CN106243296B - 一种二次交联提高水凝胶纤维力学性能的方法 - Google Patents

一种二次交联提高水凝胶纤维力学性能的方法 Download PDF

Info

Publication number
CN106243296B
CN106243296B CN201610606995.5A CN201610606995A CN106243296B CN 106243296 B CN106243296 B CN 106243296B CN 201610606995 A CN201610606995 A CN 201610606995A CN 106243296 B CN106243296 B CN 106243296B
Authority
CN
China
Prior art keywords
linking
mechanical property
fibre
secondary cross
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610606995.5A
Other languages
English (en)
Other versions
CN106243296A (zh
Inventor
朱美芳
危培玲
侯恺
夏梦阁
孟周琪
成艳华
周哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610606995.5A priority Critical patent/CN106243296B/zh
Publication of CN106243296A publication Critical patent/CN106243296A/zh
Application granted granted Critical
Publication of CN106243296B publication Critical patent/CN106243296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • C08F299/028Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight photopolymerisable compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/10Esters
    • C08F122/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/30Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/06Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/16Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2357/00Characterised by the use of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种二次交联提高水凝胶纤维力学性能的方法。本发明公开了一种通过二次交联增强水凝胶纤维力学性能的方法,其特征在于:配制单体水溶液,搅拌均匀后加入水溶性好的紫外光引发剂,在室温避光条件下搅拌并溶解完全后获得纺丝预聚液;通过计量泵将纺丝液从喷头挤出至水浴,在纺丝液出口处设置紫外光点光源,在紫外光照射下,动态挤出的纺丝液单体进行自由基聚合反应,获得水凝胶初生纤维;将初生纤维浸没在事先配好的水溶性热引发剂溶液中,升高温度,热引发剂分解引发初生纤维中含双键的聚合物链发生二次交联,从而提高凝胶纤维的力学性能,拓展此类水凝胶的应用领域。

Description

一种二次交联提高水凝胶纤维力学性能的方法
技术领域
本发明涉及水凝胶纤维材料加工技术领域,具体涉及一种通过二次交联提高水凝胶纤维力学性能的方法。
背景技术
高分子水凝胶是一类由聚合物和溶剂水组成的具有三维交联网络结构的软湿性材料,该聚合物在水中溶胀而不溶解并能保持一定形状。智能水凝胶能够对外界环境刺激(如pH,光,电,磁,温度等)产生特定的变化(如:体积形态、光学行为、力学性能等),可广泛应用于智能传感、酶固定、微流体阀门以及药物释放等领域。由于水凝胶具有软湿性,其可被加工成多种形态,如三维的体凝胶、二维的凝胶薄膜、一维的凝胶纤维和零维的微凝胶等。随着智能可穿戴科技的日益发展,一维的凝胶纤维不仅具有水凝胶的智能性还具有纤维的可编织性,在智能服装领域的优势已日渐突出,目前已引起人们的广泛关注。但是,凝胶纤维仍存在连续制备难、力学性能低等问题,严重限制了其在智能水凝胶纤维领域的进一步应用。
为了改善凝胶纤维的力学性能,科学家不断尝试采用提高体凝胶力学性能的方法,如设计双网络(DN)凝胶、拓扑(TP)凝胶、纳米复合(NC)凝胶等以提高凝胶纤维的力学性能。东华大学顾丽霞教授等制备了PVA/PAA双网络水凝胶纤维,其弯曲形变可达到60%,提高了纤维的弯曲性能,但由于凝胶的三维网络结构在纺丝前已经形成,纺丝过程中难以牵伸和连续收集;此外,一些海藻酸钠、聚丙烯腈分子链在金属离子液中产生交联形成水凝胶纤维,由于静电作用力在纤维拉伸和弯曲时动态可逆,从而提高凝胶纤维的力学性能,然后其本质是高分子链的缠绕,在特殊的离子环境下易解离,结构稳定性不佳,且制备过程容易形成皮芯结构,使得内外交联点分布不均,进而容易造成受力时的应力集中,使其力学性能差。本发明针对水凝胶纤维连续制备难、力学性能不佳的问题,设计一种以分子结构中含多个双键的水溶性分子为凝胶单体,通过计量泵挤出的方式在喷丝口设置紫外光源建立动态聚合一步法连续制备水凝胶纤维的方法,在凝胶三维网络形成的过程中得到交联度低的初生水凝胶纤维。进一步利用热引发聚合的方法使初生水凝胶纤维发生二次交联以提高水凝胶纤维的力学性能。
发明内容
本发明所要解决的技术问题是提供一种二次交联提高水凝胶纤维力学性能的方法。
为了解决上述技术问题,本发明提供了一种二次交联提高水凝胶纤维力学性能的方法,其特征在于,包括:
步骤1):室温下以水为溶剂,配制质量分数为20-80%的单体水溶液,通氮气0.5-1h以除去溶液中溶解的氧气后加入质量分数为1‰-3‰的水溶性紫外光引发剂,室温下避光搅拌2-6h至光引发剂完全溶解,获得纺丝预聚液;
步骤2):室温下将步骤1)中配好的单体纺丝液通过计量泵以2-10ml/h的挤出速率,经喷丝头挤出进入水浴,在距离纺丝液出口2-8mm处设置紫外或近紫外光点光源,光路方向与纺丝液挤出方向成60-90°角,光斑距离喷丝口0.5~1cm;经紫外光照射,单体发生自由基聚合制备水凝胶初生的纤维;该水凝胶初生纤维在凝固浴中经动态牵伸后由卷绕装置收集,可获得连续的水凝胶初生纤维;
步骤3):将步骤2)中的初生水凝胶纤维浸在配好的质量分数为1%-5%的水溶性热引发剂溶液中,然后对该水凝胶初生纤维升温至40-60℃并维持2-6h,使得热引发剂分解引发该水凝胶初生纤维中含C=C双键的聚合物链发生二次交联。
优选地,所述步骤1)中单体为含两个双键的水溶性单体,包括:聚乙二醇双丙烯酸脂(PEGDA,Mw=300-1000)、聚丙二醇双丙烯酸酯(Mn=400-1000)和衣康酸二丁酯中的一种或几种。
优选地,所述步骤1)中光引发剂为2-羟基-2,2-二甲基苯乙酮(Darocur1173)、2,2’-偶氮基-双(2-脒基丙烷)(ABAP)、二苯甲酮(BP)和2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮(IRGACURE 2959)中的一种或几种。
优选地,所述步骤2)中紫外光波长的选择范围为200-420nm。
优选地,所述步骤2)中纺丝喷头出口直径为0.6mm-1.5mm,长径比为13-33,纺丝喷头浸于水浴液面以下0.05-1cm,纺丝液挤出方向与液面垂直。
优选地,所述步骤2)中牵伸速度为200-800m/h。
优选地,所述步骤3)中水溶性热引发剂为过硫酸铵、过硫酸钾、过硫酸钠和偶氮二异丁腈中的一种或几种。
优选地,所述步骤3)中须通氮气除氧气。
与现有技术相比,本发明的有益效果在于:
本发明提供了一种基于紫外光引发的水溶性单体动态自由基聚合获得具有低交联密度水凝胶初生纤维的连续制备方法,然后通过热引发使纤维发生二次交联以获得具有较高力学性能的凝胶纤维。
本发明采用一步法连续制备水凝胶纤维,并针对该初生纤维力学性能低的缺点,采用热引发二次交联水凝胶纤维,提高其拉伸和压缩性能。该水凝胶纤维具有力学强度高,生产成本低,生物相容性好,可连续化生产等优点,拓宽了其在智能服装、人工神经、人工皮肤和人工敷料等领域的应用,市场前景广阔。
附图说明
图1为实施例1中制备的PEGDA水凝胶初生纤维的力学性能图;
图2为实施例1中制备的PEGDA二次交联后的凝胶纤维的力学性能图;
图3为不同相对分子质量的单体聚乙二醇双丙烯酸酯的结构式。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1-5采用的聚乙二醇双丙烯酸酯单体均购于Sigma-Aldrich公司,紫外光源购于北京锦坤科技有限公司。
