CN106238088B - 一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法 - Google Patents

一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法 Download PDF

Info

Publication number
CN106238088B
CN106238088B CN201610622266.9A CN201610622266A CN106238088B CN 106238088 B CN106238088 B CN 106238088B CN 201610622266 A CN201610622266 A CN 201610622266A CN 106238088 B CN106238088 B CN 106238088B
Authority
CN
China
Prior art keywords
tio
photocatalyst
polymolecularity
aqueous sol
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610622266.9A
Other languages
English (en)
Other versions
CN106238088A (zh
Inventor
周建伟
王储备
黄建新
褚亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang University
Original Assignee
Xinxiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang University filed Critical Xinxiang University
Priority to CN201610622266.9A priority Critical patent/CN106238088B/zh
Publication of CN106238088A publication Critical patent/CN106238088A/zh
Application granted granted Critical
Publication of CN106238088B publication Critical patent/CN106238088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高分散性g‑C3N4/TiO2光触媒无机水溶胶制备方法,属功能材料领域。该方法将g‑C3N4/TiO2光触媒在搅拌情况下以一定比例加入到含有无机分散剂的水溶液中,添加少量胶溶剂并调节悬浮液pH值,然后经剪切乳化和搅拌处理,得到稳定的高分散性g‑C3N4/TiO2光触媒中性无机水溶胶。制备工艺流程简单,操作简便,不使用有机分散剂和溶剂,制备成本低,制备得到的光触媒水溶胶分散性和稳定性高,适合制备光触媒浆液及涂层剂,有利于光触媒在涂覆材料领域中应用。

Description

一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法
技术领域
本发明涉及一种稳定的高分散性纳米g-C3N4/TiO2光触媒无机水溶胶制备方法。属于建筑涂层材料领域。
背景技术
纳米TiO2由于特有的表面效应、小尺寸效应、量子效应和宏观量子隧道效应,表现出独特的光电性能。其化学性质稳定,且无毒价廉,独特的颜色效应、光催化作用及紫外线屏蔽等功能,使它在涂料、化妆品、废水处理、杀菌及环保等方面有着广阔的应用前景。但纳米TiO2比表面积大、表面能高,在使用过程中极易发生粒子团聚严重影响了其应用。因此,寻求有效的分散方法是克服纳米 TiO2颗粒团聚、拓展应用领域的关键所在。近年来,有关纳米TiO2颗粒的分散研究多采用有机表面分散剂对纳米TiO2进行改性,通过产生静电稳定和空间位阻作用,提高其在水中的分散稳定性,其分散效果较好,可获得低粘度悬浮液。但由于TiO2光催化氧化作用的无选择性,导致在使用过程中容易产生对体系中的有机组分(基底)腐蚀。因此如何通过控制纳米TiO2粉体在介质中的胶体特性、悬浮液的pH值以及分散剂种类等因素制备高稳定、高分散、低粘度的悬浮液,分散剂的选取和用量是一个重要的关键因素。
目前,TiO2水溶胶主要存在两方面的问题,(1)TiO2未经掺杂改性,只能被紫外线激发而产生自洁效应,难以利用太阳光中大量的可见光;(2)溶胶制备主要采用有机钛源:钛酸丁酯、异丙醇钛等,通过水解法等实现溶胶的制备。原料成本较高、成膜后容易分解析气、以及反应时间较长等,制备效率较低,且有机溶剂对人体和环境也有一定的危害性,直接涂覆TiO2酸性溶胶会对水泥基材造成破坏。本发明利用低成本制备的石墨相氮化碳(g-C3N4)和商品纳米TiO2为原料,采用机械化学法制备得到具有可见光活性的g-C3N4/TiO2光触媒,并在此基础上制备一种高分散性g-C3N4/TiO2光触媒近中性的无机水溶胶,为解决以上问题提供一个良好方案,目前未见相关文献报道。
发明内容
针对目前制备分散良好的纳米TiO2基稳定水溶胶技术难点,本发明的目的在于提供一种简便的、低成本、高稳定、高分散、改性TiO2中性水溶胶制备方法。
制备高稳定、高分散、合适粘度的g-C3N4/TiO2悬浮液是胶态成型的关键,为实现上述目标,通过对控制粉体在介质中的胶体特性、分散剂种类和用量、pH 值及混合方式等因素,对TiO2基粉体在水中分散时进行研究,实现高分散性、高稳定性g-C3N4/TiO2水溶胶制备。
为实现本发明目的,技术方案如下:
(1)、商品纳米二氧化钛(锐钛矿)经共轭分子g-C3N4的表面杂化改性后,制备得到可见光活性的g-C3N4/TiO2光触媒;
(2)、在100ml水中依次加入分散剂六偏磷酸钠和硅酸钠,分散剂加入量为 0.1~0.5wt%,搅拌溶解完全;
(3)、在步骤(2)上述溶液中逐步加入g-C3N4/TiO2光触媒粉体,加入量为 1~3wt%,然后滴加1~3wt%的H2O2溶液,剪切乳化,进行胶溶过程;
(4)、用盐酸或氢氧化钠溶液调节悬浮液的pH至7~8,继续搅拌分散,得到 g-C3N4/TiO2光触媒水溶胶。
本发明采用改性g-C3N4/TiO2光触媒作为原料,采用无机分散剂六偏磷酸钠和硅酸钠、H2O2作为胶溶剂,制备了可见光催化活性的g-C3N4/TiO2光触媒水溶胶。试验证明,制备的g-C3N4/TiO2水溶胶光触媒活性组分分布均匀,溶胶的稳定性好,较长时间(大于3个月)存放后不会沉淀。合成的水溶胶接近中性、亲水性强、低粘度,可以很好地涂覆于建筑物表面,并且具有较好的光催化能力和自清洁性能,为建筑材料表面实现自清洁提供基础。
本发明创新点在于:1、以水作溶剂,不使用有机分散剂和溶剂,体系中不含有机成分,既降低成本又环保、安全,更加适合较大规模的生产。2、悬浮体系各组分加入顺序是:首先加入双组份分散剂六偏磷酸钠和硅酸钠,搅拌溶解完全后再逐渐加入g-C3N4/TiO2光触媒粉末,最后加入少量胶溶剂H2O2;在此过程中,分散剂种类和用量、pH值及加料顺序等均对TiO2基粉体在水中分散产生影响。纳米粒子的分散稳定性是其发挥功能的关键,本方法将纳米级改性二氧化钛微粒均匀分散在中性水溶液中,配合机械分散法加快胶溶过程,缩短分散时间,溶胶稳定且不发生团聚,操作简单,体系稳定分散效果持久,是一种方便、快捷地制备g-C3N4/TiO2水溶胶的新方法,利用此水溶胶在基片表面成膜,不经过高温处理,即可拥有较好的可见光催化活性,具有良好的去除室内VOC功能。
附图说明
图1为本发明样品接触角测量结果,图中,A-H2O、B-1wt%-g-C3N4/TiO2水溶胶、 C-3wt%-g-C3N4/TiO2水溶胶;
图2为本发明样品透射电镜照片,图中,a-TiO2、b-g-C3N4、c-3wt%-g-C3N4/TiO2、d-3wt%-g-C3N4/TiO2高分辨透射电镜照片;
图3为本发明样品XRD图谱和拉曼光谱,图中,e–本发明样品XRD图谱,f–本发明样品拉曼光谱;e图中1为g-C3N4,2为5wt%-g-C3N4/TiO2,3为TiO2; f图中,1为3wt%-g-C3N4/TiO2,2为TiO2
图4为本发明样品紫外-可见漫反射光谱和交流阻抗谱,图中,g–本发明样品紫外-可见漫反射光谱,g图中,1为3wt%-g-C3N4/TiO2,2为TiO2;h–本发明样品交流阻抗谱;
图5为本发明样品的光触媒降解亚甲基蓝染料催化活性,图中,i–在紫外光下(15W汞灯)光触媒降解亚甲基蓝染料催化活性;j–在可见光下(500W氙灯、 420nm滤光片)光触媒降解亚甲基蓝染料催化活性。
具体实施方式
为对本发明进行更好地说明,举实施例如下:
实施例1
所述高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法通过如下方法实现:
(1)、商品纳米二氧化钛(锐钛矿)经共轭分子g-C3N4的表面杂化改性后,制备得到可见光活性的g-C3N4/TiO2光触媒;
(2)、在100ml水中依次加入双组份分散剂六偏磷酸钠和硅酸钠,分散剂加入量为0.1~0.5wt%,搅拌30min溶解完全;
(3)、在步骤(2)上述溶液中逐步加入g-C3N4/TiO2光触媒粉体,加入量为 1~3wt%,滴加1~3wt%的H2O2溶液,剪切乳化10min,进行胶溶过程;
(4)、用盐酸或氢氧化钠溶液调节悬浮液的pH至7~8,继续搅拌分散30min,得到g-C3N4/TiO2光触媒水溶胶。
检测结果见表1、2、3。
表1水溶胶样品的表观粘度
样品名称 本发明3wt%-g-C3N4/TiO2 本发明1wt%-g-C3N4/TiO2 H2O
粘度(mPa·S) 20~30 10~16 10~14
表1光触媒样品主要物性指标
表3水溶胶主要性能指标

