CN106180209A - 四辊轧机考虑工作辊水平位移时的板形预报方法 - Google Patents

四辊轧机考虑工作辊水平位移时的板形预报方法 Download PDF

Info

Publication number
CN106180209A
CN106180209A CN201610825616.1A CN201610825616A CN106180209A CN 106180209 A CN106180209 A CN 106180209A CN 201610825616 A CN201610825616 A CN 201610825616A CN 106180209 A CN106180209 A CN 106180209A
Authority
CN
China
Prior art keywords
working roll
roll
roller
band
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610825616.1A
Other languages
English (en)
Other versions
CN106180209B (zh
Inventor
白振华
钱承
李学通
刘亚星
刘硕杨
李柏阳
杜江城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan City Rong Ze iron and steel processing Co., Ltd.
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610825616.1A priority Critical patent/CN106180209B/zh
Publication of CN106180209A publication Critical patent/CN106180209A/zh
Application granted granted Critical
Publication of CN106180209B publication Critical patent/CN106180209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/04Flatness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

一种四辊轧机考虑工作辊水平位移时的板形预报方法,它包括以下由计算机执行的步骤:(1)收集四辊轧机的主要设备参数及工艺参数;(2)收集四辊轧机轧制时的主要轧制工艺参数;(3)定义板形预报过程中涉及的变量;(4)对轧辊和待轧带材进行单元划分及相关系数的计算;(5)四辊轧机轧制过程中的出口板形预报;(6)输出当前工况下,得出对应的板形分布。本发明能够定量有效预报出四辊轧机考虑工作辊水平位移时带材成品板形,提高出口板形预报精度,改善带材成品质量,提高生产效率。

Description

四辊轧机考虑工作辊水平位移时的板形预报方法
技术领域
本发明属于冶金技术领域,特别涉及一种带钢平整生产工艺方法。
背景技术
近年来,伴随着板带产品需求的日益扩大,用户对带材产品质量的要求也越来越高,根据现场实际生产,发现随着前后张力差越大,四辊轧机工作辊长径比越大,工作辊绝对直径越小会使得四辊轧机工作辊容易出现水平位移,如继续采用常规的板形预报模型会降低对出口板形的预报精度,甚至会产生板形错误预报,这样对板形闭环控制也失去了实际意义。因此,要想控制好四辊轧机生产出带材的板形质量,首先必须建立一套基于实际生产工况下的板形预报模型,但是纵观国内外相关文献[1-6],对板形问题的研究都是以常规四辊轧机为研究对象,并没有考虑到工作辊的水平位移问题。
(参考文献:[1]连家创,刘宏民.板厚板形控制[M].兵器工业出版社,1995.[2]王国栋.板带板形控制与板形理论[M].冶金工业出版社,1986.[3]白振华,刘宏民.平整轧制工艺模型[M].冶金工业出版社,2010.[4]张清东,陈先霖.CVC四辊冷轧机板形控制策略[J].北京科技大学学报,1996,18(4):347-351.[5]李月,张小平,刘光明,等.四辊板带轧机辊颈载荷分布及板形影响因素分析[J].轧钢,2014,31(6):1-4.[6]白振华,韩林芳,李经洲,等.四辊轧机非常态轧制时板形模型的研究[J].机械工程学报,2012,48(20):80-85.)
发明内容
针对四辊轧机因工作辊产生水平位移而无法准确预报出口板形,甚至错误预报的问题,本发明提供了一种四辊轧机考虑工作辊水平位移时板形预报方法。
本发明包括以下由计算机执行的步骤:
(a)收集四辊轧机的主要设备参数及工艺参数,主要包括:工作辊左右弯辊力分别为Fwl、Fwr,支承辊左右支承力分别为Fbl、Fbr,支承辊压下螺丝与轧制中心线的距离分别为lbl、lbr,工作辊弯辊缸与轧制中心线的距离分别为lwl、lwr;工作辊、支撑辊辊身长度Lw、Lb;工作辊、支撑辊的直径Dw、Db;工作辊、支撑辊的辊型Dwi、Dbi;倾辊量η;
(b)收集四辊轧机轧制时的主要轧制工艺参数,主要包括:带材的变形抗力σ;变形抗力系数k;带材的来料宽度B;带材来料厚度平均值带材来料厚度横向分布h0i;带材的弹性模量E;带材的泊松比ν;压下率ε;前后张力平均值T1、T0
(c)定义板形预报过程中涉及的变量,主要包括:工作辊相对于支撑辊的刚性转角βvw;带材的出口板形Shapei;带材前后张应力横向分布值σ1i、σ0i;带材出口厚度横向分布h1i;带材出口厚度横向分布初始值h′1i;支撑辊沿辊身分段数N;支撑辊每段宽度Δx;带材沿宽度方向分段数M;上、下支撑辊单元划分过程参数n;带材单元划分过程参数m;过程变量i、j;工作辊j段载荷引起i段挠度的影响函数Gwij;支撑辊j段载荷引起i段挠度的影响系数Gbij;工作辊左右两侧的水平支承力Flwz、Flwy对工作辊i段挠度的影响系数GFlwzi、GFlwyi;工作辊左右两侧的弯辊力Fwl、Fwr对工作辊i段挠度的影响系数GFwli、GFwri;支承辊左右两侧的支承力Fbl、Fbr对支承辊i段挠度的影响系数GFbli、GFbri;工作辊与带钢间的轧制压力分布值qi;工作辊与带材间的轧制压力水平分布值qli;工作辊与带材间的轧制压力垂直分布值qvi;工作辊与支承辊间的接触力分布值qwbi;工作辊水平位移分布工作辊左、右侧水平位移分布工作辊左、右侧垂直挠度分布支承辊左、右侧挠度分布fbli、fbri;工作辊横向凸度值ΔDwi;支撑辊横向凸度值ΔDbi;工作辊与支承辊间的附加凸度Δxi;工作辊偏移角ai;工作辊左右两侧的水平支承力分别为Flwz、Flwy
(d)对轧辊和待轧带材进行单元划分及相关系数的计算,主要包括以下步骤
d1.将支撑辊沿辊身长度方向划分为N等分,并计算出支撑辊各段宽度
d2.计算待轧制带材沿宽度方向分段数M,并令
d3.计算上、下支撑辊单元划分过程参数n;带材单元划分过程参数m,并令
d4.分别计算工作辊挠度影响系数Gwij、GFwli、GFwri;支撑辊挠度影响系数Gbij、GFbli、GFbri
(e)四辊轧机轧制过程中的出口板形预报,主要包括以下步骤:
e1.给定带材出口厚度横向分布初始值h′li
e2.根据金属变形模型计算前张应力横向分布值σ1i、后张应力横向分布值σ0i
e3.依据轧制水平方向受力平衡条件,把前张应力和后张应力数值代入计算出工作辊与带材间的轧制压力在水平分布值
e4.由材料力学相关知识可得工作辊水平方向的挠曲方程:
f w l i l = Σ j = 1 n q l j G w i j - F l w z G F l w z i , 1 ≤ i ≤ n
f w r i l = Σ j = n + 2 2 n + 1 q l j G w i j - F l w y G F l w y i , n + 2 ≤ i ≤ 2 n + 1
e5.考虑到工作辊的受力和力矩平衡,给出相应的平衡方程,
Σ i = 1 2 n + 1 q l i = F l w z + F l w y
Σ i = 1 2 n + 1 q v i + F w l + F w r = Σ i = 1 2 n + 1 q w b i
Σ i = 1 2 n + 1 q l i x i - F l w z l w l + F l w y l w r = 0
式中xi是第i单元到轧制中心线的距离;
e6.根据所求工作辊水平方向上的挠度,等价于工作辊在水平方向上的水平位移量,左侧位移量为右侧位移量为
e7.根据四辊轧机工作辊受力情况,求出工作辊偏移角
e8.由工作辊与支承辊之间的几何关系,求出工作辊与支承辊之间的附加凸度,
e9.根据辊系的变形协调方程,可以得出轧制工艺参数与设备参数之间的关系式,
Σ j = 1 n q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = 1 n q v j G w i j - β v w x i = F w l G F w l i + F b l G F b l i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , 1 ≤ i ≤ n
Σ j = n + 2 2 n + 1 q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = n + 2 2 n + 1 q v j G w i j - β v w x i = F w r G F w r i + F b r G F b r i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , n + 2 ≤ i ≤ 2 n + 1
式中,ξ为考虑轧辊弹性变形时支承辊倾辊量影响系数,Kwb为工作辊和支承辊的相互压扁的柔度系数;
e10.考虑到工作辊水平位移,工作辊与支承辊不对称接触,以往的压扁系数在此已不能适用,故求出新的压扁系数方程,如下所示:
K w b = 2 ( 1 - v 1 2 ) πE 1 ( 1 - f w l i 2 R w 2 ) ( b w b z b w b z + b w b y l n 2 R w b w b z + b w b y b w b z + b w b y l n 2 R w b w b y + 0.407 ) + ( 1 - v 2 2 ) πE 2 ( 1 - f w l i 2 R b 2 ) ( b w b z b w b z + b w b y l n 2 R b b w b z + b w b y b w b z + b w b y l n 2 R b b w b y + 0.036 )
e11.根据支撑辊的受力以及力矩平衡,给出相应的平衡方程,如下所示:
Σ i = 1 2 n + 1 q v i x i + F w r l w r - F w l l w l = Σ i = 1 2 n + 1 q w b i x i
Σ i = 1 2 n + 1 q w b i = F b r + F b l
Σ i = 1 2 n + 1 q w b i x i = F b r l b r - F b l l b l
e12.根据e9‐e11所列的2n+4个方程,即可求出工作辊与支承辊之间的辊间压力qwbj,垂直方向上工作辊相对于支承辊的刚性转角βvw,工作辊左右两侧水平支承力Flwz、Flwy共2n+4个未知数。
e13.根据工作辊、支承辊接触力分布值qwbj;工作辊相对支撑辊的刚性转角为βvw;计算出工作辊垂直方向上的挠度分布,计算模型如下所示:
f w l i v = Σ j = 1 n [ q w b j - q j ] G w i j - F w l G F w l i - β v w x i , 1 ≤ i ≤ n
f w r i v = Σ j = n + 2 2 n + 1 [ q w b j - q j ] G w i j - F w r G F w r i - β v w x i , n + 2 ≤ i ≤ 2 n + 1
e14.根据工作辊垂直方向上的挠度分布计算出口厚度横向分布h1i
e15.根据带材出口张力横向分布预报四辊轧机工作辊水平位移轧制时的板形分布
e16.判断不等式是否成立,如果不等式成立,转入步骤f;如果不等式不成立,则令h1i′=h1i,转入步骤e2重新计算;
f.输出当前工况下,得出对应的板形分布shapei,完成四辊轧机工作辊水平位移轧制时板形预报。
本发明与现有技术相比具有如下优点:
1、能够定量有效预报出四辊轧机考虑工作辊水平位移时带材成品板形,通过该技术可以为现场板形精细控制提供一套新方法并具有进一步推广使用的价值。
2、提高了出口板形预报精度,改善了带材成品质量,提高了生产效率。
附图说明
图1是本发明的总计算流程图;
图2是本发明单元划分及相关影响系数计算流程图;
图3是本发明出口板形预报计算流程图;
图4是本发明实施例1的工作辊辊型曲线图;
图5是本发明实施例1的支撑辊辊型曲线图;
图6是本发明实施例1中带材入口厚度横向分布曲线图;
图7是本发明实施例1中工作辊水平方向挠度分布曲线图;
图8是本发明实施例1中工作辊与支撑辊间压力分布图;
图9是本发明实施例1中工作辊垂直方向挠度分布曲线图;
图10是本发明实施例1中出口厚度横向分布曲线图;
图11是本发明实施例1中出口张力横向分布曲线图;
图12是本发明实施例1中出口板形分布曲线图;
图13是本发明实施例2的工作辊辊型曲线图;
图14是本发明实施例2的支撑辊辊型曲线图;
图15是本发明实施例2中带材入口厚度横向分布曲线图;
图16是本发明实施例2中工作辊水平方向挠度分布曲线图;
图17是本发明实施例2中工作辊与支撑辊间压力分布图;
图18是本发明实施例2中工作辊垂直方向挠度分布曲线图;
图19是本发明实施例2中出口厚度横向分布曲线图;
图20是本发明实施例2中出口张力横向分布曲线图;
图21是本发明实施例2中出口板形分布曲线图。
具体实施方式
实施例1
四辊轧机考虑工作辊水平位移时板形预报方法,其计算流程如图1所示:
首先,在步骤1中,收集四辊轧机的主要设备与工艺参数,主要包括:工作辊左右弯辊力Fwl=25t,Fwr=25t;支承辊左右支承力Fbl=200t,Fbr=200t;支承辊压下螺丝与轧制中心线的距离lbl=550mm,lbr=550mm;工作辊弯辊缸与轧制中心线的距离lwl=550mm,lwr=550mm;工作辊、支撑辊辊身长度Lw=650mm,Lb=650mm;工作辊、支撑辊的直径Dw=165mm,Db=420mm;工作辊、支撑辊的辊型如图4、图5所示,倾辊量η=0.08mm;
随后,在步骤2中,收集四辊轧机轧制时的主要轧制工艺参数,主要包括:带材的变形抗力σ=680Mpa;变形抗力系数k=1.2;带材的来料宽度B=450mm;带材来料厚度平均值带材来料厚度横向分布h0i,如图6所示;带材的弹性模量E=210000MPa;带材的泊松比v=0.3;压下率ε=0.31;前后张力平均值T1=120Mpa,T0=60Mpa;
随后,在步骤3中,定义预报过程中所涉及的过程变量,主要包括:工作辊相对于支撑辊的刚性转角βvw;带材的出口板形Shapei;带材前后张应力横向分布值σ1i、σ0i;带材出口厚度横向分布h1i;带材出口厚度横向分布初始值h′1i;支撑辊沿辊身分段数N;支撑辊每段宽度Δx;带材沿宽度方向分段数M;上、下支撑辊单元划分过程参数n;带材单元划分过程参数m;过程变量i、j;工作辊j段载荷引起i段挠度的影响函数Gwij;支撑辊j段载荷引起i段挠度的影响系数Gbij;工作辊左右两侧的水平支承力Flwz、Flwy对工作辊i段挠度的影响系数GFlwzi、GFlwyi;工作辊左右两侧的弯辊力Fwl、Fwr对工作辊i段挠度的影响系数GFwli、GFwri;支承辊左右两侧的支承力Fbl、Fbr对支承辊i段挠度的影响系数GFbli、GFbri;工作辊与带钢间的轧制压力分布值qi;工作辊与带材间的轧制压力水平分布值qli;工作辊与带材间的轧制压力垂直分布值qvi;工作辊与支承辊间的接触力分布值qwbi;工作辊左、右侧水平位移分布工作辊左、右侧垂直挠度分布 支承辊左、右侧挠度分布fbli、fbri;工作辊横向凸度值ΔDwi;支撑辊横向凸度值ΔDbi;工作辊与支承辊间的附加凸度Δxi;工作辊偏移角ai;工作辊左右两侧的水平支承力分别为Flwz、Flwy
随后,如图2所示,在步骤4中,对轧辊和待轧带材进行单元划分及相关系数的计算:
随后,在步骤4‐1中,将支撑辊沿辊身长度方向划分为N=65等分,计算出支撑辊各段宽度
随后,在步骤4‐2中,计算待轧制带材沿宽度方向分段数
随后,在步骤4‐3中,计算上、下支撑辊单元划分过程参数
随后,在步骤4‐4中,分别计算工作辊挠度影响系数Gwij、GFwli、GFwri;支撑辊挠度影响系数Gbij、GFbli、GFbri
随后,在步骤5中,进行四辊轧机轧制过程中的出口板形预报:
随后,在步骤5‐1中,给定带材出口厚度横向分布初始值h′li
随后,在步骤5‐2中,根据金属变形模型计算前张应力横向分布值σ1i、后张应力横向分布值σ0i
随后,在步骤5‐3中,依据水平平衡条件,把前张应力和后张应力数值代入计算出工作辊与带材间的轧制压力在水平分布值
随后,在步骤5‐4中,由材料力学相关知识可得工作辊水平方向的挠曲方程:
f w l i l = Σ j = 1 32 q l j G w i j - F l w z G F l w z i , 1 ≤ i ≤ 32
f w r i l = Σ j = 34 65 q l j G w i j - F l w y G F l w y i , 34 ≤ i ≤ 65
随后,在步骤5‐5中,考虑到工作辊的受力和力矩平衡,给出相应的平衡方程,
Σ i = 1 65 q l i = F l w z + F l w y
Σ i = 1 65 q v i + F w l + F w r = Σ i = 1 65 q w b i
Σ i = 1 65 q l i x i - F l w z l w l + F l w y l w r = 0
式中xi是第i单元到轧制中心线的距离;
随后,在步骤5‐6中,因为工作辊在水平方向上的挠度(分布曲线如图7所示)等价于工作辊水平位移量,所以在工作辊左侧水平位移工作辊右侧水平位移
随后,在步骤5‐7中,根据四辊轧机工作辊受力情况,求出工作辊偏移角
随后,在步骤5‐8中,由工作辊与支承辊之间的几何关系,求出工作辊与支承辊之间的附加凸度,
随后,在步骤5‐9中,根据辊系的变形协调方程,可以得出轧制工艺参数与设备参数之间的关系式,
Σ j = 1 32 q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = 1 32 q v j G w i j - β v w x i = F w l G F w l i + F b l G F b l i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , 1 ≤ i ≤ 32
Σ j = 34 65 q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = 34 65 q v j G w i j - β v w x i = F w r G F w r i + F b r G F b r i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , 34 ≤ i ≤ 65
式中,ξ为考虑轧辊弹性变形时支承辊倾辊量影响系数,Kwb为工作辊和支承辊的相互压扁的柔度系数;
随后,在步骤5‐10中,考虑到工作辊水平位移,工作辊与支承辊不对称接触,以往的压扁系数在此已不能适用,故求出新的压扁系数方程,如下所示:
K w b = 2 ( 1 - v 1 2 ) πE 1 ( 1 - f w l i 2 R w 2 ) ( b w b z b w b z + b w b y l n 2 R w b w b z + b w b y b w b z + b w b y l n 2 R w b w b y + 0.407 ) + ( 1 - v 2 2 ) πE 2 ( 1 - f w l i 2 R b 2 ) ( b w b z b w b z + b w b y l n 2 R b b w b z + b w b y b w b z + b w b y l n 2 R b b w b y + 0.036 )
随后,在步骤5‐11中,根据支撑辊的受力以及力矩平衡,给出相应的平衡方程,如下所示:
Σ i = 1 65 q v i x i + F w r l w r - F w l l w l = Σ i = 1 65 q w b i x i
Σ i = 1 65 q w b i = F b r + F b l
Σ i = 1 65 q w b i x i = F b r l b r - F b l l b l
随后,在步骤5‐12中,根据所列的2n+4个方程,即可求出工作辊与支承辊之间的辊间压力qwbj,垂直方向上工作辊相对于支承辊的刚性转角βvw,工作辊左右两侧水平支承力Flwz、Flwy共2n+4个未知数。
随后,在步骤5‐13中,根据工作辊、支承辊接触力分布值qwbj,分布曲线如图8所示;工作辊相对支撑辊的刚性转角为βvw;计算出工作辊垂直方向上的挠度分布,分布曲线如图9所示,计算模型如下所示:
f w l i v = Σ j = 1 32 [ q w b j - q j ] G w i j - F w l G F w l i - β v w x i , 1 ≤ i ≤ 32
f w r i v = Σ j = 34 65 [ q w b j - q j ] G w i j - F w r G F w r i - β v w x i , 34 ≤ i ≤ 65
随后,在步骤5‐14中,根据工作辊垂直方向上的挠度分布计算出口厚度横向分布h1i,分布曲线如图10所示;
随后,在步骤5‐15中,根据带材出口张力横向分布(如图11所示)预报四辊轧机工作辊水平位移轧制时的板形分布
随后,在步骤5‐16中,判断不等式是否成立,显然等式不成立,则令h1i′=h1i,返回步骤5‐2重新计算,直至计算值满足不等式。
随后,在步骤6中,输出当前工况下,得出对应的板形分布shapei(如图12所示),完成四辊轧机工作辊水平位移轧制时板形预报。
实施例2
首先,在步骤1中,收集四辊轧机的主要设备与工艺参数,主要包括:工作辊左右弯辊力Fwl=30t,Fwr=30t;支承辊左右支承力Fbl=220t,Fbr=220t;支承辊压下螺丝与轧制中心线的距离lbl=550mm,lbr=550mm;工作辊弯辊缸与轧制中心线的距离lwl=550mm,lwr=550mm;工作辊、支撑辊辊身长度Lw=650mm,Lb=650mm;工作辊、支撑辊的直径Dw=185mm,Db=480mm;工作辊、支撑辊的辊型如图13、图14所示,倾辊量η=0.08mm;
随后,在步骤2中,收集四辊轧机轧制时的主要轧制工艺参数,主要包括:带材的变形抗力σ=720Mpa;变形抗力系数k=1.4;带材的来料宽度B=485mm;带材来料厚度平均值带材来料厚度横向分布h0i,如图15所示;带材的弹性模量E=210000MPa;带材的泊松比v=0.3;压下率ε=0.292;前后张力平均值T1=180Mpa,T0=80Mpa;
随后,在步骤3中,定义预报过程中所涉及的过程变量,主要包括:工作辊相对于支撑辊的刚性转角βvw;带材的出口板形Shapei;带材前后张应力横向分布值σ1i、σ0i;带材出口厚度横向分布h1i;带材出口厚度横向分布初始值h′1i;支撑辊沿辊身分段数N;支撑辊每段宽度Δx;带材沿宽度方向分段数M;上、下支撑辊单元划分过程参数n;带材单元划分过程参数m;过程变量i、j;工作辊j段载荷引起i段挠度的影响函数Gwij;支撑辊j段载荷引起i段挠度的影响系数Gbij;工作辊左右两侧的水平支承力Flwz、Flwy对工作辊i段挠度的影响系数GFlwzi、GFlwyi;工作辊左右两侧的弯辊力Fwl、Fwr对工作辊i段挠度的影响系数GFwli、GFwri;支承辊左右两侧的支承力Fbl、Fbr对支承辊i段挠度的影响系数GFbli、GFbri;工作辊与带钢间的轧制压力分布值qi;工作辊与带材间的轧制压力水平分布值qli;工作辊与支承辊间的接触力分布值qwbi;工作辊左、右侧水平位移分布工作辊左、右侧垂直挠度分布支承辊左、右侧挠度分布fbli、fbri;工作辊横向凸度值ΔDwi;支撑辊横向凸度值ΔDbi;工作辊与支承辊间的附加凸度Δxi;工作辊偏移角ai;工作辊左右两侧的水平支承力分别为Flwz、Flwy
随后,在步骤4中,对轧辊和待轧带材进行单元划分及相关系数的计算;
随后,在步骤4‐1中,将支撑辊沿辊身长度方向划分为N=65等分,计算出支撑辊各段宽度
随后,在步骤4‐2中,计算待轧制带材沿宽度方向分段数
随后,在步骤4‐3中,计算上、下支撑辊单元划分过程参数
随后,在步骤4‐4中,分别计算工作辊挠度影响系数Gwij、GFwli、GFwri;支撑辊挠度影响系数Gbij、GFbli、GFbri
随后,在步骤5中,进行四辊轧机轧制过程中的出口板形预报:
随后,在步骤5‐1中,给定带材出口厚度横向分布初始值h′li
随后,在步骤5‐2中,根据金属变形模型计算前张应力横向分布值σ1i、后张应力横向分布值σ0i
随后,在步骤5‐3中,依据水平平衡条件,把前张应力和后张应力数值代入计算出工作辊与带材间的轧制压力在水平分布值
随后,在步骤5‐4中,由材料力学相关知识可得工作辊水平方向的挠曲方程:
f w l i l = Σ j = 1 32 q l j G w i j - F l w z G F l w z i , 1 ≤ i ≤ 32
f w r i l = Σ j = 34 65 q l j G w i j - F l w y G F l w y i , 34 ≤ i ≤ 65
随后,在步骤5‐5中,考虑到工作辊的受力和力矩平衡,给出相应的平衡方程,
Σ i = 1 65 q l i = F l w z + F l w y
Σ i = 1 65 q v i + F w l + F w r = Σ i = 1 65 q w b i
Σ i = 1 65 q l i x i - F l w z l w l + F l w y l w r = 0
式中xi是第i单元到轧制中心线的距离;
随后,在步骤5‐6中,因为工作辊在水平方向上的挠度(分布曲线如图16所示)等价于工作辊水平位移量,所以在工作辊左侧水平位移工作辊右侧水平位移
随后,在步骤5‐7中,根据四辊轧机工作辊受力情况,求出工作辊偏移角
随后,在步骤5‐8中,由工作辊与支承辊之间的几何关系,求出工作辊与支承辊之间的附加凸度,
随后,在步骤5‐9中,根据辊系的变形协调方程,可以得出轧制工艺参数与设备参数之间的关系式,
Σ j = 1 32 q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = 1 32 q v j G w i j - β v w x i = F w l G F w l i + F b l G F b l i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , 1 ≤ i ≤ 32
Σ j = 34 65 q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = 34 65 q v j G w i j - β v w x i = F w r G F w r i + F b r G F b r i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , 34 ≤ i ≤ 65
式中,ξ为考虑轧辊弹性变形时支承辊倾辊量影响系数,Kwb为工作辊和支承辊的相互压扁的柔度系数;
随后,在步骤5‐10中,考虑到工作辊水平位移,工作辊与支承辊不对称接触,以往的压扁系数在此已不能适用,故求出新的压扁系数方程,如下所示:
K w b = 2 ( 1 - v 1 2 ) πE 1 ( 1 - f w l i 2 R w 2 ) ( b w b z b w b z + b w b y l n 2 R w b w b z + b w b y b w b z + b w b y l n 2 R w b w b y + 0.407 ) + ( 1 - v 2 2 ) πE 2 ( 1 - f w l i 2 R b 2 ) ( b w b z b w b z + b w b y l n 2 R b b w b z + b w b y b w b z + b w b y l n 2 R b b w b y + 0.036 )
随后,在步骤5‐11中,根据支撑辊的受力以及力矩平衡,给出相应的平衡方程,如下所示:
Σ i = 1 65 q v i x i + F w r l w r - F w l l w l = Σ i = 1 65 q w b i x i
Σ i = 1 65 q w b i = F b r + F b l
Σ i = 1 65 q w b i x i = F b r l b r - F b l l b l
随后,在步骤5‐12中,根据所列的2n+4个方程,即可求出工作辊与支承辊之间的辊间压力qwbj,垂直方向上工作辊相对于支承辊的刚性转角βvw,工作辊左右两侧水平支承力Flwz、Flwy共2n+4个未知数。
随后,在步骤5‐13中,根据工作辊、支承辊接触力分布值qwbj,分布曲线如图17所示;工作辊相对支撑辊的刚性转角为βvw;计算出工作辊垂直方向上的挠度分布,分布曲线如图18所示,计算模型如下所示:
f w l i v = Σ j = 1 32 [ q w b j - q j ] G w i j - F w l G F w l i - β v w x i , 1 ≤ i ≤ 32
f w r i v = Σ j = 34 65 [ q w b j - q j ] G w i j - F w r G F w r i - β v w x i , 34 ≤ i ≤ 65
随后,在步骤5‐14中,根据工作辊垂直方向上的挠度分布计算出口厚度横向分布h1i,分布曲线如图19所示;
随后,在步骤5‐15中,根据带材出口张力横向分布(如图20所示)预报四辊轧机工作辊水平位移轧制时的板形分布
随后,在步骤5‐16中,判断不等式是否成立,显然等式不成立,则令h1i′=h1i,返回步骤5‐2重新计算,直至计算值满足不等式。
随后,在步骤6中,输出当前工况下,得出对应的板形分布shapei(如图21所示),完成四辊轧机工作辊水平位移轧制时板形预报。

Claims (1)

1.一种四辊轧机考虑工作辊水平位移时的板形预报方法,其特征在于:它包括以下由计算机执行的步骤:
(a)收集四辊轧机的主要设备参数及工艺参数,主要包括:工作辊左右弯辊力分别为Fwl、Fwr,支承辊左右支承力分别为Fbl、Fbr,支承辊压下螺丝与轧制中心线的距离分别为lbl、lbr,工作辊弯辊缸与轧制中心线的距离分别为lwl、lwr;工作辊、支撑辊辊身长度Lw、Lb;工作辊、支撑辊的直径Dw、Db;工作辊、支撑辊的辊型Dwi、Dbi;倾辊量η;
(b)收集四辊轧机轧制时的主要轧制工艺参数,主要包括:带材的变形抗力σ;变形抗力系数k;带材的来料宽度B;带材来料厚度平均值带材来料厚度横向分布h0i;带材的弹性模量E;带材的泊松比ν;压下率ε;前后张力平均值T1、T0
(c)板形预报过程中涉及的变量,主要包括:工作辊相对于支撑辊的刚性转角βvw;带材的出口板形Shapei;带材前后张应力横向分布值σ1i、σ0i;带材出口厚度横向分布h1i;带材出口厚度横向分布初始值h′1i;支撑辊沿辊身分段数N;支撑辊每段宽度Δx;带材沿宽度方向分段数M;上、下支撑辊单元划分过程参数n;带材单元划分过程参数m;过程变量i、j;工作辊j段载荷引起i段挠度的影响函数Gwij;支撑辊j段载荷引起i段挠度的影响系数Gbij;工作辊左右两侧的水平支承力Flwz、Flwy对工作辊i段挠度的影响系数GFlwzi、GFlwyi;工作辊左右两侧的弯辊力Fwl、Fwr对工作辊i段挠度的影响系数GFwli、GFwri;支承辊左右两侧的支承力Fbl、Fbr对支承辊i段挠度的影响系数GFbli、GFbri;工作辊与带材间的轧制压力分布值qi;工作辊与带材间的轧制压力水平分布值qli;工作辊与带材间的轧制压力垂直分布值qvi;工作辊与支承辊间的接触力分布值qwbi;工作辊水平位移分布工作辊左、右侧水平位移分布工作辊左、右侧垂直挠度分布 支承辊左、右侧挠度分布fbli、fbri;工作辊横向凸度值ΔDwi;支撑辊横向凸度值ΔDbi;工作辊与支承辊间的附加凸度Δxi;工作辊偏移角ai;工作辊左右两侧的水平支承力分别为Flwz、Flwy
(d)对轧辊和待轧带材进行单元划分及相关系数的计算,主要包括以下步骤:
d1.将支撑辊沿辊身长度方向划分为N等分,并计算出支撑辊各段宽度
d2.计算待轧制带材沿宽度方向分段数M,并令
d3.计算上、下支撑辊单元划分过程参数n;带材单元划分过程参数m,并令
d4.分别计算工作辊挠度影响系数Gwij、GFwli、GFwri;支撑辊挠度影响系数Gbij、GFbli、GFbri
(e)四辊轧机轧制过程中的出口板形预报,主要包括以下步骤:
e1.给定带材出口厚度横向分布初始值h′li
e2.根据金属变形模型计算前张应力横向分布值σ1i、后张应力横向分布值σ0i
e3.依据轧制水平方向受力平衡条件,把前张应力和后张应力数值代入计算出工作辊与带材间的轧制压力在水平分布值
e4.由材料力学相关知识可得工作辊水平方向的挠曲方程:
f w l i l = Σ j = 1 n q l j G w i j - F l w z G F l w z i , 1 ≤ i ≤ n
f w r i l = Σ j = n + 2 2 n + 1 q l j G w i j - F l w y G F l w y i , n + 2 ≤ i ≤ 2 n + 1
e5.考虑到工作辊的受力和力矩平衡,给出相应的平衡方程:
Σ i = 1 2 n + 1 q l i = F l w z + F l w y
Σ i = 1 2 n + 1 q v i + F w l + F w r = Σ i = 1 2 n + 1 q w b i
Σ i = 1 2 n + 1 q l i x i - F l w z l w l + F l w y l w r = 0
式中xi是第i单元到轧制中心线的距离;
e6.根据所求工作辊水平方向上的挠度,等价于工作辊在水平方向上的水平位移量,左侧位移量为右侧位移量为
e7.根据四辊轧机工作辊受力情况,求出工作辊偏移角
e8.由工作辊与支承辊之间的几何关系,求出工作辊与支承辊之间的附加凸度,
e9.根据辊系的变形协调方程,可以得出轧制工艺参数与设备参数之间的关系式,
Σ j = 1 n q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = 1 n q v j G w i j - β v w x i = F w l G F w l i + F b l G F b l i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , 1 ≤ i ≤ n
Σ j = n + 2 2 n + 1 q w b j [ G w i j + G b i j ] + K w b q w b i - K w b q w b ( n + 1 ) - Σ j = n + 2 2 n + 1 q v j G w i j - β v w x i = F w r G F w r i + F b r G F b r i - ΔD w i + ΔD b i 2 + η L b ξx i - Δx i , n + 2 ≤ i ≤ 2 n + 1
式中,ξ为考虑轧辊弹性变形时支承辊倾辊量影响系数,Kwb为工作辊和支承辊的相互压扁的柔度系数;
e10.考虑到工作辊水平位移,工作辊与支承辊不对称接触,以往的压扁系数在此已不能适用,故求出新的压扁系数方程,如下所示:
K w b = 2 ( 1 - v 1 2 ) πE 1 ( 1 - f w l i 2 R w 2 ) ( b w b z b w b z + b w b y l n 2 R w b w b z + b w b y b w b z + b w b y l n 2 R w b w b y + 0.407 ) + ( 1 - v 2 2 ) πE 2 ( 1 - f w l i 2 R b 2 ) ( b w b z b w b z + b w b y ln 2 R b b w b z + b w b y b w b z + b w b y l n 2 R b b w b y + 0.036 )
e11.根据支撑辊的受力以及力矩平衡,给出相应的平衡方程,如下所示:
Σ i = 1 2 n + 1 q v i x i + F w r l w r - F w l l w l = Σ i = 1 2 n + 1 q w b i x i
Σ i = 1 2 n + 1 q w b i = F b r + F b l
Σ i = 1 2 n + 1 q w b i x i = F b r l b r - F b l l b l
e12.根据e9‐e11所列的2n+4个方程,即可求出工作辊与支承辊之间的辊间压力qwbj,垂直方向上工作辊相对于支承辊的刚性转角βvw,工作辊左右两侧水平支承力Flwz、Flwy共2n+4个未知数;
e13.根据工作辊、支承辊接触力分布值qwbj;工作辊相对支撑辊的刚性转角为βvw;计算出工作辊垂直方向上的挠度分布,计算模型如下所示:
f w l i v = Σ j = 1 n [ q w b j - q j ] G w i j - F w l G F w l i
vwxi,1≤i≤n
f w r i v = Σ j = n + 2 2 n + 1 [ q w b j - q j ] G w i j - F w r G F w r i
vwxi,n+2≤i≤2n+1
e14.根据工作辊垂直方向上的挠度分布计算出口厚度横向分布h1i
e15.根据带材出口张力横向分布预报四辊轧机工作辊水平位移轧制时的板形分布
e16.判断不等式是否成立,如果不等式成立,转入步骤f;如果不等式不成立,则令h1i′=h1i,转入步骤e2重新计算;
f.输出当前工况下,得出对应的板形分布shapei,完成四辊轧机工作辊水平位移轧制时板形预报。
CN201610825616.1A 2016-09-14 2016-09-14 四辊轧机考虑工作辊水平位移时的板形预报方法 Active CN106180209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610825616.1A CN106180209B (zh) 2016-09-14 2016-09-14 四辊轧机考虑工作辊水平位移时的板形预报方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610825616.1A CN106180209B (zh) 2016-09-14 2016-09-14 四辊轧机考虑工作辊水平位移时的板形预报方法

Publications (2)

Publication Number Publication Date
CN106180209A true CN106180209A (zh) 2016-12-07
CN106180209B CN106180209B (zh) 2018-06-08

Family

ID=58067733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610825616.1A Active CN106180209B (zh) 2016-09-14 2016-09-14 四辊轧机考虑工作辊水平位移时的板形预报方法

Country Status (1)

Country Link
CN (1) CN106180209B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107983779A (zh) * 2017-10-20 2018-05-04 北京首钢股份有限公司 一种确定带载辊缝凸度的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1316580A (en) * 1969-10-10 1973-05-09 Jones Ltd George Jacking devices
GB2297709B (en) * 1995-02-13 1998-09-02 Achenbach Buschhuetten Gmbh Cold-rolling mill for thin and foil strip
CN102553945A (zh) * 2012-01-18 2012-07-11 燕山大学 一种适合于四辊轧机的非常态板形预报方法
CN103567228A (zh) * 2013-09-26 2014-02-12 燕山大学 一种六辊轧机极薄带非常态轧制时板形与压靠预报方法
CN104289528A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双机架四辊轧机的轧制张力控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1316580A (en) * 1969-10-10 1973-05-09 Jones Ltd George Jacking devices
GB2297709B (en) * 1995-02-13 1998-09-02 Achenbach Buschhuetten Gmbh Cold-rolling mill for thin and foil strip
CN102553945A (zh) * 2012-01-18 2012-07-11 燕山大学 一种适合于四辊轧机的非常态板形预报方法
CN104289528A (zh) * 2013-07-18 2015-01-21 上海宝钢钢材贸易有限公司 双机架四辊轧机的轧制张力控制方法
CN103567228A (zh) * 2013-09-26 2014-02-12 燕山大学 一种六辊轧机极薄带非常态轧制时板形与压靠预报方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107983779A (zh) * 2017-10-20 2018-05-04 北京首钢股份有限公司 一种确定带载辊缝凸度的方法及装置
CN107983779B (zh) * 2017-10-20 2020-03-17 北京首钢股份有限公司 一种确定带载辊缝凸度的方法及装置

Also Published As

Publication number Publication date
CN106180209B (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN101716607B (zh) Hc轧机非对称弯辊非对称横移板形控制方法
CN107377634B (zh) 一种热轧带钢出口凸度预报方法
CN101507978B (zh) 冷连轧机基于机理与工况相结合的工作辊磨损预报方法
CN102941232A (zh) 一种热连轧精轧过程控制方法
CN101623708A (zh) 板形控制集成系统及执行方法
CN101648216A (zh) 一种pc轧机板形板凸度离线预报设定方法
CN102847721B (zh) 一种热轧带钢轧辊热凸度确定方法
CN103567228B (zh) 一种六辊轧机极薄带非常态轧制时板形与压靠预报方法
CN106345817B (zh) 工作辊长径比大且直径绝对值小的六辊轧机板形预报方法
CN103567229B (zh) 一种针对六辊轧机的弯辊力组合板形控制方法
CN113434994B (zh) 一种基于热轧原板热轧工艺参数预测冷轧变形抗力的方法
TW200806984A (en) Rolling line material quality prediction and control apparatus
CN102553945B (zh) 一种适合于四辊轧机的非常态板形预报方法
CN103831304B (zh) 一种热连轧中间坯目标宽度计算方法及系统
CN107442575A (zh) 一种带钢湿平整表面粗糙度的预测方法
CN105363794A (zh) 一种基于力学性能预报和轧制能耗模型的精轧节能控制方法
CN1091008C (zh) 基于板形板厚协调规律的板带轧制过程互联控制方法
CN107321799A (zh) 一种新型二十辊轧机控制工艺的参数制定集成系统
CN102688896B (zh) 四辊冷连轧机组基于机理模型的虚拟凸度仪设定方法
CN110976524B (zh) 一种热连轧机工作辊凸度配置方法
CN107537866B (zh) 一种双机架湿平整机组工作辊表面粗糙度的预报方法
CN105013835A (zh) 冷连轧机组极薄带轧制中基于热凸度的原始辊缝设定方法
CN103586289B (zh) 热连轧粗轧区立辊轧制的轧制压力设定方法
CN106180209A (zh) 四辊轧机考虑工作辊水平位移时的板形预报方法
CN106825068A (zh) 一种轧制过程带钢表面粗糙度的预测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181017

Address after: 063600 Lingang Industrial Zone, Leting County, Tangshan City, Hebei

Patentee after: Tangshan City Rong Ze iron and steel processing Co., Ltd.

Address before: 066004 438 west section of Hebei Avenue, Qinhuangdao, Hebei.

Patentee before: Yanshan University