实施例1
一种二次交联提高水凝胶纤维力学性能的方法,具体步骤为:
(1)室温下称取5g去离子水,3g聚乙二醇双丙烯酸脂(PEGDA,Mn=300),0.05gIRGACURE 2959,室温下避光磁力搅拌7h至IRGACURE 2959完全溶解获得纺丝液;
(2)将纺丝液注入到10ml量程的注射器中,用内径0.6mm、长2cm的毛细管为纺丝喷头,利用计量泵将纺丝液从注射器通过纺丝喷头注入离子水浴,推进速率2.5ml/h,纺丝喷头浸于水浴液面以下0.5cm。在距离喷丝口6mm处设置90°紫外点光源,波长400m,设置直径6cm的滚筒线速度为350m/h,对初生水凝胶纤维进行卷绕收集,获得连续微米级具有低交联密度的水凝胶初生纤维;
(3)配制50ml 3%的过硫酸铵水溶液,通氮气30min以除去溶液中溶解的氧气,然后将得到的初生纤维在过硫酸铵溶液中浸泡2h后,将凝胶纤维取出,置于50℃真空烘箱中放置6h,此时在热引发下,凝胶纤维发生二次交联,使得力学性能得以提高。图1和图2分别是PEGDA初生纤维和PEGDA二次交联纤维的拉伸强度和压缩强度图,由图可以看出二次交联可以明显增强凝胶纤维的拉伸和压缩性能。
实施例2
一种二次交联提高水凝胶纤维力学性能的方法,具体步骤为:
(1)室温下称取10g去离子水,7g PEGDA(Mn=500),0.03g IRGACURE 2959,室温下避光磁力搅拌7h至IRGACURE 2959完全溶解获得纺丝液;
(2)将纺丝液注入到10ml量程的注射器中,用内径0.6mm、长2cm的毛细管为纺丝喷头,利用计量泵将纺丝液从注射器通过纺丝喷头注入离子水浴,推进速率4ml/h,纺丝喷头浸于水浴液面以下0.5cm。在距离喷丝口6mm处设置90°紫外点光源,波长400nm,设置直径6cm的滚筒线速度为400m/h,对初生水凝胶纤维进行卷绕收集,获得连续微米级具有低交联密度的水凝胶初生纤维;
(3)配制50ml 3%的过硫酸铵水溶液,通氮气30min以除去溶液中溶解的O2,然后将得到的初生纤维在过硫酸铵溶液中浸泡2h后,将凝胶纤维取出,置于50℃真空烘箱中放置6h,此时在热引发下,凝胶纤维发生二次交联,使得力学性能得以提高。
实施例3
一种二次交联提高水凝胶纤维力学性能的方法,具体步骤为:
(1)室温下称取10g去离子水,7g聚丙二醇双丙烯酸酯(PPGDA,Mn=600),0.03gIRGACURE 2959,室温下避光磁力搅拌7h至IRGACURE 2959完全溶解获得纺丝液;
(2)将纺丝液注入到10ml量程的注射器中,用内径0.6mm、长2cm的毛细管为纺丝喷头,利用计量泵将纺丝液从注射器通过纺丝喷头注入离子水浴,推进速率4ml/h,纺丝喷头浸于水浴液面以下0.5cm。在距离喷丝口6mm处设置90°紫外点光源,波长400nm,设置直径6cm的滚筒线速度为400m/h,对初生水凝胶纤维进行卷绕收集,获得连续微米级具有低交联密度的水凝胶初生纤维;
(3)配制50ml 3%的过硫酸铵水溶液,通氮气30min以除去溶液中溶解的O2,然后将得到的初生纤维在过硫酸铵溶液中浸泡2h后,将凝胶纤维取出,置于50℃真空烘箱中放置5h,此时在热引发下,凝胶纤维发生二次交联,使得力学性能得以提高。
实施例4
一种二次交联提高水凝胶纤维力学性能的方法,具体步骤为:
(1)室温下称取8g去离子水,4g PEGDA(Mn=500),0.03g 2-羟基-2,2-二甲基苯乙酮(Darocur1173)室温下避光磁力搅拌7h至Darocur1173完全溶解获得纺丝液;
(2)将纺丝液注入到10ml量程的注射器中,用内径0.6mm、长2cm的毛细管为纺丝喷头,利用计量泵将纺丝液从注射器通过纺丝喷头注入离子水浴,推进速率4ml/h,纺丝喷头浸于水浴液面以下0.5cm。在距离喷丝口6mm处设置90°紫外点光源,波长400nm,设置直径6cm的滚筒线速度为400m/h,对初生水凝胶纤维进行卷绕收集,获得连续微米级具有低交联密度的水凝胶初生纤维;
(3)配制50ml 5%的过硫酸铵水溶液,通氮气30min以除去溶液中溶解的O2,然后将得到的初生纤维在过硫酸铵溶液中浸泡1.5h后,将凝胶纤维取出,置于50℃真空烘箱中放置6h,此时在热引发下,凝胶纤维发生二次交联,使得力学性能得以提高。
实施例5
一种二次交联提高水凝胶纤维力学性能的方法,具体步骤为:
(1)室温下称取12g去离子水,7g聚丙二醇双丙烯酸酯(PPGDA,Mn=400),0.03gIRGACURE 2959,室温下避光磁力搅拌6h至IRGACURE 2959完全溶解获得纺丝液;
(2)将纺丝液注入到10ml量程的注射器中,用内径0.6mm、长2cm的毛细管为纺丝喷头,利用计量泵将纺丝液从注射器通过纺丝喷头注入离子水浴,推进速率4ml/h,纺丝喷头浸于水浴液面以下0.5cm。在距离喷丝口6mm处设置90°紫外点光源,波长400m,设置直径6cm的滚筒线速度为400m/h,对初生水凝胶纤维进行卷绕收集,获得连续微米级具有低交联密度的水凝胶初生纤维;
(3)配制50ml 3%的过硫酸铵水溶液,通氮气30min以除去溶液中溶解的氧气,然后将得到的初生纤维在过硫酸铵溶液中浸泡4h后,将凝胶纤维取出,置于50℃真空烘箱中放置6h,此时在热引发下,凝胶纤维发生二次交联,使得力学性能得以提高。

Claims (8)

1.一种二次交联提高水凝胶纤维力学性能的方法,其特征在于,包括以下步骤:
步骤1):室温下以水为溶剂,配制质量分数为20-80%的单体水溶液,通氮气0.5-1h以除去溶液中溶解的氧气后加入质量分数为1‰-3‰的水溶性紫外光引发剂,室温下避光搅拌2-6h至光引发剂完全溶解,获得纺丝预聚液;
步骤2):室温下将步骤1)中配好的单体纺丝液通过计量泵以2-10ml/h的挤出速率,经喷丝头挤出进入水浴,在距离纺丝液出口2-8mm处设置紫外或近紫外光点光源,光路方向与纺丝液挤出方向成60-90°角,光斑距离喷丝口0.5~1cm;经紫外光照射,单体发生自由基聚合制备水凝胶初生的纤维;该水凝胶初生纤维在凝固浴中经动态牵伸后由卷绕装置收集,可获得连续的水凝胶初生纤维;
步骤3):将步骤2)中的初生水凝胶纤维浸在配好的质量分数为1%-5%的水溶性热引发剂溶液中,然后对该水凝胶初生纤维升温至40-60℃并维持2-6h,使得热引发剂分解引发该水凝胶初生纤维中含C=C双键的聚合物链发生二次交联。
2.如权利要求1所述二次交联提高水凝胶纤维力学性能的方法,其特征在于,所述步骤1)中单体为含两个双键的水溶性单体,包括:聚乙二醇双丙烯酸脂和聚丙二醇双丙烯酸酯中的一种或几种。
3.如权利要求1所述二次交联提高水凝胶纤维力学性能的方法,其特征在于,所述步骤1)中光引发剂为2-羟基-2,2-二甲基苯乙酮、2,2’-偶氮基-双(2-脒基丙烷)、二苯甲酮和2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮中的一种或几种。
4.如权利要求1所述二次交联提高水凝胶纤维力学性能的方法,其特征在于,所述步骤2)中紫外光波长的选择范围为200-420nm。
5.如权利要求1所述二次交联提高水凝胶纤维力学性能的方法,其特征在于,所述步骤2)中纺丝喷头出口直径为0.6mm-1.5mm,长径比为13-33,纺丝喷头浸于水浴液面以下0.05-1cm,纺丝液挤出方向与液面垂直。
6.如权利要求1所述二次交联提高水凝胶纤维力学性能的方法,其特征在于,所述步骤2)中牵伸速度为200-800m/h。
7.如权利要求1所述二次交联提高水凝胶纤维力学性能的方法,其特征在于,所述步骤3)中水溶性热引发剂为过硫酸铵、过硫酸钾和过硫酸钠中的一种或几种。
8.如权利要求1所述二次交联提高水凝胶纤维力学性能的方法,其特征在于,所述步骤3)中须通氮气除氧气。
CN201610606995.5A 2016-07-28 2016-07-28 一种二次交联提高水凝胶纤维力学性能的方法 Active CN106243296B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610606995.5A CN106243296B (zh) 2016-07-28 2016-07-28 一种二次交联提高水凝胶纤维力学性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610606995.5A CN106243296B (zh) 2016-07-28 2016-07-28 一种二次交联提高水凝胶纤维力学性能的方法

Publications (2)

Publication Number Publication Date
CN106243296A CN106243296A (zh) 2016-12-21
CN106243296B true CN106243296B (zh) 2019-03-29

Family

ID=57604875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610606995.5A Active CN106243296B (zh) 2016-07-28 2016-07-28 一种二次交联提高水凝胶纤维力学性能的方法

Country Status (1)