Claims (1)

1. g-C3N4/TiO2光触媒无机水溶胶制备方法,其特征为,通过以下步骤实现:
(1)、纳米二氧化钛经共轭分子g-C3N4的表面杂化改性后,制备得到可见光活性的g-C3N4/TiO2 光触媒;
(2)、在100 ml水中依次加入双组份分散剂六偏磷酸钠和硅酸钠,分散剂加入量为0.1~0.5wt%,搅拌溶解完全;
(3)、在步骤(2)上述溶液中逐步加入g-C3N4/TiO2 光触媒粉体,加入量为1~3wt%,然后滴加1~3wt% 的H2O2溶液,剪切乳化,进行胶溶过程;
(4)、用盐酸或氢氧化钠溶液调节悬浮液的pH至7~8,继续搅拌分散,得到g-C3N4/TiO2光触媒水溶胶。
CN201610622266.9A 2016-08-02 2016-08-02 一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法 Active CN106238088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610622266.9A CN106238088B (zh) 2016-08-02 2016-08-02 一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610622266.9A CN106238088B (zh) 2016-08-02 2016-08-02 一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法

Publications (2)

Publication Number Publication Date
CN106238088A CN106238088A (zh) 2016-12-21
CN106238088B true CN106238088B (zh) 2018-08-28

Family

ID=57606487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610622266.9A Active CN106238088B (zh) 2016-08-02 2016-08-02 一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法

Country Status (1)

Country Link
CN (1) CN106238088B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914266B (zh) * 2017-03-06 2020-09-08 南方科技大学 一种快速降解污染物的g-C3N4复合光催化剂及其制备方法
CN107597168A (zh) * 2017-11-06 2018-01-19 西南石油大学 一种可见光响应负载分散剂‑氮化碳的光催化材料及其制备方法与应用
CN109365005B (zh) * 2018-10-11 2021-09-17 浙江空将环境科技有限公司 高催化降解性能光触媒水溶胶及其生产工艺
CN109331803B (zh) * 2018-10-11 2021-09-03 林碧强 二氧化钛-石墨烯复合材料及其在光触媒纳米溶胶中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049962A (zh) * 2007-05-18 2007-10-10 广东省生态环境与土壤研究所 一种中性纳米二氧化钛溶胶的制备方法
CN101306838A (zh) * 2008-07-01 2008-11-19 上海大学 高稳定中性混晶纳米TiO2水溶胶的制备方法
CN101429348A (zh) * 2008-12-12 2009-05-13 江苏河海纳米科技股份有限公司 一种纳米二氧化钛-氧化锌复合粉体的制备方法
CN101585552A (zh) * 2009-06-26 2009-11-25 上海大学 由TiO2纳米晶水溶胶制备TiO2多孔薄膜的方法
CN102432063A (zh) * 2011-09-15 2012-05-02 上海工程技术大学 一种用于功能织物的中性纳米二氧化钛水溶胶的制备方法
CN104909404A (zh) * 2015-06-01 2015-09-16 天津市职业大学 一种稳定性纳米二氧化钛水溶胶及其制备方法
CN104959161A (zh) * 2015-06-17 2015-10-07 新乡学院 一种机械化学制备共轭分子杂化半导体光催化材料的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700451A (en) * 1995-05-24 1997-12-23 The Procter & Gamble Company Sunscreen composition
US7077895B2 (en) * 2001-10-30 2006-07-18 Kansai Paint Co., Ltd. Coating compound for forming titanium oxide film, method for forming titanium oxide film and metal susbstrate coated with titanium oxide film
EP2609033A4 (en) * 2010-08-05 2015-05-13 Pq Corp TIO2 IMPREGNATED SILICA HYDROGEL AND METHOD OF MANUFACTURING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049962A (zh) * 2007-05-18 2007-10-10 广东省生态环境与土壤研究所 一种中性纳米二氧化钛溶胶的制备方法
CN101306838A (zh) * 2008-07-01 2008-11-19 上海大学 高稳定中性混晶纳米TiO2水溶胶的制备方法
CN101429348A (zh) * 2008-12-12 2009-05-13 江苏河海纳米科技股份有限公司 一种纳米二氧化钛-氧化锌复合粉体的制备方法
CN101585552A (zh) * 2009-06-26 2009-11-25 上海大学 由TiO2纳米晶水溶胶制备TiO2多孔薄膜的方法
CN102432063A (zh) * 2011-09-15 2012-05-02 上海工程技术大学 一种用于功能织物的中性纳米二氧化钛水溶胶的制备方法
CN104909404A (zh) * 2015-06-01 2015-09-16 天津市职业大学 一种稳定性纳米二氧化钛水溶胶及其制备方法
CN104959161A (zh) * 2015-06-17 2015-10-07 新乡学院 一种机械化学制备共轭分子杂化半导体光催化材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Comparison of Aqueous Photoreactions with TiO2 in its Hydrosol Solution and Powdery Suspension for Light Utilization";Tong-xu Liu et al.;《Industrial & Engineering Chemistry Research》;20110601;第50卷;第7841-7848页 *
"纳米二氧化钛分散性能与光催化活性研究";李红娟 等;《涂料工业》;20100326;第40卷(第1期);第3.1.1节、第3.1.3节 *
"锐钛矿型纳米TiO2水溶胶的低温制备与光催化性能";徐丽丽 等;《硅酸盐学报》;20081115;第36卷(第11期);第1519页第1.1节 *

Also Published As

Publication number Publication date
CN106238088A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
Ekka et al. Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: Optimization using statistical design
CN106238088B (zh) 一种高分散性g-C3N4/TiO2光触媒无机水溶胶制备方法
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
Shirsath et al. Ultrasound assisted synthesis of doped TiO2 nano-particles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent
Lin et al. Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes
Yazid et al. Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route
CN101293669B (zh) 锐钛矿和金红石可控相比例纳米二氧化钛粉体的制备方法
KR101265781B1 (ko) 결정질 이산화티타늄 코어-비정질 이산화티타늄 쉘 형태의 이산화티타늄 광촉매, 그 제조방법 및 상기 이산화티타늄 광촉매를 포함한 친수성 코팅제
Alem et al. The effect of silver doping on photocatalytic properties of titania multilayer membranes
CN106076392A (zh) 一种二氧化钛/g‑C3N4量子点复合催化剂的制备方法
Karbassi et al. Microemulsion-based synthesis of a visible-light-responsive Si-doped TiO2 photocatalyst and its photodegradation efficiency potential
CN101371981A (zh) 磷酸表面修饰的纳米二氧化钛高活性光催化剂及合成方法
CN107522169A (zh) 一种常温制备纳米氧化物的纯有机均相沉积法
CN104071836A (zh) 一种二氧化钛空心纳米球及其制备方法
Nandanwar et al. Preparation of TiO2/SiO2 nanocomposite with non-ionic surfactants via sol-gel process and their photocatalytic study
CN109174075A (zh) 一种用于光催化降解VOCs的稀土元素改性二氧化钛纳米光催化材料及其制备方法
CN109331817A (zh) 一种用于分解空气中有机物的光催化材料及制备方法
Chen et al. Synthesis of porous structured ZnO/Ag composite fibers with enhanced photocatalytic performance under visible irradiation
Zarepour et al. Facile fabrication of Ag decorated TiO2 nanorices: highly efficient visible-light-responsive photocatalyst in degradation of contaminants
CN103551146A (zh) 一种贵金属-二氧化钛纳米复合粒子的制备方法
Meng et al. Piezoelectric effect enhanced plasmonic photocatalysis in the Pt/BaTiO3 heterojunctions
CN106311100B (zh) 一种光催化复合微球的制作方法
CN108339574A (zh) 一种可见光催化降解罗丹明b的钛基复合材料及其制备
Li et al. Synthesis and characterization of highly dispersed TiO 2 nanocrystal colloids by microwave-assisted hydrothermal method
CN102145920B (zh) 一种两步法制备油溶性锐钛矿型二氧化钛纳米颗粒的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant