CN106243392B - 一种抗静电纤维素纳米微晶包装复合膜的制备方法 - Google Patents

一种抗静电纤维素纳米微晶包装复合膜的制备方法 Download PDF

Info

Publication number
CN106243392B
CN106243392B CN201610617126.2A CN201610617126A CN106243392B CN 106243392 B CN106243392 B CN 106243392B CN 201610617126 A CN201610617126 A CN 201610617126A CN 106243392 B CN106243392 B CN 106243392B
Authority
CN
China
Prior art keywords
cellulose
nano microcrystalline
microcrystalline
composite film
fibre element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610617126.2A
Other languages
English (en)
Other versions
CN106243392A (zh
Inventor
李大纲
万轩
张亚运
孙誉飞
杨旖旎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Lvsen Wood-Plastic Composite Co., Ltd.
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201610617126.2A priority Critical patent/CN106243392B/zh
Publication of CN106243392A publication Critical patent/CN106243392A/zh
Application granted granted Critical
Publication of CN106243392B publication Critical patent/CN106243392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Packaging Frangible Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明是一种抗静电纤维素纳米微晶包装复合膜的制备方法,包括以下步骤:(1)制备纤维素纳米晶体悬浮液;(2)制备抗静电纤维素纳米微晶包装复合膜。优点:1)以微晶纤维素为原料,通过硫酸水解赋予它带负电表面基团,增强其反应活性和吸附能力。在此基础上,以纤维素纳米微晶为载体,超声混合磁性纳米四氧化三铁粒子,并附着于纤维素纳米微晶表面,通过外加磁场,实现了纤维素纳米微晶的宏观定向,提高复合膜的导电性;2)透明抗静电薄膜将薄膜的透明性与导电性很好的结合起来,赋予复合薄膜材料独特的性能,拥有广阔的发展和应用前景;3)制备工艺简单快捷,实用性强、市场潜力大、潜在附加值高。

Description

一种抗静电纤维素纳米微晶包装复合膜的制备方法
技术领域
本发明涉及的的是一种抗静电纤维素纳米微晶包装复合膜的制备方法。属于生物质可降解包装材料领域。
背景技术
纤维素是自然界中最丰富且具有生物可降解性的天然高分子材料。它广泛存在于高等植物、动物、藻类以及微生物体内。微晶纤维素(microcrystalline cellulose,MCC)是一种以β-1,4葡萄糖苷键结合的直链式多糖,是由纤维素降解后聚合度达到平衡聚合度(Level-off degree of polymerization,LODP)时的可自由流动的白色或近白色的粉末状物质。纳米纤维素(nanocrystallinecellulose,NCC)是指直径小于100nm的超微细纤维。纳米微晶纤维素具有优异的力学性能、巨大的比表面积、高结晶度、高杨氏模量、高强度、超精细结构和高透明性、良好的生物可降解性、生物相容性以及稳定的化学性能。另外,因纳米微晶纤维素表面含有大量羟基、具有高亲水性,易于分散在水相体系中,具有很好的成膜性能,可以制备成纤维素纳米纸。研究纤维素纳米纸的结构与性能,探讨其柔性衬底角色与功能,对柔性透明导电薄膜的发展具有方向性指导意义。
四氧化三铁是一种常见的磁性材料,又称氧化黑铁,呈黑色或灰黑色,径粒在一定范围内有超顺磁性,外磁场下能定向移动。纳米磁性四氧化三铁,粒径小,易分散,用途广泛,具有铁的磁性,可应用范围有:涂料、抗紫外材料,微波吸收材料,抗静电材料,催化剂、传感器材料等领域。
不同的应用领域对材料电性能的要求也有所不同,对于防静电材料来说,只需要材料的电导率达到10-7S/cm即可以起到较好的防静电的效果;而对于传感器材料来说,电导率需达到10-3S/cm。
发明内容
本发明提出的是一种抗静电纤维素纳米微晶包装复合膜的制备方法,以纤维素纳米微晶为基材,四氧化三铁为导电填料,充分发挥纤维素纳米微晶和四氧化三铁的协同效应,制成柔性导电膜,兼具透明性高、可导电等优点。
本发明的技术方案:一种抗静电纤维素纳米微晶包装复合膜的制备方法,包括以下步骤:
(1)制备纤维素纳米微晶悬浮液,由以下步骤组成:
1)称取2~10g的微晶纤维素加入80~120ml浓度为60~65wt%的硫酸中,在40~50℃环境下磁力搅拌,进行酸性水解60~120min;
2)加入去离子水终止上述反应,将所得溶液数次离心后转移至透析袋中透析2~3天,由此得到纳米纤维素晶体悬浮液,过滤后保存备用;
(2)制备抗静电纤维素纳米微晶包装复合膜,由以下步骤组成:
1)吸取10~20ml纤维素纳米晶体悬浮液,称取0.001~0.02g纳米级四氧化三铁,在600~900W功率下进行超声处理,然后用胶头滴管取 1~5ml 悬浮液在99%酒精预处理过的玻璃培养皿上;
2)玻璃培养皿置于磁感应强度为200G~500G的匀强磁场中,静置10h,获得被定向的纤维素纳米微晶/四氧化三铁复合膜即抗静电纤维素纳米微晶包装复合膜。
本发明的优点:
(1)以微晶纤维素为原料,通过硫酸水解赋予它带负电表面基团,增强其反应活性和吸附能力。在此基础上,以纤维素纳米微晶为载体,混合磁性纳米四氧化三铁粒子,并附着于纤维素纳米微晶表面,通过外加磁场,实现了纤维素纳米微晶的宏观定向,从而提高复合膜的导电性;
(2)透明抗静电薄膜将薄膜的透明性与导电性很好的结合起来,赋予复合薄膜材料独特的性能,使其在传统的膜包装产业拥有广阔的发展和应用前景;
(3)原料来源广泛,价格便宜,制备工艺简单快捷,实用性强、市场潜力大、潜在附加值高,是对微晶纤维素这一可再生资源的高效、高质量开发,具有重大意义。
附图说明
图1是实施例1所得外加磁场抗静电纤维素纳米微晶包装复合膜表面扫描电镜图。
图2是实施例1所得外加磁场抗静电纤维素纳米微晶包装复合膜傅里叶红外光谱(ATR-FTIR)图。
图3是实施例1、2、3中外加磁场抗静电纤维素纳米微晶包装复合膜四探针测得电导率折线图。
图4、图5、图6是实施例1、2、3所得外加磁场抗静电纤维素纳米微晶包装复合膜200倍偏光显微镜图。
具体实施方式
一种抗静电纤维素纳米微晶包装复合膜的制备方法,包括以下步骤:
步骤1,用微晶纤维素制备纤维素纳米晶体悬浮液,其特征在于包括如下步骤方法:
(1)称取4~10g的微晶纤维素加入80~120ml浓度为60~65wt%的硫酸中,在适当温度环境下磁力搅拌,进行酸性水解60~120min;
(2)加入去离子水终止上述反应,将所得溶液数次离心后转移至透析袋中透析2~3天,由此得到纤维素纳米晶体悬浮液,过滤后保存备用;
步骤2,抗静电纤维素纳米微晶包装复合膜的制备,其特征在于包括如下步骤方法:
吸取10~20ml纤维素纳米晶体悬浮液,称取0.001~0.02g纳米级四氧化三铁,在600~900W功率下进行超声处理,然后用胶头滴管取 1~5ml 悬浮液在99%酒精预处理过的玻璃培养皿上;
玻璃培养皿置于磁感应强度为200G~500G的匀强磁场中,静置一夜,获得被宏观定向的纤维素纳米微晶/四氧化三铁复合膜。
实施例1
微晶纤维素制备纳米晶体悬浮液,其方法步骤包括:(1)称取 4g微晶纤维素加入80ml 浓度为64wt%的硫酸中,在45℃恒水浴磁力搅拌进行酸性水解120min(2)加入去离子水终止上述反应,将所得溶液静置后,用离心机以 5000rpm/m 的速度离心10min,然后将沉淀洗涤,再次离心,反复数次直至无明显沉淀出现,然后将溶液转移至透析袋中透析3天,过滤后保存备用,由此得到的纳米晶体悬浮液 pH 值为5,浓度为 0.67wt%。
抗静电纤维素纳米微晶包装复合膜的制备,其方法步骤包括:(1)用量筒量取20ml上述纳米晶体悬浮液,电子天平称取0.008g平均粒径为20nm的四氧化三铁粉末,在冰水浴中超声处理15min(超声作用时间1s,间隙 2s, 功率780W)(2)用胶头滴管取1ml超声后的纳米晶体悬浮液于粘附在玻璃培养皿上的保鲜膜上,室温环境下自然干燥(3)用胶头滴管取1ml超声后的纳米晶体悬浮液于粘附在玻璃培养皿上的保鲜膜上,置于外加磁场中(两节60x10x4mm钕铁硼磁铁,N极S极距离为3cm),室温环境下自然干燥。
参见附图1,是本实施例获得的抗静电纤维素纳米微晶包装复合膜的扫描电镜SEM图,明显可见纤维素纳米微晶形貌、尺寸均匀,平均粒径在80nm~100nm之间,纤维素纳米微晶表面均匀附着的四氧化三铁粒子,其尺寸基本分布在10nm~20nm之间。研究表明,当四氧化三铁粒子粒径在20nm 左右或小于该尺寸时,其具备良好超顺磁性,这与本发明初衷相符。
参见附图2,谱图中,波数为3330.30 cm-1 处有一个明较强烈的吸收峰,其对应微晶纤维素醇羟基的伸缩振动。波数为2896.34 cm-1 处附近有一个特征峰是由微晶纤维素亚甲基(-CH2-)中C-H 键对称伸缩引起的。波数为1641cm-1处的特征峰,对应的是纳米微晶纤维素样品中吸附的微量杂质水中O-H键的弯曲振动峰。波数1026.71 cm-1 附近出现的吸收峰是由微晶纤维素膜糖环中C-O-C与C-O-H的伸缩振动产生的,可看做是微晶纤维素的特征峰;以上这些由红外谱图表征得到的基团与纤维素纳米微晶分子所包含的基团一致。以上这些吸收峰说明了纤维素纳米微晶的结构没有发生变化。
实施例2
微晶纤维素制备纳米晶体悬浮液,其方法步骤包括:(1)称取4g微晶纤维素加入80ml 浓度为64wt%的硫酸中,在45℃恒水浴磁力搅拌进行酸性水解120min(2)加入去离子水终止上述反应,将所得溶液静置后,用离心机以5000rpm/m 的速度离心10min,然后将沉淀洗涤,再次离心,反复数次直至无明显沉淀出现,然后将溶液转移至透析袋中透析3天,过滤后保存备用,由此得到的纳米晶体悬浮液pH值为5,浓度为0.67wt%。
抗静电纤维素纳米微晶包装复合膜的制备,其方法步骤包括:(1)用量筒量取20ml上述纳米晶体悬浮液,电子天平称取0.004g平均粒径为20nm的四氧化三铁粉末,在冰水浴中超声处理15min(超声作用时间1s,间隙 2s, 功率780W)(2)用胶头滴管取1ml超声后的纳米晶体悬浮液于粘附在玻璃培养皿上的保鲜膜上,置于外加磁场中(两节60x10x4mm钕铁硼磁铁 N极S极距离为3cm),室温环境下自然干燥。
实施例3
微晶纤维素制备纳米晶体悬浮液,其方法步骤包括:(1)称取 4g微晶纤维素加入80ml 浓度为64wt%的硫酸中,在45℃恒水浴磁力搅拌进行酸性水解120min(2)加入去离子水终止上述反应,将所得溶液静置后,用离心机以5000rpm/m 的速度离心 10min,然后将沉淀洗涤,再次离心,反复数次直至无明显沉淀出现,然后将溶液转移至透析袋中透析3天,过滤后保存备用,由此得到的纳米晶体悬浮液 pH 值为 5,浓度为 0.67wt%。
抗静电纤维素纳米微晶包装复合膜的制备,其方法步骤包括:(1)用量筒量取20ml上述纳米晶体悬浮液,电子天平称取0.001g平均粒径为20nm的四氧化三铁粉末,在冰水浴中超声处理15min(超声作用时间 1s,间隙 2s, 功率780W)(2)用胶头滴管取1ml超声后的纳米晶体悬浮液于粘附在玻璃培养皿上的保鲜膜上,置于外加磁场中(两节60x10x4mm钕铁硼磁铁 N极S极距离为3cm),室温环境下自然干燥。
以微晶纤维素为原材料,采用硫酸水解法制备纤维素纳米晶体悬浮液。利用纤维素纳米微晶为载体,超声均匀混合四氧化三铁纳米粒子,置于外加磁场中自然干燥。干燥过程中,磁性纳米粒子依附于纳米纤维素表面,在外加磁场作用下,聚集成磁性粒子线,实现了纤维素微晶宏观上的有效定向,从而增强了包装复合膜的导电性能。本发明以纳米微晶纤维素为基材,四氧化三铁为导电填料,充分发挥纳米微晶纤维素和四氧化三铁的协同效应,在外加磁场作用下,制成柔性导电膜,兼具透明性高、可导电的优点,可用作精密机械、生物医药、石油化工、微电子器械等产品的抗静电包装复合膜。
参见附图3,可以看出本发明实施例1、2、3中添加不同质量四氧化三铁所得的抗静电纤维素纳米微晶包装复合膜有不同的电导率。在一定范围内,电导率大小与添加四氧化三铁质量呈正相关。纤维素纳米微晶与四氧化三铁比例为20:1(四氧化三铁0.008g)时,电导率最大,测五次取平均值为5.13x10-3S/cm;纤维素纳米微晶与四氧化三铁比例为100:1(四氧化三铁0.001g)时,电导率最小,测五次取平均值为3.71x10-5S/cm。研究表明,不同的应用领域对材料电性能的要求也有所不同,对于防静电材料来说,只需要材料的电导率达到10-7S/cm即可以起到较好的防静电的效果,所以本发明实施例中所有纤维素纳米微晶/四氧化三铁复合膜均具有防静电性能。
参见附图4、5、6,明显看出四氧化三铁纳米粒子依附于纤维素纳米晶体表面,在外加磁场作用下,聚集成磁性粒子线,实现了纤维素纳米微晶宏观上的有效定向。相较于纤维素纳米微晶与四氧化三铁质量比为100:1(6图,四氧化三铁0.001g),纤维素纳米微晶与四氧化三铁质量比为20:1(4图,四氧化三铁0.008g)及40:1(5图,四氧化三铁0.004g)时,磁性粒子线更加密集,定向性更好,结合图3可说明纤维素微晶的定向增强了包装复合膜的导电性。

Claims (5)

1.一种抗静电纤维素纳米微晶包装复合膜的制备方法,其特征是包括以下步骤:
(1)制备纤维素纳米微晶悬浮液;由以下步骤组成:
1)称取2~10g的微晶纤维素加入80~120ml浓度为60~65wt%的硫酸中,在40~50℃环境下磁力搅拌,进行酸性水解60~120min;
2)加入去离子水终止上述反应,将所得溶液数次离心后转移至透析袋中透析2~3天,由此得到纤维素纳米微晶悬浮液,过滤后保存备用;
(2)制备抗静电纤维素纳米微晶包装复合膜;由以下步骤组成:
1)吸取10~20ml纤维素纳米微晶悬浮液,称取0.001~0.02g纳米级四氧化三铁,在600~900W功率下进行超声处理,然后用胶头滴管取 1~5ml 悬浮液在99%酒精预处理过的玻璃培养皿上;
2)玻璃培养皿置于磁感应强度为200G~500G的匀强磁场中,静置10h,获得被定向的纤维素纳米微晶/四氧化三铁复合膜即抗静电纤维素纳米微晶包装复合膜。
2.根据权利要求1所述的抗静电纤维素纳米微晶包装复合膜的制备方法,其特征在于,所述的纤维素纳米微晶表面羟基的化学活性较高,当使用硫酸水解纤维素时,纤维素纳米微晶表面的羟基经硫酸酯化变成带负电的硫酸酯基团(-SO3-),依靠静电排斥力,硫酸酯基修饰的纤维素纳米微晶,在水溶液中逐渐形成均匀分散的悬浮液。
3.根据权利要求1所述的抗静电纤维素纳米微晶包装复合膜的制备方法,其特征在于,所述的硫酸水解后的纤维素纳米微晶悬浮液与四氧化三铁按预设比例混合超声,表面带负电的纤维素纳米晶体粒子产生剧烈运动,使得四氧化三铁粒子易于附着到纤维素纳米微晶结构上。
4.根据权利要求1所述的抗静电纤维素纳米微晶包装复合膜的制备方法,其特征在于,所述的超声后得纤维素胆甾型液晶相,由于液晶是各向异性的物质,在外界电磁场的作用下,其分子排列会因其介电各向异性或磁化率各向异性的不同而发生变化。
5.根据权利要求1所述的抗静电纤维素纳米微晶包装复合膜的制备方法,其特征在于,所述的纤维素纳米微晶悬浮液的制备是硫酸水解法,以纤维素纳米微晶为载体;超声均匀混合四氧化三铁纳米粒子,置于外加磁场中自然干燥;干燥过程中,磁性纳米粒子依附于纤维素纳米微晶表面,聚集成磁性粒子线,实现了微晶纤维素的宏观定向,从而提高复合膜的导电特性。
CN201610617126.2A 2016-08-01 2016-08-01 一种抗静电纤维素纳米微晶包装复合膜的制备方法 Active CN106243392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610617126.2A CN106243392B (zh) 2016-08-01 2016-08-01 一种抗静电纤维素纳米微晶包装复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610617126.2A CN106243392B (zh) 2016-08-01 2016-08-01 一种抗静电纤维素纳米微晶包装复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN106243392A CN106243392A (zh) 2016-12-21
CN106243392B true CN106243392B (zh) 2018-10-02

Family

ID=57606183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610617126.2A Active CN106243392B (zh) 2016-08-01 2016-08-01 一种抗静电纤维素纳米微晶包装复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN106243392B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282041B (zh) * 2017-06-01 2019-12-13 浙江理工大学 用于hmf转移加氢产生dmf的催化剂的制备方法
CN109972456B (zh) * 2017-12-28 2022-08-30 上海凯矜新材料科技有限公司 可降解空气净化复合滤纸及其制备方法
CN109337138B (zh) * 2018-08-30 2019-12-10 华南理工大学 一种具有各向异性的磁性橡胶复合材料及其制备方法
CA3137802C (en) * 2019-04-25 2024-01-02 Toyo Seikan Group Holdings, Ltd. Cellulose nanocrystal composite and method for producing the same
CN112175197B (zh) * 2020-10-29 2022-08-30 河北泰达包装材料有限公司 一种磁改性天然多糖的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295786A (zh) * 2011-06-13 2011-12-28 青岛科技大学 纳米纤维素晶体/聚苯胺类复合材料的制备方法及其产品
CN103319749A (zh) * 2013-07-12 2013-09-25 中国热带农业科学院农产品加工研究所 一种复合吸波材料及其制备方法
CN103709422A (zh) * 2013-12-20 2014-04-09 华南理工大学 一种磁性纤维素纳米晶的制备方法
CN103961703A (zh) * 2014-04-23 2014-08-06 上海裕隆医学检验所股份有限公司 一种免疫纳米纤维素磁性脂质体及其制备方法
CN104221101A (zh) * 2012-02-10 2014-12-17 赛陆泰科公司 用磁性纳米粒子修饰的纤维素纳米纤丝
CN105672014A (zh) * 2016-03-01 2016-06-15 山东农业大学 超疏水磁性纳米纤维素纸的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295786A (zh) * 2011-06-13 2011-12-28 青岛科技大学 纳米纤维素晶体/聚苯胺类复合材料的制备方法及其产品
CN104221101A (zh) * 2012-02-10 2014-12-17 赛陆泰科公司 用磁性纳米粒子修饰的纤维素纳米纤丝
CN103319749A (zh) * 2013-07-12 2013-09-25 中国热带农业科学院农产品加工研究所 一种复合吸波材料及其制备方法
CN103709422A (zh) * 2013-12-20 2014-04-09 华南理工大学 一种磁性纤维素纳米晶的制备方法
CN103961703A (zh) * 2014-04-23 2014-08-06 上海裕隆医学检验所股份有限公司 一种免疫纳米纤维素磁性脂质体及其制备方法
CN105672014A (zh) * 2016-03-01 2016-06-15 山东农业大学 超疏水磁性纳米纤维素纸的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Macroscopic Control of Helix Orientation in Films Dried from Cholesteric Liquid-Crystalline Cellulose Nanocrystal Suspensions;Ji Hyun Park,等;《ChemPhysChem》;20141231;第15卷;第1477-1484页 *
Magneto-responsive hybrid materials based on cellulose nanocrystals;Tiina Nypelo¨等;《Cellulose》;20140530;第21卷;第2557-2566页 *
Structure and Magnetic Properties of Regenerated Cellulose/Fe3O4 Nanocomposite Films;Jinping Zhou等;《Journal of Applied Polymer Science》;20081125;第111卷;第2477-2484页 *
纳米Fe_3O_4_纤维素抗静电复合包装膜的研究;张晓君;《包装工程》;20160430;第37卷(第7期);第23-27页 *
纳米纤维素/Fe3O4复合材料的制备及热性能研究;王飞 等;《山东化工》;20141231;第43卷(第12期);第13-15页 *

Also Published As

Publication number Publication date
CN106243392A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
CN106243392B (zh) 一种抗静电纤维素纳米微晶包装复合膜的制备方法
Jiang et al. Magnetic chitosan–graphene oxide composite for anti-microbial and dye removal applications
Zhang et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water
Wang et al. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay
CN107899551B (zh) 含有聚吡咯的氨基氧化石墨烯/醋酸纤维素复合材料及其应用
Ren et al. Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength
Nagireddy et al. Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction
Pan et al. Poly (2-hydroxypropylene imines) functionalized magnetic polydopamine nanoparticles for high-efficiency DNA isolation
Sun et al. Purification, preliminary structure and antitumor activity of exopolysaccharide produced by Streptococcus thermophilus CH9
Shi et al. Synthesis, characterization, and sludge dewaterability evaluation of the chitosan-based flocculant CCPAD
Liu et al. Magnetic responsive cellulose nanocomposites and their applications
CN103741467A (zh) 应用于靶向捕获癌细胞的透明质酸功能化纳米纤维的制备方法
CN110343282A (zh) 一种超疏水性纳米纤维素膜及其制备方法
Grama et al. Novel fluorescent poly (glycidyl methacrylate)–Silica microspheres
Zarei et al. Fabrication of cellulase catalysts immobilized on a nanoscale hybrid polyaniline/cationic hydrogel support for the highly efficient catalytic conversion of cellulose
Hu et al. Dual‐pH/Magnetic‐Field‐Controlled Drug Delivery Systems Based on Fe3O4@ SiO2‐Incorporated Salecan Graft Copolymer Composite Hydrogels
Cui et al. Influence of DS of CMC on morphology and performance of magnetic microcapsules
Abdel-Fattah et al. Functionality, antibacterial efficiency and biocompatibility of nanosilver/chitosan/silk/phosphate scaffolds 1. Synthesis and optimization of nanosilver/chitosan matrices through gamma rays irradiation and their antibacterial activity
Ye et al. Selective flotation separation of chalcopyrite from talc by a novel depressant: N-methylene phosphonic chitosan
Xie et al. Bagasse cellulose composite superabsorbent material with double-crosslinking network using chemical modified nano-CaCO3 reinforcing strategy
Li et al. Hemicellulose and nano/microfibrils improving the pliability and hydrophobic properties of cellulose film by interstitial filling and forming micro/nanostructure
Kono et al. Reinforcing poly (methyl methacrylate) with bacterial cellulose nanofibers chemically modified with methacryolyl groups
Wang et al. Development of pectin-based aerogels with several excellent properties for the adsorption of Pb2+
Huang et al. Characterization of extracellular polymeric substances by microscopic imaging techniques in wastewater biotreatment: a review
CN104474967A (zh) 一种分散剂、其制备方法及其在纳米碳酸钙分散中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200226

Address after: 276411 Nanling village, Gaoqiao Town, Yishui County, Linyi, Shandong

Patentee after: Shandong Lvsen Wood-Plastic Composite Co., Ltd.

Address before: Nanjing City, Jiangsu province 210037 Longpan Road No. 159

Patentee before: NANJING FORESTRY University