Country Link
CN (1) CN106243296B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671263B (zh) * 2018-06-04 2021-05-18 广东安道医疗器械有限公司 一种医用抗菌水凝胶敷料制备方法
CN110067042B (zh) * 2019-04-01 2021-12-07 东华大学 一种魔芋葡甘聚糖基抗菌水凝胶纤维及其制备方法
CN111910268B (zh) * 2020-07-23 2022-03-22 北京理工大学 一种凝胶纤维的纺丝方法
CN112796000B (zh) * 2021-01-20 2021-11-19 东华大学 一种高凝胶含量高结晶度脂肪族聚酯及其制备方法
CN113376914B (zh) * 2021-05-31 2022-11-04 西南医科大学 一种用于反射式显示的可拉伸微胶囊薄膜及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161689A (zh) * 2007-09-21 2008-04-16 东华大学 一种快速响应和高力学性能水凝胶的制备方法
CN103160952A (zh) * 2013-04-15 2013-06-19 东华大学 一种高吸水纤维的制备方法
CN104761736A (zh) * 2014-01-08 2015-07-08 上海其胜生物制剂有限公司 一种不对称结构的交联透明质酸钠凝胶的制备方法
CN105155011A (zh) * 2015-07-21 2015-12-16 东华大学 一种连续微米级pegda水凝胶纤维的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592865A (zh) * 2013-08-01 2016-05-18 因特里斯伍有限公司 水凝胶纤维及其制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161689A (zh) * 2007-09-21 2008-04-16 东华大学 一种快速响应和高力学性能水凝胶的制备方法
CN103160952A (zh) * 2013-04-15 2013-06-19 东华大学 一种高吸水纤维的制备方法
CN104761736A (zh) * 2014-01-08 2015-07-08 上海其胜生物制剂有限公司 一种不对称结构的交联透明质酸钠凝胶的制备方法
CN105155011A (zh) * 2015-07-21 2015-12-16 东华大学 一种连续微米级pegda水凝胶纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三维网状结构共聚甲基丙烯酸酯纤维及其吸油性能研究;封严;《中国优秀博硕士学位论文全文数据库(博) 工程科技I辑》;20050915;第53-54、66-76段

Also Published As

Publication number Publication date
CN106243296A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
CN106243296B (zh) 一种二次交联提高水凝胶纤维力学性能的方法
CN106633111B (zh) 一种高强度聚乙烯醇基双网络水凝胶的制备方法
CN106947020B (zh) 一种高强度壳聚糖基水凝胶的制备方法
CN103408777B (zh) 一种有机凝胶的制备方法
Lim et al. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices
CN100480291C (zh) 一种超分子结构温度敏感性水凝胶的制备方法
CN103145914B (zh) 一种高强度pH、温度快速双响应纳米复合水凝胶的制备方法
CN109054052A (zh) 一种高韧性双网络物理交联自修复水凝胶的制备方法
CN105086001A (zh) 一种透明质酸-明胶/丙烯酰胺双网络水凝胶及其制备方法
CN105155011B (zh) 一种连续微米级pegda水凝胶纤维的制备方法
CN104652119B (zh) 一种双网络水凝胶纤维的制备方法及其产品
CN108192021B (zh) 一种温敏材料、纳微米温敏材料及其制备方法
CN103145920A (zh) 一种温度、pH、紫外光多刺激响应半互穿网络纳米复合水凝胶的制备方法
CN106267366B (zh) 一种利用3d打印制备高强高韧聚离子水凝胶支架的方法
CN104804116A (zh) 一种水凝胶/基布复合膜的制备方法
CN101709103B (zh) 不同波长光源制备含偶氮单体的光响应水凝胶的方法
CN103694379B (zh) 一种具有光和pH响应特性的两嵌段共聚物及其制备方法
CN108341913A (zh) 天然高分子模板引导聚合制备自修复水凝胶的方法
CN103467728B (zh) 一种具有生物缔合性的可降解两性离子聚合物及其制备方法
JP2008163055A (ja) 高強度ゲルおよびそのゲルの製造方法
CN106519152A (zh) 一种聚合物纳米粒子、复合水凝胶及其制备方法
CN104761673A (zh) 一种卡波姆及其制备方法
CN108003266B (zh) 一种四重刺激响应聚氨基酸纳米凝胶及其制备方法和应用
CN105155012B (zh) 一种具有可调环境温度响应的水凝胶基智能纤维的制备方法
CN110128594A (zh) 一种温度/pH双敏型高强度纳米复合水凝胶及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant