线和循环性能如图3(b)所示,从图中可以看出其具有有较好的循环稳定性,可逆循环容量为720 mAh g-1,依旧比传统的商用石墨的理论容量(372 mAh g-1)高出许多。

Claims (1)

1.一种对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料作为锂离子电池负极材料的应用,所述的复合材料是由铁酸镍纳米粒子负载在对苯二胺共价键功能化石墨烯上得到,其负载量为60-80%,所述的复合材料采用以下步骤制得:
第一步,将氧化石墨超声分散在乙醇溶液中;
第二步,逐滴加入对苯二胺的乙醇溶液,其中,氧化石墨与对苯二胺的摩尔比为1:1~1:10,搅拌下在80~100 ℃水浴中回流反应;
第三步,配制金属铁、金属镍的盐溶液,加入第二步的溶液中,搅拌;
第四步,调节 pH值至10±0.2,搅拌;
第五步,将第四步所得溶液置于反应釜中,于180±10 ℃下反应20-24 h;
第六步,洗涤,冷冻干燥,制备所述的复合材料。
CN201610707690.3A 2016-08-23 2016-08-23 对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用 Active CN106299363B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610707690.3A CN106299363B (zh) 2016-08-23 2016-08-23 对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610707690.3A CN106299363B (zh) 2016-08-23 2016-08-23 对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用

Publications (2)

Publication Number Publication Date
CN106299363A CN106299363A (zh) 2017-01-04
CN106299363B true CN106299363B (zh) 2019-01-15

Family

ID=57614842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610707690.3A Active CN106299363B (zh) 2016-08-23 2016-08-23 对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用

Country Status (1)

Country Link
CN (1) CN106299363B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273665A (zh) * 2018-10-10 2019-01-25 东莞市创明电池技术有限公司 一种降低负极合浆导电剂用量的方法
CN110828787B (zh) * 2019-10-09 2021-09-21 中国科学院福建物质结构研究所 一种NiFe2O4纳米复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594220A (zh) * 2013-11-21 2014-02-19 中国科学院长春应用化学研究所 功能化石墨烯/超顺磁性四氧化三铁纳米粒子复合材料及其制备方法
CN103871755A (zh) * 2014-03-05 2014-06-18 南京理工大学 一种氮掺杂石墨烯/铁酸镍纳米复合材料及其制备
CN104761753A (zh) * 2015-03-31 2015-07-08 南京理工大学 二氨基苯功能化石墨烯纳米材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594220A (zh) * 2013-11-21 2014-02-19 中国科学院长春应用化学研究所 功能化石墨烯/超顺磁性四氧化三铁纳米粒子复合材料及其制备方法
CN103871755A (zh) * 2014-03-05 2014-06-18 南京理工大学 一种氮掺杂石墨烯/铁酸镍纳米复合材料及其制备
CN104761753A (zh) * 2015-03-31 2015-07-08 南京理工大学 二氨基苯功能化石墨烯纳米材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
共价联结石墨烯/导电高分子复合材料的制备及性能研究进展;王奇观等;《合成材料老化与应用》;20150428;第102页左栏第1段
铁酸镍负极材料的改性及其电化学性能研究;杨光;《中国优秀硕士学位论文全文数据库,工程科技Ⅱ辑》;20160315;第0040页第1段-第0041页第3段

Also Published As

Publication number Publication date
CN106299363A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Zhou et al. Nanoleaf-on-sheet CuO/graphene composites: Microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries
CN102917981B (zh) 用石墨烯包封金属和金属氧化物的方法以及这些材料的用途
Yang et al. Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance
Pi et al. Durian-like NiS2@ rGO nanocomposites and their enhanced rate performance
CN104934610B (zh) 一种锂离子电池用自支撑柔性复合电极材料制备方法
Zhai et al. Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance
CN107359303A (zh) 锂硫电池用修饰隔膜及其制备方法以及具有该隔膜的锂硫电池
CN106558729B (zh) 一种石墨烯作为正极浆料导电剂的锂离子电池
KR101367577B1 (ko) 폴리도파민을 이용한 카본/촉매 복합체의 제조방법과, 이에 따라 제조되는 카본/촉매 복합체 및 이를 공기극으로 이용한 리튬/공기 이차전지
CN106207155A (zh) 一类整合正/负循环效应的纳米杂化材料及其制备方法
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN109980205A (zh) 一种五氧化二钒/石墨烯复合材料及其制备方法和应用
Ye et al. One-pot synthesis of Fe2O3/graphene and its lithium-storage performance
CN107658435A (zh) 一种镍基电池用正极材料及其制备方法
CN103490050A (zh) 一种多孔石墨烯制备方法及制成产物的应用
CN107611374A (zh) 一种新型锂硫电池正极材料的制备方法
Zhang et al. Facile synthesis of Mn2. 1V0. 9O4/rGO: a novel high-rate anode material for lithium-ion batteries
CN109904394A (zh) 一种负极材料、其制备方法及二次电池
Chen et al. TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries
CN110957494A (zh) 一种石墨烯锂离子电池导电剂及其制备方法
CN106299363B (zh) 对苯二胺共价键功能化石墨烯支撑铁酸镍纳米粒子的复合材料的应用
CN108987688A (zh) 一种碳基复合材料、制备方法及钠离子电池
Hou et al. Soft template PEG-assisted synthesis of Fe3O4@ C nanocomposite as superior anode materials for lithium-ion batteries
CN107634192A (zh) 一种锌基电池用负极材料及其制备方法
Yang et al. Metal–organic framework derived Fe3O4/C/rGO composite as an anode material in lithium-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant