CN106188386A - 以无机物为交联点制备具有双重相转变温度水凝胶的方法 - Google Patents

以无机物为交联点制备具有双重相转变温度水凝胶的方法 Download PDF

Info

Publication number
CN106188386A
CN106188386A CN201610604876.6A CN201610604876A CN106188386A CN 106188386 A CN106188386 A CN 106188386A CN 201610604876 A CN201610604876 A CN 201610604876A CN 106188386 A CN106188386 A CN 106188386A
Authority
CN
China
Prior art keywords
phase transition
transition temperature
hydrogel
dual phase
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610604876.6A
Other languages
English (en)
Inventor
朱美芳
危培玲
夏梦阁
侯恺
孟周琪
左伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610604876.6A priority Critical patent/CN106188386A/zh
Publication of CN106188386A publication Critical patent/CN106188386A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明公开了一种以无机物为交联点制备具有双重相转变温度水凝胶的方法,其特征在于,搅拌作用下,将无机物理交联剂在超纯水中分散均匀;加入共聚单体,搅拌使单体在水中溶解或分散均匀,往溶液中通入氮气0.5‑1h以除去溶液中溶解的氧气;加入引发剂和加速剂,快速搅拌使引发剂和加速剂在溶液中溶解,然后置于真空烘箱中隔绝氧气聚合12‑24h后,得到纳米复合凝胶。本发明的方法工艺简单,单体的聚合转化率高,物理交联点在凝胶网络中分散均匀,有利于提高纳米复合水凝胶的力学性能,且通过添加不同维度物理交联点都可制备具有双重相变温度的纳米复合水凝胶,扩大了原料的选择范围。

Description

以无机物为交联点制备具有双重相转变温度水凝胶的方法
技术领域
本发明属于纳米复合水凝胶的制备领域,特别涉及一种以无机纳米材料为交联点制备具有双重相转变温度水凝胶的普适性方法。
背景技术
高分子水凝胶是一类由具有三维交联网络结构的聚合物和溶剂水组成的软湿性材料,该聚合物在水中溶胀但不溶解,并能维持一定形状。交联网络的形成得益于多种键连作用,有强的化学共价键作用也有弱的物理键作用(如范德华力、氢键、静电作用等),有时也得益于聚合物链本身的互穿和缠结。温敏性凝胶能够对外界温度刺激产生特定的变化(如:体积形态、光学行为、力学性能等),然而大多数的温敏性水凝胶仅在某一特定环境温度下会发生体积相转变,单一温度转变的水凝胶已经难以满足智能材料发展的需要。
中国专利[CN 103408693 A],曾报道了一种以寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA)和2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)为共聚单体,无机粘土锂皂石为物理交联点,制备了低临界共溶温度(LCST)在25-90℃范围内可调的水凝胶,但是在专利中并未涉及此类凝胶的高临界共溶温度(UCST)的现象;Peter J.Roth报道了将具有UCST的硫代丙基甜菜碱或硫代丁基甜菜碱类聚合物单体和具有LCST的四氢糠胺聚合物单体与苯胺单体共聚,得到同时具有LCST和UCST的聚合物凝胶。东华大学朱美芳教授[Xia,M.,et al.Macromolecular Rapid Communications,2015,36,477-482]首次报道了以无机clay为物理交联点,制备的纳米复合水凝胶出现两个相转变温度,但并未涉及一维、零维物理交联点与聚合物链的特殊作用也可使此类聚合物凝胶出现两个相转变温度的现象。
发明内容
本发明所要解决的问题是提供一种以无机物为交联点制备同时具有双重相变温度的水凝胶的方法。
为了解决上述问题,本发明提供了一种以无机物为交联点制备具有双重相转变温度水凝胶的方法,其特征在于,包括以下步骤:
步骤1):搅拌作用下,将无机物理交联剂在超纯水中分散均匀;
步骤2):在步骤1)得到的混合物中加入共聚单体,搅拌使单体在水中溶解或分散均匀,往溶液中通入氮气0.5-1h以除去溶液中溶解的氧气;
步骤3):在步骤2)得到的混合物中加入引发剂和加速剂,快速搅拌使引发剂和加速剂在溶液中溶解,然后置于真空烘箱中隔绝氧气聚合12-24h后,得到纳米复合凝胶;
反应体系中,无机物理交联剂的质量分数为0.1%-20%,共聚单体的质量分数为20%-80%,引发剂和交联剂的质量分数都为1%~3%。
优选地,所述步骤1)中无机交联剂为二维的锂皂石(Laponite XLS,长30nm,厚1nm)、高岭石(0.2μm)、蒙脱土(0.2μm)、伊利石(0.2μm)、一维的凹凸棒粘土(Attagel 50,0.2μm)、羟基磷灰石(0.1μm)和零维的SiO2(15-100nm)、二氧化钛(15-100nm)中的一种或几种。
优选地,所述步骤2)中共聚单体为寡聚乙二醇甲醚甲基丙烯酸酯寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA,Mn=300,475,950,2000)和2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA,Mn=188),两种共聚单体的摩尔比为0.95∶0.05~0.05∶0.95。
优选地,所述步骤3)中引发剂为过硫酸铵、过硫酸钾和过硫酸钠中的一种或几种。
优选地,所述步骤3)中加速剂为N,N,N′,N′-四甲基二乙胺、三乙醇胺和代硫酸钠中的一种或几种。
本发明以不同维度的无机交联剂:二维锂皂石(Laponite XLS或XLG)、一维凹凸棒(Attagel 50)和零维SiO2等为物理交联剂,以寡聚乙二醇甲醚甲基丙烯酸酯和2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯为共聚单体,通过原位自由基聚合制备具有LCST和UCST双重相转变温度的纳米复合水凝胶。该方法简单可行,单体转化率高,聚合速度快,适合于工业化生产;以不同维度无机纳米材料为物理交联剂制备的纳米复合水凝胶都具有可逆的UCST和LCST双重相转变现象,拓展了温敏性水凝胶的应用领域。
本发明在纳米复合水凝胶基础上,增加不同维度的物理交联点开发出具有双重温度敏感性的水凝胶,拓宽原料的选择范围,得到制备此类水凝胶的普适性规律,这不仅将开创温敏性水凝胶研究的新领域,而且会增加温敏性水凝胶在温度传感智能器件中的应用。
与现有技术相比,本发明的有益效果在于:
(1)本发明涉及的制备方法简单可行,聚合的转化率高,聚合速度快,适合于工业化生产。使用的PEG类共聚单体、交联剂等都无毒,存在良好的生物相容性,有望应用于生物医用领域。
(2)本发明设计将原本仅有单个相转变温度的水凝胶,通过添加不同维度和尺寸的物理交联剂,制备了UCST和LCST双重相转变温度在20-90℃范围内精确可调的纳米复合水凝胶,更大的满足使用需求,拓展此类温敏性凝胶的应用。
(3)得到的纳米复合水凝胶具有的UCST和LCST双重相变温度是可逆的,即这种温敏性纳米复合水凝胶是可以重复利用的。
附图说明
图1为实施例1制备的纳米复合水凝胶透过率-温度曲线图;
图2为实施例3制备的纳米复合水凝胶的透过率-温度曲线图;
图3为实施例6制备的纳米复合水凝胶的透过率-温度曲线图;
图4为多个共聚单体的化学结构式的对比图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1-6中Laponite XLS(长30nm,厚1nm)购自英国Rockwood公司;凹凸棒土Attagel 50(0.2μm)购于BASF公司;SiO2(15-100nm)购于浑源县富宏矿物制品有限公司;单体均购于Sigma-Aldrich公司,纯度高于99.99%;引发剂和加速剂的纯度均高于99.99%。
实施例1
实施例1
一种以无机物为交联点制备同时具有双重相变温度的水凝胶的方法,具体步骤为:
(1)将10ml超纯水、0.5g Laponite XLS加入到20ml反应瓶中,磁力搅拌使Laponite XLS在水中均匀分散;
(2)加入分子量为300和475的共聚单体寡聚乙二醇甲醚甲基丙烯酸酯,其投入的质量分别是1.8g和0.2g,通氮气30min以除去溶液中的氧气;
(3)随后向溶液中加入引发剂过硫酸铵0.02g和加速剂TEMED 10μL,并将该溶液于室温下隔绝氧气放置24h,即得纳米复合水凝胶用紫外分光光度计测该凝胶在不同温度下的透过率,根据透过率-温度曲线,测得该凝胶的UCST为53.4℃和LCST为62.4℃,如图1所示。
实施例2
一种以无机物为交联点制备同时具有双重相变温度的水凝胶的方法,具体步骤为:
(1)将10ml超纯水、0.5g Attagel 50加入到20ml反应瓶中,磁力搅拌使凹凸棒在水中均匀分散;
(2)加入共聚单体寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA)1.8g和2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)0.2g,并通氮气30min以除去溶液中的氧气;
(3)随后向溶液中加入引发剂过硫酸铵0.02g和加速剂TEMED 10μL,并将该溶液于室温下隔绝氧气放置24h,即得纳米复合水凝胶。该纳米复合水凝胶的相转变温度通过紫外分光光度计测得。根据透过率-温度曲线,可知该纳米复合凝胶同时具备UCST和LCST两个相转变,其UCST为66.3℃,LCST为74.6℃左右。
实施例3
一种以无机物为交联点制备同时具有双重相变温度的水凝胶的方法,具体步骤为:
(1)将10ml超纯水、0.5g二氧化硅(15nm)加入到20ml反应瓶中,磁力搅拌使二氧化硅在水中均匀分散;
(2)加入分子量为300和475的共聚单体寡聚乙二醇甲醚甲基丙烯酸酯,其投入的质量分别是1.8g和0.2g,并通氮气30min以除去溶液中的氧气;
(3)随后向溶液中加入引发剂过硫酸铵0.02g和加速剂TEMED 10μL,并将该溶液于室温下隔绝氧气放置24h,即得纳米复合水凝胶该纳米复合水凝胶的相转变温度通过紫外分光光度计测得,如图2所示,该纳米复合凝胶同时具备UCST和LCST两个相转变,其UCST为66.3℃,LCST为74.6℃。
实施例4
一种以无机物为交联点制备同时具有双重相变温度的水凝胶的方法,具体步骤为:
(1)将10ml超纯水、0.5g二氧化硅(25nm)加入到20ml反应瓶中,磁力搅拌使二氧化硅在水中均匀分散;
(2)加入共聚单体寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA)0.4g和2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)1.6g,并通氮气30min以除去溶液中的氧气;
(3)随后向溶液中加入引发剂过硫酸铵0.02g和加速剂TEMED 10μL,并将该溶液于室温下隔绝氧气放置24h,即得纳米复合水凝胶。该纳米复合水凝胶的相转变温度通过紫外分光光度计测得。根据透过率-温度曲线,可知该纳米复合凝胶同时具备UCST和LCST两个相转变,其UCST为69.1℃,LCST为74.5℃左右。
实施例5
一种以无机物为交联点制备同时具有双重相变温度的水凝胶的方法,具体步骤为:
(1)将10ml超纯水、0.5g SiO2(15nm)加入到20ml反应瓶中,磁力搅拌使SiO2在水中均匀分散;
(2)加入共聚单体寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA)1g和2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)1g,并通氮气30min以除去溶液中的氧气;
(3)随后向溶液中加入引发剂过硫酸铵0.02g和加速剂TEMED 10μL,并将该溶液于室温下隔绝氧气放置24h,即得纳米复合水凝胶。该纳米复合水凝胶的相转变温度通过紫外分光光度计测得。根据透过率-温度曲线,可知该纳米复合凝胶同时具备UCST和LCST两个相转变,其UCST为35.2℃,LCST为66℃左右。
实施例6
一种以无机物为交联点制备同时具有双重相变温度的水凝胶的方法,具体步骤为:
(1)将10ml超纯水、0.5g Attagel 50加入到20ml反应瓶中,磁力搅拌使凹凸棒在水中均匀分散;
(2)加入分子量为300和475的共聚单体寡聚乙二醇甲醚甲基丙烯酸酯,其投入的质量分别是1.8g和0.2g,并通氮气30min以除去溶液中的氧气;
(3)随后向溶液中加入引发剂过硫酸铵0.02g和加速剂TEMED 10μL,并将该溶液于室温下隔绝氧气放置24h,即得纳米复合水凝胶AT0.05-O300 0.9O475 0.1。该纳米复合水凝胶的相转变温度通过紫外分光光度计测得,其结果如图3所示,其LCST为46.3℃,UCST为73.7℃。

Claims (5)

1.一种以无机物为交联点制备具有双重相转变温度水凝胶的方法,其特征在于,包括以下步骤:
步骤1):搅拌作用下,将无机物理交联剂在超纯水中分散均匀;
步骤2):在步骤1)得到的混合物中加入共聚单体,搅拌使单体在水中溶解或分散均匀,往溶液中通入氮气0.5-1h以除去溶液中溶解的氧气;
步骤3):在步骤2)得到的混合物中加入引发剂和加速剂,快速搅拌使引发剂和加速剂在溶液中溶解,然后置于真空烘箱中隔绝氧气聚合12-24h后,得到纳米复合凝胶;
反应体系中,无机物理交联剂的质量分数为0.1%-20%,共聚单体的质量分数为20%-80%,引发剂和交联剂的质量分数都为1%~3%。
2.如权利要求1所述的以无机物为交联点制备具有双重相变温度水凝胶的方法,其特征在于,所述步骤1)中无机交联剂为锂皂石、高岭石、蒙脱土、伊利石、凹凸棒粘土、羟基磷灰石、SiO2和二氧化钛中的一种或几种。
3.如权利要求1中所述的以无机物为交联点制备具有双重相变温度水凝胶的方法,其特征在于,所述步骤2)中共聚单体为寡聚乙二醇甲醚甲基丙烯酸酯寡聚乙二醇甲醚甲基丙烯酸酯和2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯,两种共聚单体的摩尔比为0.95∶0.05~0.05∶0.95。
4.如权利要求1中所述的以无机物为交联点制备具有双重相变温度水凝胶的方法,其特征在于,所述步骤3)中引发剂为过硫酸铵、过硫酸钾和过硫酸钠中的一种或几种。
5.如权利要求1中所述的以无机物为交联点制备具有双重相变温度水凝胶的方法,其特征在于,所述步骤3)中加速剂为N,N,N′,N′-四甲基二乙胺、三乙醇胺和代硫酸钠中的一种或几种。
CN201610604876.6A 2016-07-28 2016-07-28 以无机物为交联点制备具有双重相转变温度水凝胶的方法 Pending CN106188386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610604876.6A CN106188386A (zh) 2016-07-28 2016-07-28 以无机物为交联点制备具有双重相转变温度水凝胶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610604876.6A CN106188386A (zh) 2016-07-28 2016-07-28 以无机物为交联点制备具有双重相转变温度水凝胶的方法

Publications (1)

Publication Number Publication Date
CN106188386A true CN106188386A (zh) 2016-12-07

Family

ID=57495598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610604876.6A Pending CN106188386A (zh) 2016-07-28 2016-07-28 以无机物为交联点制备具有双重相转变温度水凝胶的方法

Country Status (1)

Country Link
CN (1) CN106188386A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110522951A (zh) * 2019-09-11 2019-12-03 湖南工业大学 一种具有抗疲劳和抗冲击特性的凝胶材料
CN110669477A (zh) * 2019-09-29 2020-01-10 淮阴工学院 黏土基微胶囊相变材料的可控制备方法
CN110820065A (zh) * 2019-11-05 2020-02-21 东华大学 一种连续化制备高强度水凝胶纤维的方法
CN111138689A (zh) * 2020-01-13 2020-05-12 上海创始实业(集团)有限公司 温敏相变水凝胶的制备方法
CN111394022A (zh) * 2020-04-03 2020-07-10 上海禹夷新材料科技有限公司 一种低粘度高导热的导热灌封胶
CN111961167A (zh) * 2020-08-27 2020-11-20 重庆工程职业技术学院 一种水凝胶的制备方法及产品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119631A (zh) * 2014-07-07 2014-10-29 中国日用化学工业研究院 制备具有不同临界响应温度的温敏改性纳米二氧化硅复合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119631A (zh) * 2014-07-07 2014-10-29 中国日用化学工业研究院 制备具有不同临界响应温度的温敏改性纳米二氧化硅复合物的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENGGE XIA ET AL.: "Thermo-Induced Double Phase Transition Behavior of Physically Cross-Linked", 《MACROMOLECULAR CHEMISTRY AND PHYSICS》 *
XIA, MG ET AL.: "A Novel Nanocomposite Hydrogel with Precisely Tunable UCST and LCST", 《MACROMOLECULAR RAPID COMMUNICATIONS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110522951A (zh) * 2019-09-11 2019-12-03 湖南工业大学 一种具有抗疲劳和抗冲击特性的凝胶材料
CN110522951B (zh) * 2019-09-11 2021-08-27 湖南工业大学 一种具有抗疲劳和抗冲击特性的凝胶材料
CN110669477A (zh) * 2019-09-29 2020-01-10 淮阴工学院 黏土基微胶囊相变材料的可控制备方法
CN110669477B (zh) * 2019-09-29 2020-09-25 淮阴工学院 黏土基微胶囊相变材料的可控制备方法
CN110820065A (zh) * 2019-11-05 2020-02-21 东华大学 一种连续化制备高强度水凝胶纤维的方法
CN111138689A (zh) * 2020-01-13 2020-05-12 上海创始实业(集团)有限公司 温敏相变水凝胶的制备方法
CN111394022A (zh) * 2020-04-03 2020-07-10 上海禹夷新材料科技有限公司 一种低粘度高导热的导热灌封胶
CN111961167A (zh) * 2020-08-27 2020-11-20 重庆工程职业技术学院 一种水凝胶的制备方法及产品
CN111961167B (zh) * 2020-08-27 2023-01-17 重庆工程职业技术学院 一种水凝胶的制备方法及产品

Similar Documents

Publication Publication Date Title
CN106188386A (zh) 以无机物为交联点制备具有双重相转变温度水凝胶的方法
Cao et al. Expanding the Scope of Polymerization‐Induced Self‐Assembly: Recent Advances and New Horizons
Dai et al. Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers
Zhang et al. Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine
Pang et al. Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles
Tizzotti et al. Modification of polysaccharides through controlled/living radical polymerization grafting—Towards the generation of high performance hybrids
Zhao et al. Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels
Tamate et al. Recent Advances in Self‐Oscillating Polymer Material Systems
Huang et al. Synthesis of silica particles grafted with well-defined living polymeric chains by combination of RAFT polymerization and coupling reaction
Panahian et al. Synthesis of dual thermoresponsive and pH-sensitive hollow nanospheres by atom transfer radical polymerization
Panahian et al. Synthesis of dual thermosensitive and pH-sensitive hollow nanospheres based on poly (acrylic acid-b-2-hydroxyethyl methacrylate) via an atom transfer reversible addition–fragmentation radical process
JP2013519760A (ja) ナノ結晶セルロース(ncc)に基づく熱可塑性ナノコンポジット材料
Ayres et al. Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization
CN103408693A (zh) 一种响应温度可调的温敏性水凝胶的制备方法
CN104045778B (zh) 一种多面体低聚倍半硅氧烷为核具有ucst的星形杂化材料的制备方法
CN103804700B (zh) 一种颜色可调的化学交联的光子晶体水凝胶的制备方法
JP2014505151A5 (zh)
WO2011020701A1 (en) Ultrahydrophobic coating and method for making the same
Yan et al. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly (divinylbenzene) microspheres
Georgiou et al. Synthesis, characterization, and DNA adsorption studies of ampholytic model conetworks based on cross-linked star copolymers
Yu et al. Tuning hydrogel mechanics by kinetically dependent cross-linking
CN102718933A (zh) 多面体齐聚倍半硅氧烷基双亲三嵌段共聚物及其制备方法
Cao et al. Preparation and properties of thermo-sensitive organic/inorganic hybrid microgels
Chang et al. Construction of mixed micelle with cross-linked core and dual responsive shells
CN103483601B (zh) 一种聚合物纳米微球的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207