CN106159212A - 一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法 - Google Patents
一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法 Download PDFInfo
- Publication number
- CN106159212A CN106159212A CN201510124747.2A CN201510124747A CN106159212A CN 106159212 A CN106159212 A CN 106159212A CN 201510124747 A CN201510124747 A CN 201510124747A CN 106159212 A CN106159212 A CN 106159212A
- Authority
- CN
- China
- Prior art keywords
- lithium titanate
- thin film
- titanate anode
- sputtering
- anode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法,其特征由以下步骤组成:采用PECVD超高真空多功能磁控溅射镀膜设备;磁控溅射工作室内安装硅靶,与靶材相向的工作台平铺钛酸锂负极材料,溅射气体为纯度99.999%的Ar气,将溅射腔室的本底真空抽至6.6X10-5Pa,打开通气阀通入Ar气,Ar气流量为20sccm,调节溅射压强为6.8pa~7.2pa,溅射2nm~7nm硅薄膜与钛酸锂负极材料表面附着,制成纳米硅薄膜钛酸锂负极材料。通过钛酸锂负极材料表面与溅射硅薄膜附着制成纳米硅薄膜钛酸锂负极材料能提高钛酸锂负极材料比容量。
Description
技术领域
本发明涉及一种锂离子电池负极材料制备方法,特别是一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法。
背景技术
尖晶石型钛酸锂(Li4Ti5O12)作为新型储能电池的电极材料日益受到重视。这是因为Li4Ti5O12在锂离子嵌入-脱嵌过程中晶体结构能够保持高度的稳定性,锂离子嵌入前后都为尖晶石结构,且晶格常数变化很小,体积变化很小(<1%),所以Li4Ti5O12被称为“零应变”电极材料。与目前占有大市场份额的碳负极材料相比,Li4Ti5O12平衡电位较高,避免了金属锂的沉积,因此其安全性比碳负极材料高;Li4Ti5O12的化学扩散系数比碳负极材料大一个数量级,充放电速度很快。Li4Ti5O12的比容量小于碳负极,仅有碳负极的1/2左右,因此,尖晶石型钛酸锂的大规模应用受到了限制。提高尖晶石型钛酸锂的比容量对推广尖晶石型钛酸锂有重要意义。针对Li4Ti5O12的改性,文献记载,采用化学沉积法与热分解法相结合Li4Ti5O12复合NiO(5%)制备了Li4Ti5O12/NiO复合材料,放电比容量为228.3mA·h/g,与Li4Ti5O12相比,提高了23.8mA·h/g[赵立姣,Li4Ti5O12/NiO复合材料的制备及其电化学性能,中南大学学报(自然科学版)第43卷第11期2012年11月]。此后,研究Li4Ti5O12参杂改性,寻找优越性能材料复合成了热点,在各种新型合金化储锂的材料中,硅容量最高,能和锂形成Li12Si7、Li13Si4、Li7Si3、Li15Si4和Li22Si5等合金,理论储锂容量高达4212mA·h/g,超过石墨容量的10倍,硅基负极材料还具有与电解液反应活性低和嵌锂电位低等优点,文献记载,硅的嵌锂电压平台略高于石墨,在充电时难以引起表面锂沉积的现象,安全性能优于石墨负极材料[Ge M,Rong J,Fang x,et al.Porous doped silicon nanowires for lithium ionbattery anode with long cycle life[J].Nano Letters,2012,12(5):2318-2323]。但是,硅电极在脱嵌锂的过程中的体积效应所造成的容量快速衰减,是其实用化进程的巨大阻碍,文献记载,在电化学储锂过程中,每个硅原子平均结合4.4个锂原子后得到Li22Si5合金相,造成材料的体积变化可达到300%以上[Al-Maghrabi M A,Thorne J S,Sanderson R J,et al.A combinatorial study of the Sn-Si-C system for Li-ionbattery applications[J].Journal of The Electrochemical Society,2012,159(6):A711-A719]。由巨大的体积效应产生的机械应力会引发材料颗粒挤压和挤压力的累积系统性问题,使活性物质从集流体上逐渐破裂、脱落,从而丧失与集流体的电接触,造成电极循环性能迅速下降[Liu H K,Guo Z,Wang J,et a1.Si-based anodematerials for lithium rechargeable batteries[J].Journal of Materials Chemistry,2010,20(45):10055-10057]。
为了克服体积膨胀效应产生的机械应力引发材料颗粒挤压和挤压力的累积,使活性物质从集流体上逐渐破裂、脱落,从而丧失与集流体的电接触的问题,有文献记载,Chen等采用磁控溅射法在铜薄膜上制得275um厚的非晶态硅薄膜,将此硅薄膜在0.025C倍率下进行充放电时,其可逆容量高达3134mA·h/g,而以0.5C倍率充放电时,循环500次后,容量衰减至61.3%[Chen L,Xie J,YuH,et al.An amorphous Si thin film anode with high capacity and long cycling life for lithiumion batteries[J]Journal of Applied Electrochemistry,2009,39(8):1157-1162]。该研究表明,0.025C倍率的小电流充放电可逆容量高,而0.5C倍率呈现容量衰减快的问题,文献记载,作为集流体的铜箔粗糙表面可以改变膨胀和收缩在一维方向累积应力。从而改善涂层与集流体剥离和颗粒的粉化。Lee等发现铜箔的表面形貌对电极性能影响显著,以铜箔作基底的电极,粗糙表面优于平整表面[Lee K L,JungJ Y,Lee S W,et al.J.Power Sources,2004,129:270-274]。还有文献记载,将多孔Si膜沉积在单壁碳纳米管上,改善了Si阳极的比容量和循环稳定性,在0.1C速率下40个充放电循环后容量为2221mAh/g,是Si膜沉积在规则铜基底上的3.6倍[Rong J P,Masarapu C,Ni J,et al.ACS Nano,2010,4:4683-4690]。碳纳米管可以作为机械支撑体和电子导体双重作用,充电容量和循环寿命优于溅射的类似厚度的Si膜。扫描电子显微镜显示在电化学循环后,即使膜被破坏或出现裂缝,Si仍能通过碳纳米管网络连接[Cui L F,Hu L B,Choi J W,Cui Y.ACS Nano,2010,4:3671-3678]此特性与碳纳米管的柔性补偿有关。
发明内容
本发明针对现有钛酸锂比能量较低,硅基负极虽然比能量高,但是巨大的体积效应产生的机械应力会引发材料颗粒挤压和挤压力的累积系统性问题,使活性物质从集流体上逐渐破裂、脱落,而采用磁控溅射法在铜薄膜上制备硅薄膜容量衰减,将多孔Si膜沉积在单壁碳纳米管上,显著优于在铜薄膜上,但是单壁碳纳米管价格昂贵,利用磁控溅射技术,硅靶材原子溅射下来后,沉积到钛酸锂负极材料颗粒表面,形成纳米硅薄膜钛酸锂负极的一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法。
本发明按以下步骤实施
A)使用磁控溅射镀膜系统,将溅射系统的本底真空抽至6.6X10-5Pa;
B)钛酸锂负极材料与靶材相向平铺于磁控溅射工作室内;
C)通过磁控溅射镀膜机溅射气体Ar轰击靶材;
所述的溅射气体,用纯度为99.999%的Ar气;
所述的靶材,采用纯度为99.999%的硅靶,硅靶材质采用单晶硅、多晶硅的一种;
所述的磁控溅射工作室内工作气压为6.8~7.2pa;
所述的溅射Si附着于钛酸锂负极材料,硅薄膜厚度范围2nm~7nm,平均膜厚5nm;
所述的钛酸锂负极材料粒度分布范围0.5um~5.um;
所述的钛酸锂负极材料表面与溅射硅薄膜附着,制成纳米硅薄膜钛酸锂负极材料。
本发明与公知技术相比具有的优点及积极效果
1、本发明磁控溅射制备纳米硅薄膜钛酸锂负极的方法,通过钛酸锂负极材料表面与溅射硅薄膜附着制成纳米硅薄膜钛酸锂负极材料能提高钛酸锂负极材料比容量。
2、磁控共溅射法制备的硅薄膜分布在钛酸锂负极材料多维度几何表面,能改善磁控溅射法在铜薄膜上制备硅薄膜,其一维平面体积膨胀效应产生的机械应力会引发材料颗粒挤压和挤压力的累积,所造成的硅薄膜从集流体上破裂、脱落的问题。
3、磁控共溅射法制备的硅薄膜厚度范围2nm~7nm,平均膜厚5nm,其膨胀绝对尺度小,能减轻脱嵌锂过程硅膨胀体积效应的非均匀变形。
具体实施方式
本实施例按以下步骤
1、采用PECVD超高真空多功能磁控溅射镀膜设备;
2、磁控溅射工作室内安装硅靶,与与靶材相向的工作台平铺钛酸锂负极材料;
3、溅射气体为纯度99.999%的Ar气;
4、将溅射腔室的本底真空抽至6.6X10-5Pa;
5、打开通气阀通入Ar气,Ar气流量为20sccm,调节溅射压强为6.8pa~7.2pa;
6、溅射2nm~7nm硅薄膜与钛酸锂负极材料表面附着,制成纳米硅薄膜钛酸锂负极材料。
Claims (1)
1.一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法,其特征由以下步骤组成:采用超高真空多功能磁控溅射镀膜设备;
磁控溅射工作室内安装硅靶,与靶材相向的工作台平铺钛酸锂负极材料;
溅射气体为纯度99.999%的Ar气;
将溅射腔室的本底真空抽至6.6X10-5Pa;
打开通气阀通入Ar气,Ar气流量为20sccm,调节溅射压强为6.8pa~7.2pa;
溅射2nm~7nm硅薄膜与钛酸锂负极材料表面附着,制成纳米硅薄膜钛酸锂负极材料。
所述的钛酸锂负极材料粒度分布范围0.5um~5.um;
所述的靶材,采用纯度为99.999%的硅靶,硅靶材质采用单晶硅、多晶硅的一种;
所述的溅射硅薄膜附着于钛酸锂负极材料,硅薄膜厚度为2nm~7nm,平均膜厚5nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510124747.2A CN106159212A (zh) | 2015-03-23 | 2015-03-23 | 一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510124747.2A CN106159212A (zh) | 2015-03-23 | 2015-03-23 | 一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106159212A true CN106159212A (zh) | 2016-11-23 |
Family
ID=58063777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510124747.2A Pending CN106159212A (zh) | 2015-03-23 | 2015-03-23 | 一种磁控溅射制备纳米硅薄膜钛酸锂负极的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106159212A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109904392A (zh) * | 2017-12-07 | 2019-06-18 | 中国科学院上海硅酸盐研究所 | 一种锂空气电池正极复合材料及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101136468A (zh) * | 2007-07-31 | 2008-03-05 | 北京理工大学 | 一种提高锂离子电池负极安全性的表面镀膜修饰方法 |
CN101393980A (zh) * | 2007-09-17 | 2009-03-25 | 比亚迪股份有限公司 | 硅负极和包括该负极的锂离子二次电池及它们的制备方法 |
CN101764209A (zh) * | 2010-01-04 | 2010-06-30 | 苏州星恒电源有限公司 | 具有表面包覆层的钛酸锂复合电极材料 |
CN101800305A (zh) * | 2010-03-09 | 2010-08-11 | 福建师范大学 | 一种在锂离子电池钛酸锂负极表面沉积硅薄膜的方法 |
CN103943821A (zh) * | 2013-01-18 | 2014-07-23 | 苏州宝时得电动工具有限公司 | 负极、具有该负极的电池及负极制备方法 |
CN104347842A (zh) * | 2013-07-23 | 2015-02-11 | 华为技术有限公司 | 一种锂离子二次电池复合负极片及其制备方法和锂离子二次电池 |
-
2015
- 2015-03-23 CN CN201510124747.2A patent/CN106159212A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101136468A (zh) * | 2007-07-31 | 2008-03-05 | 北京理工大学 | 一种提高锂离子电池负极安全性的表面镀膜修饰方法 |
CN101393980A (zh) * | 2007-09-17 | 2009-03-25 | 比亚迪股份有限公司 | 硅负极和包括该负极的锂离子二次电池及它们的制备方法 |
CN101764209A (zh) * | 2010-01-04 | 2010-06-30 | 苏州星恒电源有限公司 | 具有表面包覆层的钛酸锂复合电极材料 |
CN101800305A (zh) * | 2010-03-09 | 2010-08-11 | 福建师范大学 | 一种在锂离子电池钛酸锂负极表面沉积硅薄膜的方法 |
CN103943821A (zh) * | 2013-01-18 | 2014-07-23 | 苏州宝时得电动工具有限公司 | 负极、具有该负极的电池及负极制备方法 |
CN104347842A (zh) * | 2013-07-23 | 2015-02-11 | 华为技术有限公司 | 一种锂离子二次电池复合负极片及其制备方法和锂离子二次电池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109904392A (zh) * | 2017-12-07 | 2019-06-18 | 中国科学院上海硅酸盐研究所 | 一种锂空气电池正极复合材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reyes Jiménez et al. | A step toward high-energy silicon-based thin film lithium ion batteries | |
Franco Gonzalez et al. | Silicon anode design for lithium-ion batteries: progress and perspectives | |
CN101593828B (zh) | 锂离子二次电池用负极材料及其制造方法以及锂离子二次电池 | |
Wang et al. | Three-dimensional Sn–graphene anode for high-performance lithium-ion batteries | |
Memarzadeh et al. | Silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer | |
Wang et al. | A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries | |
CN104347842B (zh) | 一种锂离子二次电池复合负极片及其制备方法和锂离子二次电池 | |
US9391315B2 (en) | Negative electrode for lithium ion battery and method for producing the same, and lithium ion battery | |
CN110676420A (zh) | 一种锂离子电池的补锂隔膜 | |
Wang et al. | Magnetron sputtering enabled synthesis of nanostructured materials for electrochemical energy storage | |
US20120231326A1 (en) | Structured silicon battery anodes | |
Demirkan et al. | Low-density silicon thin films for lithium-ion battery anodes | |
WO2017190588A1 (zh) | 一种采用激光熔覆复合扩散焊和脱合金制备锂离子电池硅负极的方法 | |
KR20150104590A (ko) | 다공질 실리콘 미립자의 생성을 위한 전기화학적 및 화학적 복합 에칭 방법 | |
KR101665099B1 (ko) | 천연흑연과 금속물질을 포함하는 리튬이온 이차전지용 음극 활물질 및 이의 제조방법 | |
CN111430684A (zh) | 复合负极及其制备方法和应用 | |
Fan et al. | Novel silicon–nickel cone arrays for high performance LIB anodes | |
Wu et al. | Voltage-controlled synthesis of Cu–Li 2 O@ Si core–shell nanorod arrays as high-performance anodes for lithium-ion batteries | |
Ryu et al. | Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries | |
Huang et al. | Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries | |
CN103996821A (zh) | 一种用于锂离子二次电池的负极薄膜及其制备方法与应用 | |
KR101654047B1 (ko) | 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
Yu et al. | Synthesis of Ni x Si y–SiGe core–shell nanowire arrays on Ni foam as a high-performance anode for Li-ion batteries | |
RU2474011C1 (ru) | Способ изготовления тонкопленочного анода литий-ионных аккумуляторов на основе пленок наноструктурированного кремния, покрытого двуокисью кремния | |
Huang et al. | Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161123 |